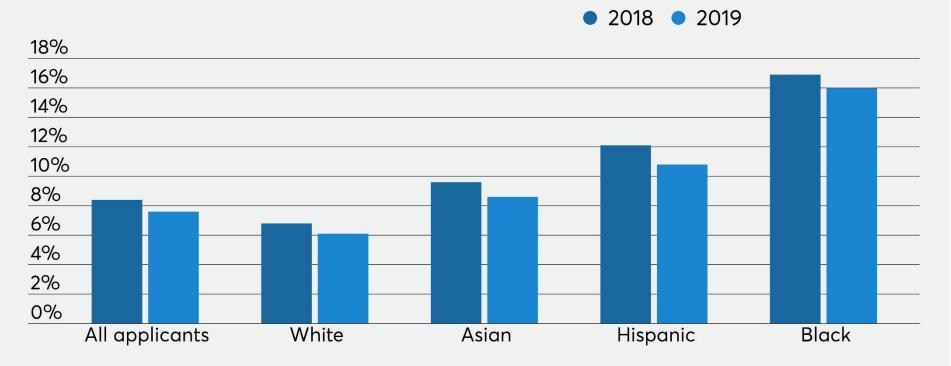
Pipeline Interventions

Eshwar Ram Arunachaleswaran* Sampath Kannan* Aaron Roth* Juba Ziani#

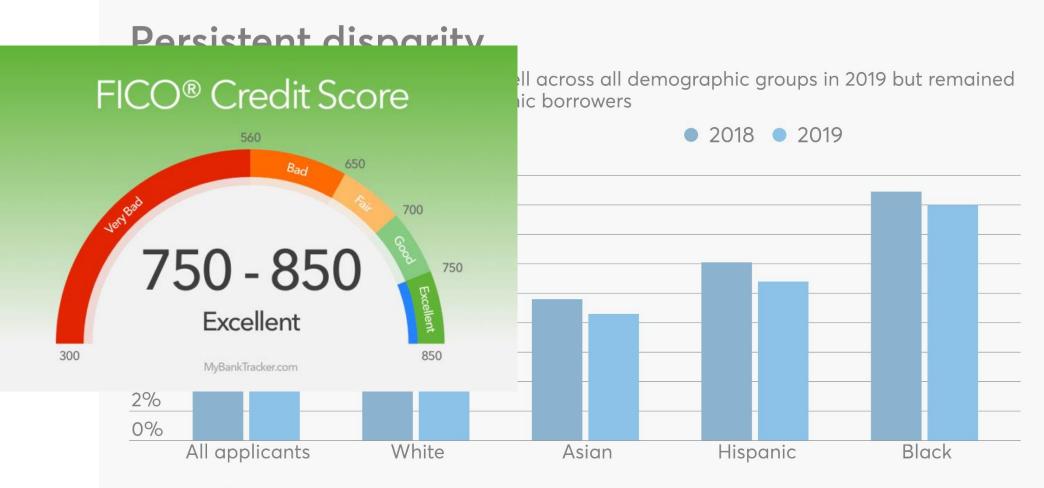
*University of Pennsylvania #Georgia Tech

Persistent disparity

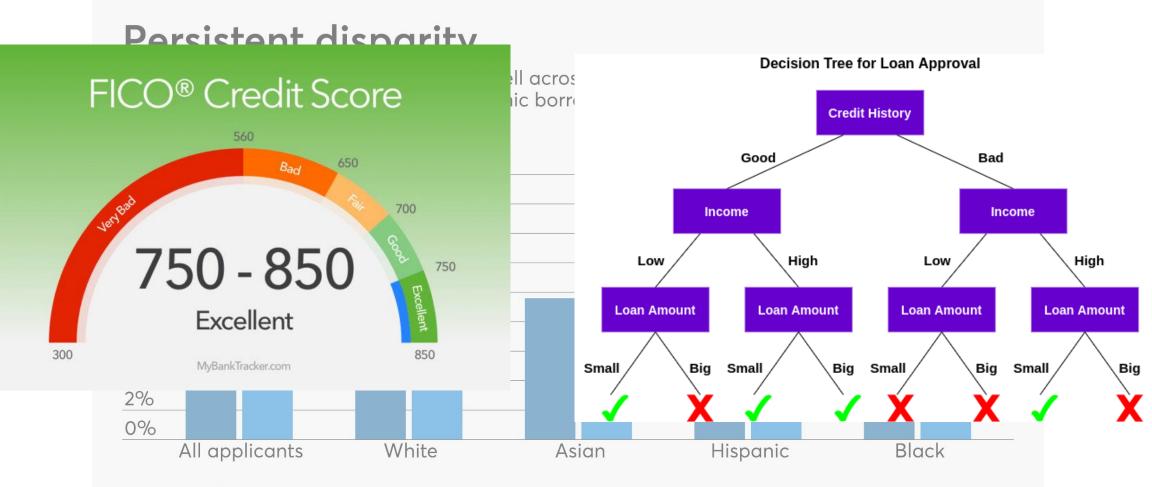
Denial rates for conventional mortgages fell across all demographic groups in 2019 but remained comparatively higher for Black and Hispanic borrowers



