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Graph partitioning applied to clustering points in space

The clustering problem
Given observations X1, . . . ,Xn, partition the sample into k groups:
. dissimilar groups;
. similar observations within each group.

Numerous existing techniques:
hierarchical classification;
k -means algorithm;
level set methods;
graph-partitioning heuristics.
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Examples of graphs

X1, . . . ,Xn i.i.d. valued in some subset M ⊂ Rd .

Define a graph Gn = (Vn,En) with vertices Vn = {1, . . . ,n}.
The graph may have weights (weight matrix W).
The graph represents a rough skeleton of M.

. ε-ball graph
i ∼ j if dist(Xi ,Xj) ≤ ε.

. k -nearest neighbor graph

i ∼ j if Xj is one of the k -nearest neighbors of Xi .

. Fully connected weighted graph

For example : wij = exp
(
−dist(Xi ,Xj)
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Normalized cut and Cheeger constant

Bipartite graph cut problem
Split the graph Gn = (Vn,En) into S and Sc , with S ⊂ Vn.

For S a subset of the graph, define

σ(S) =
∑
i∈S

∑
j∈Sc

wij discrete perimeter

δ(S) =
∑
i∈S

∑
j 6=i

wij discrete perimeter

Normalized cut problem

min
S⊂V

σ(S)

min{δ(S), δ(Sc)}
DEF
= h(G) Cheeger constant
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Normalized cut and Cheeger constant

. The Cheeger constant is also called conductance.

. Small Cheeger constant ≡ strong bottleneck.

. Best split set S defines a partition of the graph G.

. But the optimization problem NP-hard.
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Example: observations

The set M is the union of two discs. (n = 300 points uniform from M.)
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Example: graph

This is a neighborhood graph on the sample points.
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Example: where to cut?

Finding a split that optimizes the normalized cut criterion is NP-hard.
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Graph Laplacians and spectral graph partitioning

Define the degree matrix

D = diag(
∑

j

wij , 1 ≤ i ≤ n).

Define the normalized graph Laplacian

L = I− D−1W.

Graph bisection (e.g., Shi and Malik, 2000)
1 Compute the eigenvector for the second smallest eigenvalue of L.
2 Partition the points according to their corresponding entry in this

vector.

See also (Chung, 1997) and (Ng, Jordan, and Weiss, 2002).
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Example: approximate best split

Partition computed using spectral bisection. (Blue: discrete boundary.)
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The problem

Assuming the points X1, . . . ,Xn are sampled iid uniform from a domain
M ⊂ Rd , describe the large-sample behavior of the Cheeger constant
of a εn-ball neighborhood graph.

EAC, B. Pelletier, and P. Pudlo. The normalized graph cut and Cheeger
constant: from discrete to continuous. Adv. in Applied Probability, 2012.
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Closely related work:

H. Narayanan, M. Belkin, and P. Niyogi. On the relation between low
density separation, spectral clustering and graph cuts. NIPS, 2007.

H. Narayanan and P. Niyogi. On the sample complexity of learning
smooth cuts on a manifold. COLT, 2009.

M. Maier, U. Von Luxburg, and M. Hein. Influence of graph construction
on graph-based clustering measures. NIPS, 2009.

M. Maier, U. von Luxburg, M. Hein. How the result of graph clustering
methods depends on the construction of the graph. ESAIM: Probability
and Statistics, 2013.

12 / 37



Setting

M ⊂ Rd bounded, open and connected, with smooth boundary.
(Assume that Vold (M) = 1 without loss of generality.)
X1, . . . ,Xn sampled iid uniformly from M.

