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This talk

 A new approach to multi-way spectral clustering.

 An algorithmic primitive, “hidden basis recovery”, that 

encompasses algorithmic approaches to problems such as 

Independent Component Analysis and orthogonal tensor 

decompositions.



What is spectral clustering?

1. Take a graph. 

2. Construct graph Laplacian matrix: 

𝐿 = diag(degree) − Adjacency.

3. Do something with its bottom eigenvectors to get clusters.



Spectral bi-clustering of a graph

 K-means

Relaxation of integrality constraint + optimality give 

eigenvectors:

𝐿𝑓 = 𝜆𝑓

= 𝐷 − 𝐴



Spectral bi-clustering of a graph

(See paper for normalized Laplacian and variations)



Spectral (bi)clustering of data

 Construct a weighted graph, e.g.: 𝑤𝑖𝑗= exp(−
||𝑥𝑖−𝑥𝑗||

2

𝑡
)

 Second bottom eigenvector of graph Laplacian

𝐿𝑒2 = 𝜆2𝑒2

 Clusters: (𝑒2)𝑖 < 0; (𝑒2)𝑖 ≥ 0



Spectral (bi)clustering of data

 Works well

 Clean and simple

 Some theoretical guarantees

 However, “bi”-clustering is limited.



Multi-way clustering

 Use several eigenvectors 𝑒1, 𝑒2, … 𝑒𝑘

 Map (Laplacian embedding) 

Data → ℝ𝑘

𝑥𝑖 → ( 𝑒1 𝑖 , 𝑒2 𝑖 , … , 𝑒𝑘 𝑖)

 Many interesting properties. 

For example, eigenvectors of data graph Laplacian (Gaussian weights)  approximate 

eigenfunctions of manifold Laplacian, for manifold data (Belkin, Niyogi 03). 

Interpretation as diffusion distance (Lafon, Coifman, 05), etc.



Multi-way clustering with 𝑘-means

Graph → ℝ𝑘

𝜙: 𝑥𝑖 → ( 𝑒1 𝑖 , 𝑒2 𝑖 , … , 𝑒𝑘 𝑖)

 Apply 𝑘-means in the embedding space.

(Shi, Malik 00, Ng, et al, 01, Yu, Shi 03, Bach, Jordan, 06…)

Can be justified as a relaxation of a partition problem.

However initialization dependent. Hard to give guarantees for 

the algorithm.



Our method

Data after spectral embedding.

Claim: all local maxima of 𝑓 “point” at the clusters.

𝑓

Choose  allowable “contrast function” 𝑔: 𝑅+ → 𝑅. 

Define 𝑓: 𝒮𝑘−1 → ℝ by 𝑓 𝑣 =  𝑖=1
𝑛 𝑔 | 𝑣, 𝜙 𝑥𝑖 |

(a sort of “generalized moment”)



Allowable contrast functions

Conditions:

 𝑔 𝑥 is strictly convex on [0, ∞).

  
𝑑

𝑑𝑥
𝑔 𝑥

0+
is 0 or +∞

Some examples: 

 −|𝑥|

 𝑥𝑝 , 𝑝 > 2

 exp −𝑥2

 log cosh 𝑥 [from Independent Component 
Analysis]



Algorithms

Input: 𝑥1, … 𝑥𝑛, 𝑘

I. Construct graph Laplacian 𝐿 = 𝐷 − 𝐴 and spectral embedding 
𝜙.

II. Take 𝑓 𝑣 =
1

𝑛
 𝑖=1

𝑛 𝑔 𝑣, 𝜙(𝑥𝑖)

Algo 1: Gradient ascent for 𝑓 over a sphere. 

Complexity  𝑘2𝑛 × #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Algo 2: Maximize 𝑓 over the data points.

Complexity 𝑘𝑛2.



Example



Image segmentation

Image segmentation based on the graph of pixel adjacency, weighted by 
proximity and color similarity. Contrast function −|𝑥|.

(Cf. Shi, Malik 97)



Spectral embedding into an orthogonal basis

Claim: 𝑘 perfect clusters (connected components) means that  

𝜙: 𝑥𝑖 → ( 𝑒1 𝑖 , 𝑒2 𝑖 , … , 𝑒𝑘 𝑖)

maps  to 𝑘 orthogonal vectors (hidden basis).

Note that eigenvectors are not uniquely defined (but can be assumed to be orthonormal)

Recovering hidden basis = recovering clusters.

First observed in (Weber, Rungsarityotin, Schliep 04). Also proposed an optimization 

procedure for hidden basis recovery.



Hidden orthogonal basis structure

Weighted basis vectors.