Source: CFPB



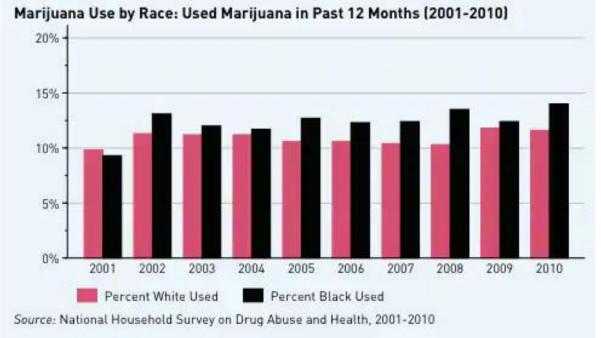
Source: CFPB



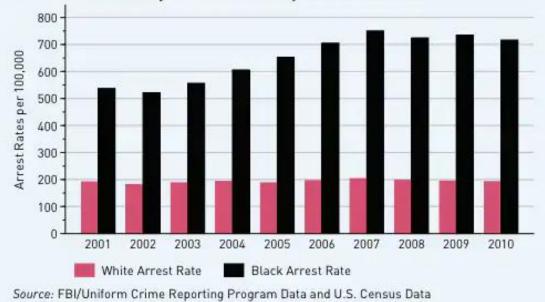
Source: CFPB

FIGURE 10

FIGURE 21



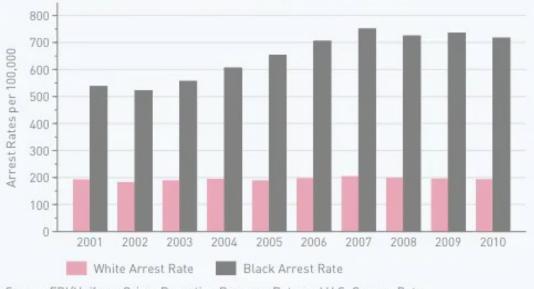
Arrest Rates for Marijuana Possession by Race (2001-2010)



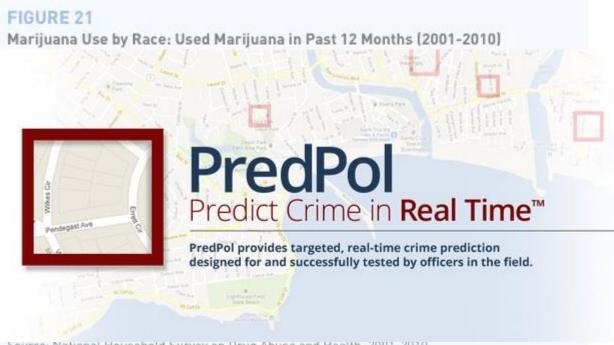
Source: National Household Survey on Drug Abuse and Health, 2001-2010

FIGURE 10

Arrest Rates for Marijuana Possession by Race (2001-2010)



Source: FBI/Uniform Crime Reporting Program Data and U.S. Census Data



Source: National Household Survey on Drug Abuse and Health, 2001-2010

FIGURE 10

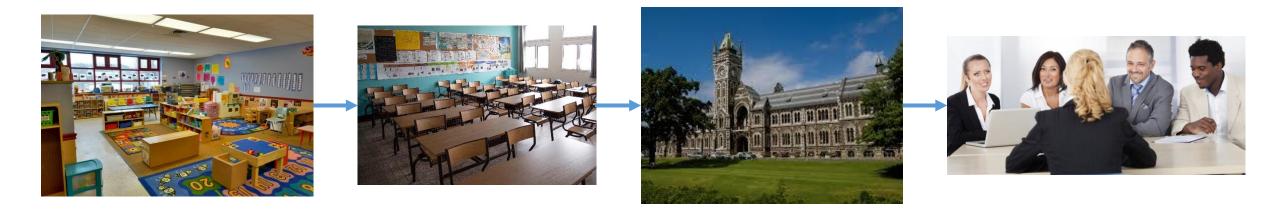
Arrest Rates for Marijuana Possession by Race (2001-2010)