Smooth here means with positive reach. The reach of a set A ⊂ Rd is
the supremum of all r > 0 such that, for all x ∈ A⊕ B(0, r) there is a
unique point a ∈ Ā such that

‖x − a‖ = min
b∈A
‖x − b‖

See (Federer, 1959). (Related to the condition number of Niyogi et al.)
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We consider the rn-neighborhood graph Gn = (Vn,En):
(i) vertices: Vn = {1, . . . ,n}
(ii) edges: i ∼ j if ‖Xi − Xj‖ ≤ rn

Recall the Cheeger constant of the graph Gn:

h(Gn) = min
S⊂Vn

σ(S)

min{δ(S), δ(Sc)}
, with

σ(S) =
∑
i∈S

∑
j∈Sc

wij and δ(S) =
∑
i∈S

∑
j 6=i

wij

wij = 1{‖Xi−Xj‖≤rn}
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The continuous Cheeger constant

For A ⊂ M, set

µ(A) = Vold (A ∩M), ν(A) = Vold−1(∂A ∩M)

and define
h(A; M) =

ν(A)

min {µ(A), µ(Ac)}
,

with Volk the k -dimensional Hausdorff measure.

The Cheeger constant of M

h(M) = inf {h(A; M) : A ⊂ M} .

. The minimization can be restricted to subsets A with smooth
boundary of codimension 1.

. A Cheeger set A? is a subset with h(A?; M) = h(M).

. ∂A? is not necessarily smooth (e.g., d ≥ 8).
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Relating the discrete and the continuous

A natural question...

As the sample size increases (n→∞) how is the (discrete) Cheeger
constant h(Gn) related to the (continuous) Cheeger constant h(M)?
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Discrete perimeter and volume of a continuous set

For A ⊂ Rd , let SA = {i : Xi ∈ A}, and define
the (normalized) discrete perimeter

νn(A) =
1

γd rd+1
n

1
n(n − 1)

σn(SA)

where
γd =

∫
Rd

max
(
〈u, z〉,0

)
1{‖z‖≤1} dz,

where u is any unit-norm vector of Rd .

the (normalized) discrete volume

µn(A) =
1

ωd rd
n

1
n(n − 1)

δn(SA)

where ωd denote the d-volume of the unit d-dimensional ball.
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Discrete normalized cut of a continuous set

Define
hn(A; Gn) =

νn(A)

min {µn(A), µn(Ac)}

Theorem
Let A ⊂ Rd is such that ∂A ∩M has positive reach. If rn → 0 with
nrd+1

n / log n→∞, then

hn(A; Gn)→ h(A; M) a.s.
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One side of the asymptotics

Corollary

If rn → 0 with nrd+1
n / log n→∞, then

lim sup
n→∞

ωd

γd

1
rn

h(Gn) ≤ h(M) a.s.

Proof. This follows immediately from applying the previous result. Take
A ⊂ Rd is such that ∂A ∩M has positive reach. Then

h(Gn) ≤ ωd

γd

1
rn

hn(A; Gn)→ h(A; M)

This implies that
lim sup

n
h(Gn) ≤ h(A; M)

for all such A. And minimizing the RHS over such A gives h(M).
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Concentration inequality for the discrete volume

Proposition

Fix a sequence rn → 0. Let A ⊂ M be an arbitrary open subset of M.
There exists a constant C depending only on M such that, for any
ε > 0, and all n large enough, we have

P [|µn(A)− µ(A)| ≥ ε] ≤ 2 exp
(
− nrd

n ε
2

C(1 + ε)

)
.

In particular, if nrd
n / log n→∞, then µn(A)→ µ(A) a.s. when n→∞.
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By the triangle inequality, we have

|µn(A)− µ(A)| ≤ |µn(A)− E [µn(A)]|+ |E [µn(A)]− µ(A)|
= (1) + (2)

Define the kernel

φA,r (x , y) =
1
2

{
1A(x) + 1A(y)

}
1{‖x − y‖ ≤ r}

so that µn(A) may be expressed as the following U-statistic

µn(A) =
1

ωdn(n − 1)rd
n

∑
i 6=j

φA,rn (Xi ,Xj)

We control (1) using a concentration inequality for U-statistics.
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Define
Mr = {x ∈ M : dist(x , ∂M) > r}

Lemma
For any A ⊂ M and r < reach(∂M),∣∣∣∣ 1

ωd rd E
[
φA,r (X1,X2)

]
− µ(A)

∣∣∣∣ ≤ µ(A ∩Mc
r )

Note that E [µn(A)] = 1
ωd rd

n
E
[
φA,rn (X1,X2)

]
.

