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Outline

Human Memory Search

Machine Teaching
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Verbal fluency

Say as many animals as you can without repeating in one minute.
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Semantic “runs”
1. cow, horse, chicken, pig, elephant, lion, tiger, porcupine,

gopher, rat, mouse, duck, goose, horse, bird, pelican, alligator,
crocodile, iguana, goose

2. elephant, tiger, dog, cow, horse, sheep, cat, lynx, elk, moose,
antelope, deer, tiger, wolverine, bobcat, mink, rabbit, wolf,
coyote, fox, cow, zebra

3. cat, dog, horse, chicken, duck, cow, pig, gorilla, giraffe, tiger,
lion, ostrich, elephant, squirrel, gopher, rat, mouse, gerbil,
hamster, duck, goose

4. cat, dog, sheep, goat, elephant, tiger, dog, deer, lynx, wolf,
mountain goat, bear, giraffe, moose, elk, hyena, aardvark,
platypus, lion, skunk, wolverine, raccoon

5. dog, cat, leopard, elephant, monkey, sea lion, tiger, leopard,
bird, squirrel, deer, antelope, snake, beaver, robin, panda,
vulture

6. deer, muskrat, bear, fish, raccoon, zebra, elephant, giraffe,
cat, dog, mouse, rat, bird, snake, lizard, lamb, hippopotamus,
elephant, skunk, lion, tiger

7. dog, cat, ferret, fish, cow, horse, pig, sheep, elephant, tiger,
lion, bear, giraffe, bird, groundhog, ox

8. antelope, baboon, cat, dog, elephant, frog, giraffe,
hippopotamus, jaguar, dog, cat, horse, pig, chicken, bird,
hippopotamus, cow

9. dog, cat, cow, sheep, lamb, rooster, chicken, tiger, elephant,
monkey, orangutan, lemur, crocodile, giraffe, owl, bird, lion,
elephant, hippopotamus, rhinoceros, penguin, seal, walrus,
whale, dolphin

10. dog, cat, bear, deer, puma, opossum, moose, bear, wolf,
coyote, lion, tiger, elephant, giraffe, hyena, cougar, mountain
lion, antelope, elk
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Memory search
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Censored random walk

[Abbott, Austerweil, Griffiths 2012]

I V: n animal word types in English

I P : (dense) n× n transition matrix

I Censored random walk: observing only the first token of each
type x1, x2, . . . , xt, . . .⇒ a1, . . . , an

I (star example)
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The estimation problem

Given m censored random walks
D =

{(
a
(1)
1 , ..., a

(1)
n

)
, ...,

(
a
(m)
1 , ..., a

(m)
n

)}
, estimate P .
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Each observed step is an absorbing random walk

(with Kwang-Sung Jun)

I P (ak+1 | a1, . . . , ak) may contain infinite latent steps

I Instead, model this observed step as an absorbing random
walk with absorbing states V \ {a1, . . . , ak}

I P ⇒
(
Q R
0 I

)
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Maximum Likelihood

I Fundamental matrix N = (I−Q)−1, Nij is the expected
number of visits to j before absorption when starting at i

I p(ak+1 | a1, . . . , ak) =
∑k

i=1NkiRi1

I log likelihood
∑m

i=1

∑n
k=1 log p(a

(i)
k+1 | a

(i)
1 , ..., a

(i)
k )

I Nonconvex, gradient method
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Other estimators

I PRW: pretend a1, . . . , an not censored

I PFirst2: Use only a1, a2 in each walk (consistent)
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Star graph
x-axis: m, y-axis: ‖P̂ − P‖2F
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2D Grid
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Erdös-Rényi with p = log(n)/n
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Ring graph
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Questions

I Consistency?

I Rate?
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Outline

Human Memory Search

Machine Teaching
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Learning a noiseless 1D threshold classifier

θ∗

x ∼ uniform[0, 1]

y =

{
−1, x < θ∗

1, x ≥ θ∗

Θ = {θ : 0 ≤ θ ≤ 1}

Passive learning:

1. given training data D = (x1, y1) . . . (xn, yn)
iid∼ p(x, y)

2. finds θ̂ consistent with D

Risk |θ̂ − θ∗| = O(n−1)
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Active learning (sequential experimental design)

Binary search
θ∗

Risk |θ̂ − θ∗| = O(2−n)
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Machine teaching

What is the minimum training set a helpful teacher can construct?

θ∗

Risk |θ̂ − θ∗| = ε,∀ε > 0
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Comparing the three

θ∗

O(1/2 )
n

θ∗θ∗

{{

O(1/n)

passive learning "waits" active learning "explores" teaching "guides"

The teacher knows θ∗ and the learning algorithm.
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Example 2: Teaching a Gaussian distribution

Given a training set x1 . . . xn ∈ Rd, let the learning algorithm be

µ̂ =
1

n

n∑
i=1

xi

Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)>

How to teach N(µ∗,Σ∗) to the learner quickly?

non-iid, n = d+ 1
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An Optimization View of Machine Teaching

A(D)

θ
∗

Α (θ )
−1 ∗

A

Α
−1

D

Θ

DD

min
D∈D

|D|

s.t. A(D) = θ∗

The objective is the teaching dimension [Goldman, Kearns 1995] of
θ∗ with respect to A,Θ.
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Example 3: Works on Humans

Human categorization on 1D stimuli [Patil, Z, Kopeć, Love 2014]

human training set human test accuracy

machine teaching 72.5%
iid 69.8%

(statistically significant)
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New task: teaching humans how to label a graph

Given:

I a graph G = (V,E)

I target labels y∗ : V 7→ {−1, 1}
I a label-completion cognitive model A (graph diffusion

algorithm) such as:
I mincut
I harmonic function [Z, Gharahmani, Lafferty 2003]
I local global consistency [Zhou et al. 2004]
I . . .

Find the smallest seed set:

min
S⊆V

|S|

s.t. A(y∗(S)) = y∗

(inverse problem of semi-supervised learning)

25 / 30



Example: A = local-global consistency [Zhou et al. 2004]

F = (1− α)(I − αD−1/2WD−1/2)−1y∗(S)

y = sgn

(
F

(
1
−1

))
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|A−1(y∗)| is large
Turns out 4649 out of 216 = 65536 training sets S lead to the
target label completion
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Optimal seed set 1: |S| = 3
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Optimal seed set 2: |S| = 3
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Questions

I How does |S| relate to (spectral) properties of G?

I How to solve for S?
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