Group Fairness

Group Fairness

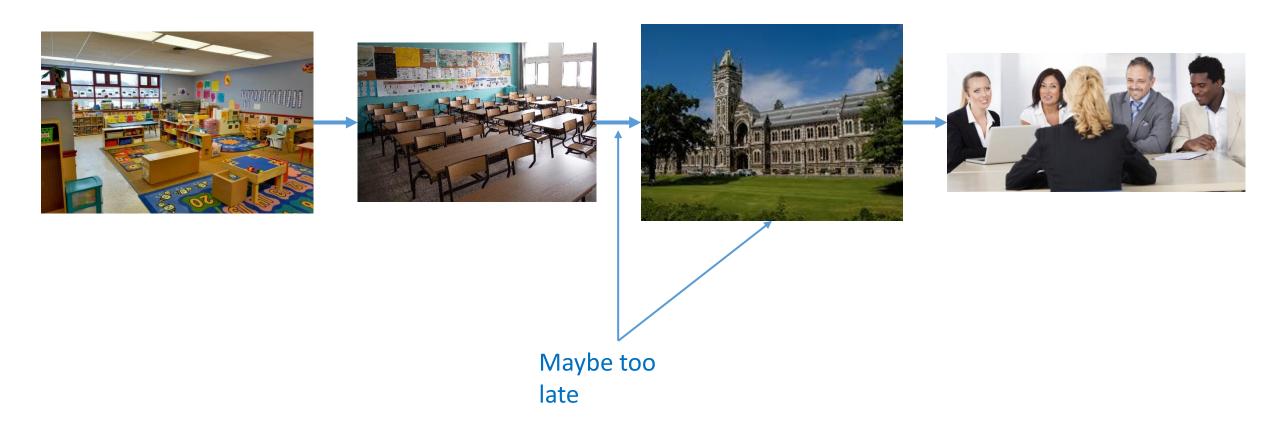
Decisions are made along pipelines...

... with disparities at each stage



- Inequality of access to opportunities can arise at several stages of such pipelines
- Disparities compose: current opportunities are restricted by previous disparities/disparities have long-term effect on future opportunities
- Disparities can arise even at very early stages, for ex pre-school level

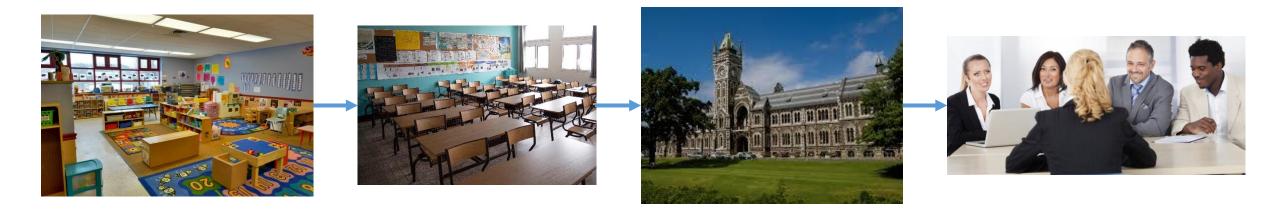
Where to intervene?



Where to intervene?

Maybe worth intervening here and here too

Where to intervene?



May be valuable to intervene at several levels, rather than myopically/at a single one

Questions:

- How do interventions at different stages compose?
- How this informs the optimal design of interventions at several levels of a pipeline that improve outcomes and reduce disparities across groups?

If you are interested in composed decisions...

- Dwork and Ilvento: "Fairness under composition"
- Dwork, Ilvento, Jagadeesan: "Individual Fairness in Pipelines"
- Blum, Stangl, Vakilian: "Multi Stage Screening: Enforcing Fairness and Maximizing Efficiency in a Pre-Existing Pipeline"
- Etc.

Contribution 1: ***stylized*** pipeline intervention model on layered graphs

Starting layer

Х	Х	Х	Х
Х	х	Х	Х
	•		•
•	•	•	•
•	•	•	•
•	•	 •	•
			•
			•
Х	x	Х	Х

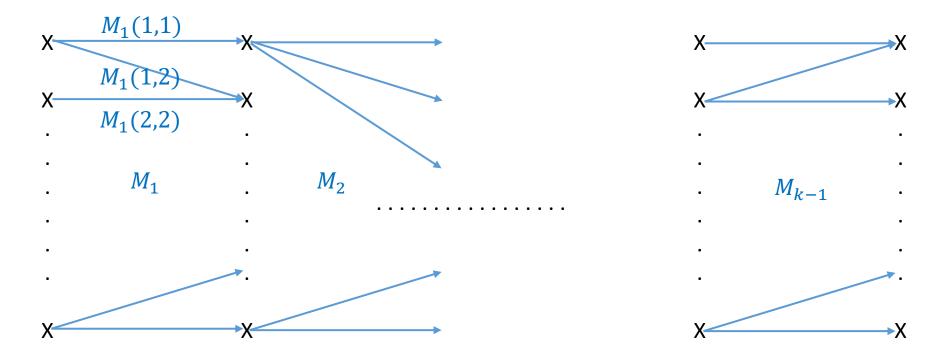
• Different starting nodes \Leftrightarrow different starting groups/sub-populations