Proof. We have

E
[
φA,r (X1,X2)

]
= E

[
1A(X1)1{‖X1−X2‖≤r}

]
.

Conditioning on X1, we have

E
[
1A∩Mr (X1)1{‖X1−X2‖≤r}

]
= ωd rdµ(A ∩Mr )

= ωd rdµ(A)− ωd rdµ(A ∩Mc
r )

E
[
1A∩Mc

r
(X1)1{‖X1−X2‖≤r}

]
≤ ωd rdµ(A ∩Mc

r ).
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We control (2) — the bias — using this lemma and the following result,
closely related to Weyl’s volume formula for tubular neighborhoods.

Lemma

For any bounded open subset R ⊂ Rd with reach(∂R) = ρ > 0 and any
0 < r < ρ,

Vold (V(∂R, r)) ≤ 2d Vold−1(∂R) r .

This implies that

µ(A ∩Mc
r ) ≤ µ(Mc

r ) ≤ Vold (∂M, r) ≤ Cr

for a constant C = C(M).
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Concentration inequality for the discrete perimeter

Proposition
Fix a sequence rn → 0. Let A be an open subset of M such that
∂A ∩M has positive reach. There exists a constant C depending only
on M such that, for any ε > 0, and for all n large enough, we have

P [|νn(A)− ν(A)| ≥ ε] ≤ 2 exp

(
− nrd+1

n ε2

C(ν(A) + ε)

)
.

In particular, if nrd+1
n / log n→∞, then νn(A)→ ν(A) a.s. when n→∞.
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Proof. The proof is analogous to that of the previous proposition (for
the volume). Indeed, we can express νn(A) as a U-statistic

νn(A) =
1

γdn(n − 1)rd+1
n

∑
i 6=j

φ̄A,rn (Xi ,Xj),

where

φ̄A,r (x , y) =
1
2

{
1A(x)1Ac (y) + 1A(y)1Ac (x)

}
1{‖x − y‖ ≤ r}
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The control of the bias is more delicate. We use the following bound.

Lemma
Let A = R ∩M, where R is a bounded domain with reach(∂R) = ρ > 0.
Let r < min{ρ/2, reach(∂M)}. There exists a constant C = C(M) > 0
such that∣∣∣∣ 1

γd rd+1E
[
φ̄A,r (X1,X2)

]
− ν(A)

∣∣∣∣ ≤ C Vold−1(∂R ∩ (∂M ⊕ B(0, r)))

+ C Vold−1(∂R ∩M)
r
ρ

Note that
E [νn(A)] =

1
γd rd+1

n
E
[
φ̄A,rn (X1,X2)

]

Applying the lemma, for A = R ∩M, we have

|E [νn(A)]− ν(A)| ≤ C Vold−1(∂R ∩ (∂M ⊕ B(0, rn)))

+ C Vold−1(∂A ∩M)
rn

reach(∂R)
→ 0
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∣∣∣∣ ≤ C Vold−1(∂R ∩ (∂M ⊕ B(0, r)))

+ C Vold−1(∂R ∩M)
r
ρ

Note that
E [νn(A)] =

1
γd rd+1

n
E
[
φ̄A,rn (X1,X2)

]
Applying the lemma, for A = R ∩M, we have

|E [νn(A)]− ν(A)| ≤ C Vold−1(∂R ∩ (∂M ⊕ B(0, rn)))

+ C Vold−1(∂A ∩M)
rn

reach(∂R)
→ 0
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Does the discrete converge to the continuous?

Do we have the counterpart to the corollary, meaning

Is it true that, for some rn → 0, we have

ωd

γd

1
rn

h(Gn)→ h(M) a.s. n→∞?

