Supply-Side Equilibria in Recommender Systems

Jacob Steinhardt

(w/ Meena Jagadeesan and Nikhil Garg)

CLIMB Retreat Nov 2, 2022

Motivation

Much digital content is mediated by recommender systems:

Marketplace where producers **compete** to be recommended to users

Competitive effects: salience, hooks, genres

Motivation

Much digital content is mediated by recommender systems:

Marketplace where producers compete to be recommended to users

Competitive effects: salience, hooks, genres

How to understand these?

Users u_1, \ldots, u_N

User vector $u_i \in \mathbb{R}^D_{\geq 0}$ (preferences)

Users u_1, \ldots, u_N

User vector $u_i \in \mathbb{R}^D_{>0}$ (preferences)

P producers. Producer j chooses content $p_j \in \mathbb{R}^D_{>0}$

Users u_1, \ldots, u_N

User vector $u_i \in \mathbb{R}^D_{>0}$ (preferences)

P producers. Producer j chooses content $p_j \in \mathbb{R}^D_{>0}$

Users recommended most similar content p_{j^*} : $j^*(u) = \operatorname{argmax}_{j=1}^P \langle u, p_j \rangle$

Users u_1, \ldots, u_N

User vector $u_i \in \mathbb{R}^D_{>0}$ (preferences)

P producers. Producer j chooses content $p_j \in \mathbb{R}^D_{>0}$

Users recommended most similar content p_{j^*} : $j^*(u) = \operatorname{argmax}_{j=1}^P \langle u, p_j \rangle$

Key properties:

- high-dimensional decisions
- heterogeneous user base

Producer Costs

Producer j wins by making $\langle u, p_j \rangle$ bigger

Trivial solution: take $||p_j|| \to \infty$

Producer cost function: $c(p_j) = ||p_j||^{\beta}$

Profit function:

$$\mathcal{P}(p_j \mid p_{-j}, u_{1:N}) = \underbrace{\left(\sum_{i=1}^N \mathbb{I}[j^*(u_i) = j]\right)}_{\text{\# users won}} - \underbrace{c(p_j)}_{\text{cost}}$$

1 Dimension: Compete on Quality

Simplest case: D = 1, N = 1 user with $u_1 = 1$. P = 2 producers

Cost function: $c(p) = |p|^{\beta}$

1 Dimension: Compete on Quality

Simplest case: D = 1, N = 1 user with $u_1 = 1$. P = 2 producers

Cost function: $c(p) = |p|^{\beta}$

Symmetric mixed equilibrium with c.d.f. equal to $F(p) = p^{\beta/(P-1)}$.

Producers compete on quality: more likely to win, but higher cost.

Higher Dimensions: Emergence of Genres

2D example: $u_1 = [1, 0]$, $u_2 = [0, 1]$, P = 2 producers.

Density of symmetric mixed equilibrium μ :

Higher Dimensions: Emergence of Genres

2D example: $u_1 = [1, 0]$, $u_2 = [0, 1]$, P = 2 producers.

Density of symmetric mixed equilibrium μ :

Single genre for $\beta \leq 2$, infinite genres for $\beta > 2$.

Producers also achieve **positive profit**.

Higher Dimensions: Emergence of Genres

2D example: $u_1 = [1, 0]$, $u_2 = [0, 1]$, P = 2 producers.

Density of symmetric mixed equilibrium μ :

Single genre for $\beta \leq 2$, infinite genres for $\beta > 2$.

Producers also achieve **positive profit**.

Will characterize both phenomena!

Genres: Main Result

For a vector p, let $y(p) = (\langle u_1, p \rangle^{\beta}, \dots, \langle u_N, p \rangle^{\beta}).$

Define $S^{\beta} = \{y(p) \mid ||p|| \leq 1\}.$

Genres: Main Result

For a vector p, let $y(p) = (\langle u_1, p \rangle^{\beta}, \dots, \langle u_N, p \rangle^{\beta}).$

Define $\mathcal{S}^{\beta} = \{y(p) \mid ||p|| \leq 1\}.$

Theorem (Emergence of genres) Let \bar{S}^{β} be the convex hull of S^{β} . Then, all symmetric equilibria are multi-genre iff the following holds: $\max_{y \in \bar{S}^{\beta}} \sum_{i=1}^{N} \log(y_i) > \max_{y \in S^{\beta}} \sum_{i=1}^{N} \log(y_i)$.

In other words, the set \mathcal{S}^{β} must be sufficiently non-convex!

Visualizing S^{β}

As $\angle(u_1, u_2)$ gets smaller, β threshold gets larger

Corollaries: Structure of Cost

Dependence of genres on user geometry:

-Corollary Let $Z = \|\sum_{i=1}^{N} \frac{u_i}{\|u_i\|_*}\|_*$, where $\|\cdot\|_*$ denotes the dual norm. Then all equilibria are multigenre as long as $Z < N^{1-1/\beta}$.

E.g. random vectors, $Z = O(\sqrt{N})$, multigenre for $\beta = 2 + o(1)$.

Corollaries: Structure of Cost

Dependence of genres on user geometry:

-Corollary Let $Z = \|\sum_{i=1}^{N} \frac{u_i}{\|u_i\|_*}\|_*$, where $\|\cdot\|_*$ denotes the dual norm. Then all equilibria are multigenre as long as $Z < N^{1-1/\beta}$.

E.g. random vectors, $Z = O(\sqrt{N})$, multigenre for $\beta = 2 + o(1)$.

In some cases, S^{β} is convex regardless of user geometry:

Corollary-

(1) If $\beta = 1$, there always exists a single-genre equilibrium μ . (2) For the ℓ_p -norm and $\beta \leq p$, there always exists a single-genre equilibrium μ .

Producer Profit

Recall 2D example:

Producers achieve nonzero profit (surprising in competitive market)

Seems related to emergence of genres. Can we formalize this?

Producer Profit: Main Result

Theorem (Positive-profit condition)-

Let $Q = \max_{\|p\| \le 1} \min_{i=1}^{N} \langle p, \frac{u_i}{\|u_i\|} \rangle$. Then if $Q < N^{-P/\beta}$, the expected profit at equilibrium is strictly positive.

Interpretation: users more spread out \rightarrow smaller $Q \rightarrow$ easier to profit.

Producer Profit: Main Result

Theorem (Positive-profit condition)-

Let $Q = \max_{\|p\| \le 1} \min_{i=1}^{N} \langle p, \frac{u_i}{\|u_i\|} \rangle$. Then if $Q < N^{-P/\beta}$, the expected profit at equilibrium is strictly positive.

Interpretation: users more spread out \rightarrow smaller $Q \rightarrow$ easier to profit.

Multiple genres necessary for positive profit:

 $_{\Gamma}$ Theorem (1D \implies zero-profit)-

Suppose that μ is a single-genre equilibria. Then all producers receive zero expected profit.

Summary

Two key market properties: high dimensionality and heterogeneity

Two resulting phenomena: genres and positive profit

Many open questions:

- User utility (vs. number of producers, etc.)
- Noisy recommendations
- Shape of equilibria support

Summary

Two key market properties: high dimensionality and heterogeneity

Two resulting phenomena: genres and positive profit

Many open questions:

- User utility (vs. number of producers, etc.)
- Noisy recommendations
- Shape of equilibria support