- Subsequent layers: each layer = stage of life, each node = outcome of a given stage
- For example, different educations, etc.

Final	/Reward	laver
T TIM	, ne wara	i a y c i

Х	Х	Х	X R(1)
Х	Х	Х	X R(2)
	•		•
	•	 •	•
	•	•	
Х	Х	Х	X R(w)

R(i) = scalar measure of quality of outcome i



- Stochastic transitions between layers. $M_t(i, j) = \Pr[\text{node } i \text{ to node } j | \text{layer } t \rightarrow t+1]$
- Can model disparities in access to opportunities. Can give different groups different probabilistic paths to different reward nodes through the graph

Intervention model:

- Centralized designer, can intervene at any/several stages
- Intervention = change stochastic transitions between layers

Under constraint:

- Incur cost to change transitions between 2 successive layers
- Maximum budget that can be invested across all layers/transitions

Cost function

- Cost from going from initial transition matrix M_t^0 to transition matrix M_t between layers t and t+1: $c(M_t^0, M_t)$
- Main assumption:
 - Convexity in M_t (necessary for optimization)
- Budget constraint:

 $\sum_{t} c(M_t^0, M_t) \leq B$

Contribution 2: DP for near-optimal interventions

Dynamic programming algorithms to find how to approximately optimally:

- Split the budget across different layers
- Use the budget between any two layers to change transitions

What do I mean by optimal here?

Goal #1: Max Social Welfare

Weighted (by population size) sum of the utilities across the different starting sub-populations

Main caveat:

- Best that can be achieved at the level of the whole population...
- But this says nothing about each sub-population/group
- Potential issue: good outcomes for largest population, but ignore minority populations

Goal #2: Maximin Welfare

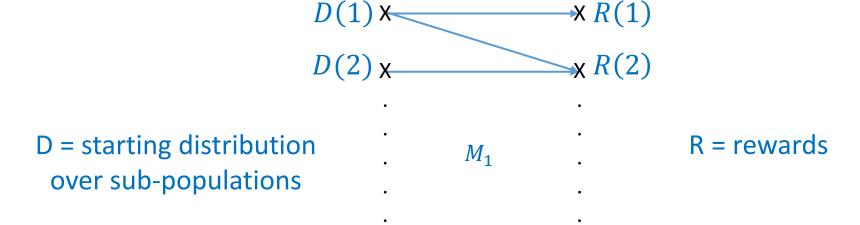
Maximize the welfare of an agent in the worst-off population

I.e., maximize

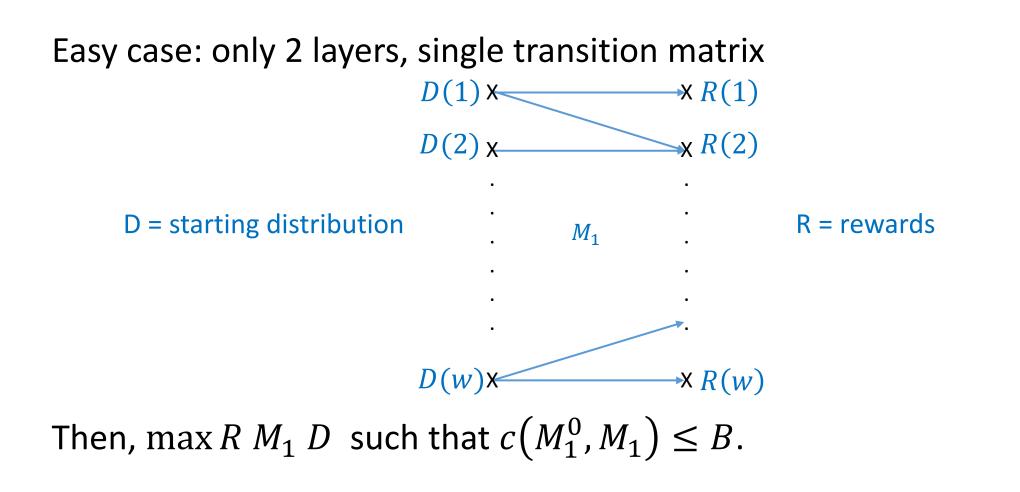
 $\min_{i} u_{i}(M_{1}, \dots, M_{k-1})$ (i = starting sub-population index)