Look at the following recent work:
N. Garcı́a Trillos and D. Slepcev. Γ-Convergence of Perimeter on
Random Geometric Graphs. CMU preprint, 2013.
N. Garcı́a Trillos and D. Slepcev. Continuum limit of total variation
on point clouds. arXiv preprint, 2014.
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Consistent estimation

The class of all open subsets of M with positive reach s too rich
for us to obtain uniform convergences for the discrete volume and
perimeter.

Without loss of generality, assume that M ⊂ [0,1]d . We consider
the class Rn of open subsets R of [0,1]d with reach(∂R) ≥ ρn for a
sequence ρn → 0.
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Consistent estimation of the Cheeger constant

Theorem
If

(i) rn → 0 and nr2d+1
n →∞, and

(ii) ρn → 0 slowly with rn = o(ραn ) and nr2d+1
n ραn →∞ for all α > 0,

then

min
R∈Rn

hn(R; Gn)→ h(M) a.s. n→∞.
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The ingredients are uniform versions of the concentration
inequalities for the discrete volume and perimeter over the class
Rn, obtained via the union bound and a bound on the covering
number of Rn.
However, the bias for the discrete perimeter cannot be controlled
uniformly over sets in Rn.
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Our way around that is to compare the discrete perimeter νn(R) with
Vold−1(∂R ∩Mrn ) instead.
We get the following.

Lemma
Under the conditions of last theorem, we have

lim inf
n→∞

inf
R∈Rn

(hn(R)− h(R; Mrn )) ≥ 0 a.s.
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Proof of the last theorem.
For each n, take Rn ∈ Rn. Then

hn(Rn; Gn)− h(M) = [hn(Rn; Gn)− h(Rn; Mrn )]

+ [h(Rn; Mrn )− h(Mrn )] + [h(Mrn )− h(M)]

≥ inf
R∈Rn

(hn(R; Gn)− h(R; Mrn )) + [h(Mrn )− h(M)]

We have the following continuity property of the Cheeger constant.

Lemma
Under our conditions on M, h(Mr ) = (1 + O(r))h(M) as r → 0.

We conclude that lim infn minR∈Rn hn(Rn; Gn) ≥ h(M).

For an upper bound, use the first theorem.
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Consistent estimation of Cheeger sets

Theorem
Let Rn ∈ argminR∈Rn

hn(R; Gn). Then, with probability one:
(i) {Rn ∩M} admits a subsequence converging in L1;
(ii) any convergent subsequence of {Rn ∩M} converges to a

Cheeger set in L1.

The problem here is that we do not know M, so that Rn ∩M is not a
valid estimator. (More on that later.)
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L1 metric on Borel sets

For A and B Borel subsets of Rd :∫
|1A(x)− 1B(x)| dx = Vold (A∆B) .

de Giorgi perimeter of Ω, measurable subset of M:

PM(Ω) = sup
{∫

Ω
div(ϕ)dx : ϕ ∈ C∞c (M;Rd ), ‖ϕ‖∞ ≤ 1

}
.

PM(Ω) = Vold−1(∂Ω ∩M) for Ω of class C1.
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L1 metric on Borel sets

Proposition (Compactness)
Let (En) be a sequence of measurable subsets of M such that

lim sup
n→∞

PM(En) <∞.

Then (En) admits a subsequence converging for the L1 metric.

Proposition (Lower semi-continuity)

Let (En) and E be measurable subsets of M such that En
L1
−→ E. Then

lim
n→∞

Vold (En)→ Vold (E) and lim inf
n→∞

PM(En) ≥ PM(E).

See (Giusti, 1984) or (Henrot and Pierre, 2005).
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Define the probability measure

Qn =
1
n

n∑
i=1

1Rn (Xi)δXi

Note that Qn can be computed from the data.

Theorem
Almost surely, any accumulation point of {Qn} is of the form Q = 1A∞µ
with A∞ a Cheeger set of M.

It is possible to reconstruct a Cheeger set of M from the discrete
measure Qn. It amounts to estimating its support. For example, one
can take a union of small balls around each point in Rn.
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Numerical approximation: spectral clustering

. Computing a normalized cut is NP-hard. Our method is not
computationally tractable.

. Is spectral clustering consistent?
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