𝑍1

w1

𝑍2

𝑍3

w2

w3

Basis vectors:  𝑍1, … , 𝑍𝑘 Weights: w1, … wk

Claim:   1. 𝑍𝑖 , 𝑍𝑗 = 0, 𝑖 ≠ 𝑗

2. 𝑤𝑖=
𝑛𝑖

𝑛

3. 𝑍𝑖 , 𝑍𝑖 =
𝑛

𝑛𝑖



Hidden orthogonal basis structure

Weighted basis vectors.

𝑍1

w1

𝑍2

𝑍3

w2

w3

Basis vectors:  𝑍1, … , 𝑍𝑘 Weights: w1, … wk

Key identity:

𝑓 𝑣 =
1

𝑛
 

𝑖=1

𝑛

𝑔 | v, 𝜙 𝑥𝑖 | =  

𝑖=1

𝑘

𝑤𝑖𝑔 | v, 𝑍𝑖 |



Geometric recovery

Let 𝑓 𝑣 =  𝑖=1
𝑘 𝑤𝑖𝑔 | v, 𝑍𝑖 | . 𝑤𝑖 , 𝑍𝑖 , 𝑖 = 1. . 𝑘 orthogonal, weighted hidden basis.

Question: Conditions on 𝑔 so that set of local maxima of 𝑓 is ±
𝑍𝑖

‖𝑍𝑖‖
, the hidden basis?

Conditions:

P1.   𝑔 𝑥 is strictly convex on [0, ∞).

P2.  
𝑑

𝑑𝑥
𝑔 𝑥

0+
is 0 or +∞.

Theorem 1. [Sufficiency]

If both P1 and P2 are satisfied, ±
𝑍𝑖

‖𝑍𝑖‖
is the complete enumeration of the local maxima of 𝑓.

Theorem 2. [Necessity] 

a. If P1 does not hold for 𝑔, then for some (𝑤𝑖 , 𝑍𝑖) there is a local maximum different from ±
𝑍𝑖

‖𝑍𝑖‖

b. if P1 holds but P2 does not hold, then for some (𝑤𝑖 , 𝑍𝑖) one of ±
𝑍𝑖

‖𝑍𝑖‖
is not a local maximum.



Geometric recovery

Recall for spectral clustering:  

1. 𝑍𝑖 , 𝑍𝑗 = 0, 𝑖 ≠ 𝑗

2. 𝑍𝑖 , 𝑍𝑖 =
𝑛

𝑛𝑖

3. 𝑤𝑖=
𝑛𝑖

𝑛

Theorem 3. If P1 and, additionally, properties 2-3 hold, then

±
𝑍𝑖

‖𝑍𝑖‖
is a complete enumeration of the local maxima.



Hidden convexity

Analysis via change of variable:
𝜏: (𝑥1, … , 𝑥𝑘) → 𝑥1, … , 𝑥𝑘

simplex   sphere

Write 𝑓 over standard simplex in the basis corresponding to 
 𝑧𝑖= 𝑧𝑖/‖𝑧𝑖‖:

[P1, 𝑔 𝑥 is strictly convex on [0, ∞)] implies

𝑓 𝜏 v =  𝑖=1
𝑘 𝑤𝑖𝑔 v, 𝑧𝑖

is a strictly convex function. 

Max over sphere  Max over simplex 

Maximum principle: Local maxima of strictly convex function 
only at extreme points of simplex.



Hidden basis recovery as an algorithmic 

primitive



More generally: Hidden Basis Recovery

 Hidden orthonormal basis: 𝑧1, … , 𝑧𝑘.

 “Basis Encoding Function” (BEF): 

𝐹 𝑢 =  

𝑖=1

𝑘

𝑔𝑖(𝑢 ⋅ 𝑧𝑖)

 Problem: given evaluation access to 𝐹 and derivatives, find 𝑧𝑖s.

 Example: spectral clustering, with spectral embedding (𝑥𝑗):

𝐹 𝑢 =  

𝑗=1

𝑛

𝑔(𝑢 ⋅ 𝑥𝑗) =  

𝑖=1

𝑘

𝑔𝑖(𝑢 ⋅ 𝑧𝑖)

with 𝑔𝑖 𝑡 = 𝑛𝑖𝑔 𝑏𝑖𝑡 , 
𝑏𝑖 =length of embedded vectors and 
𝑛𝑖 =size of 𝑖th cluster.



More examples

Orthogonal tensor decomposition:

Given 𝑇 = 𝑇𝑗𝑙𝑚𝑡 =  𝑖 𝑤𝑖 𝑧𝑖 ⊗ 𝑧𝑖 ⊗ 𝑧𝑖 ⊗ 𝑧𝑖 , Basis 

Encoding Function is

𝐹 𝑢 = 𝑇 𝑢, 𝑢, 𝑢, 𝑢 =  

𝑖

𝑤𝑖 𝑢 ⋅ 𝑧𝑖
4

=  

𝑖

𝑔𝑖(𝑢 ⋅ 𝑧𝑖)

with 𝑔𝑖 𝑡 = 𝑤𝑖𝑡
4.



What makes tensor power iteration 

work?

Multi-linear algebra can be replaced by another 
explanation:

 “Hidden convexity”: 𝑔𝑖 𝑡 = 𝑤𝑖𝑡
2 is strictly 

convex.

 As in “hidden convexity” for spectral clustering, 
{±hidden basis} is complete enumeration of local 
maxima of 𝑇(𝑢, 𝑢, 𝑢, 𝑢) over sphere.

 Power iteration can be interpreted as projected 
gradient ascent with an (automatic) adaptive step 
size.



More examples: ICA

 Independent Component Analysis [Comon]:
Given samples from 𝑥 given by 𝑥 = 𝐴𝑠, with 

 𝑥, 𝑠 𝑑-dim. random vectors, 

 𝑠 with independent coordinates, 

 𝐴 square invertible matrix. 

Recover 𝐴.

 After whitening/isotropy, can assume 𝐴 is unitary (i.e. 
columns are orthonormal basis).

 BEF: 𝐹 𝑢 = 𝜅4 𝑢 ⋅ 𝑥 =  𝑖 𝜅4 𝑠𝑖 𝑢 ⋅ 𝐴𝑖
4 with 

𝑔𝑖 𝑡 = 𝜅4 𝑠𝑖 𝑡4.
(where 𝜅4 is the fourth cumulant, here 𝜅4 𝑇 =
𝐸 𝑇4 − 3)



Our results: Practical algorithm to find 

hidden basis

 “Gradient Iteration”: a fixed point iteration of the 

gradient:

𝑢𝑛𝑒𝑤 =
𝛻𝐹 𝑢𝑜𝑙𝑑

𝛻𝐹 𝑢𝑜𝑙𝑑
.



Gradient iteration

 “Gradient Iteration” is an extension of tensor power 

iteration to a functional setting without multi-linear 

algebra: 

For example: 𝐹 𝑢 = 𝑇 𝑢, 𝑢, 𝑢, 𝑢 , then tensor 

power iteration is 𝑢𝑛𝑒𝑤 =
𝑇 𝑢,𝑢,𝑢,⋅

𝑇 𝑢,𝑢,𝑢,⋅

Gradient iteration is 𝑢𝑛𝑒𝑤 =
𝛻𝐹 𝑢

𝛻𝐹 𝑢

with 𝛻𝐹 𝑢 = 𝑐 𝑇 𝑢, 𝑢, 𝑢,⋅



Algorithm to find hidden basis

Under hidden convexity assumptions on contrasts 𝑔𝑖:

 Thm: The set of stable fixed points of gradient iteration 
is exactly {±𝑧𝑖}, the hidden basis vectors.

 Thm: A provably correct refinement of gradient 
iteration can enumerate hidden basis vectors efficiently, 
even under additive perturbation of basis encoding 
function.

 We generalize conditions where power iteration has 
superlinear convergence:

Thm: If 𝑡 ↦ 𝑔𝑖
𝑟 𝑡 is convex, then convergence of 

gradient iteration is of order 𝑟 − 1.



More examples

 Parameter estimation for Spherical Gaussian 

mixture model (inspired by [Hsu Kakade]).



An interesting phenomenon

 “Blessing of dimensionality” for Gaussian Mixture 
Model with identical components:

 Estimation generically polynomial time in the smoothed 

analysis sense for mixtures in 𝑅𝑑 with 𝑑𝑚 components (for 
any fixed 𝑚).

 Estimation generically hard in low dimension: generic pairs 

of sets of 𝑘 means in 𝑅𝑑 support a pair mixtures that are 

within total variation distance 𝑒−𝑘1/𝑑
.

Implies sample complexity is at least 𝑒𝑘1/𝑑
.

 In other words, for GMM, “dimensionality reduction 
considered harmful”.



Summary

 A new algorithm for multi-way spectral clustering.

 An algorithmic primitive, “hidden basis recovery”, 

where data is encoded by functions, generalizing 

tensors.

 An efficient algorithm, Gradient Iteration. Complete 

characterization of admissible contrasts for spectral 

clustering.



More details:

 “The hidden convexity of spectral clustering”, arxiv, 

with M. Belkin and J. Voss.

 “The more, the merrier: the blessing of 

dimensionality for learning large Gaussian 

mixtures” COLT 2014, with J. Anderson, M. Belkin, 

N. Goyal, J. Voss.

 “Learning a hidden basis through imperfect 

measurements: An algorithmic primitive”, in 

preparation, with M. Belkin and J. Voss.