A Dynamic Programming approach for nearoptimal SW

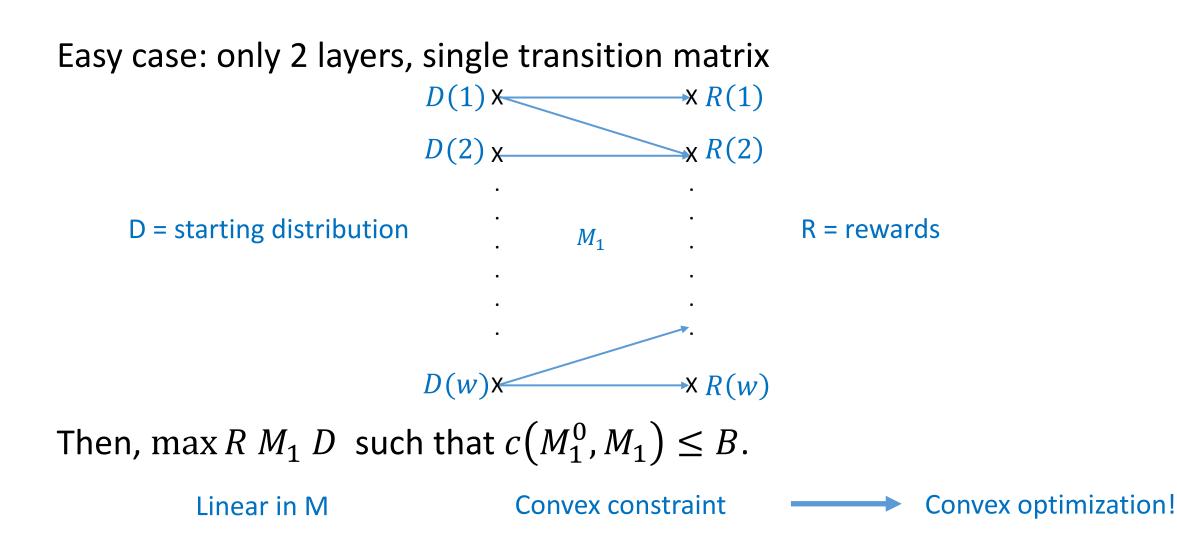
Easy case: only 2 layers, single transition matrix



A DP (get it?) approach for near-optimal SW

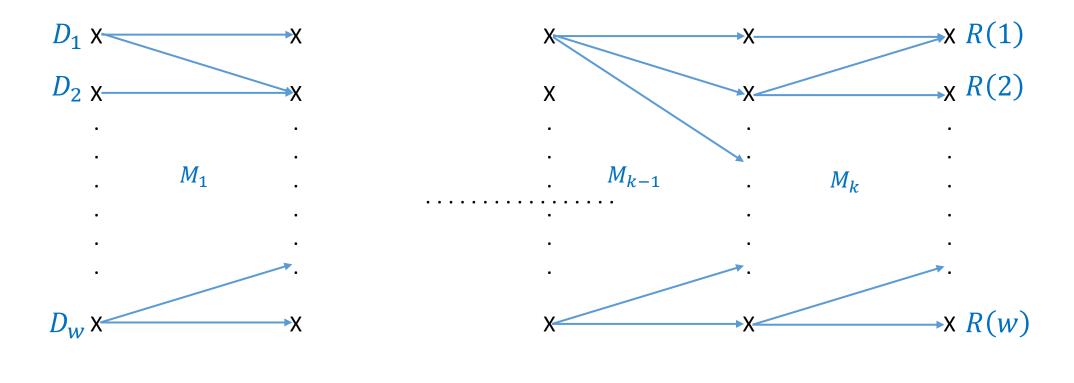


A DP approach for near-optimal SW



A DP approach for near-optimal SW

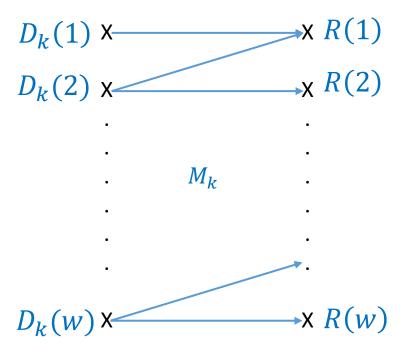
General case: many layers



Dynamic programming, backwards, starting from last layer

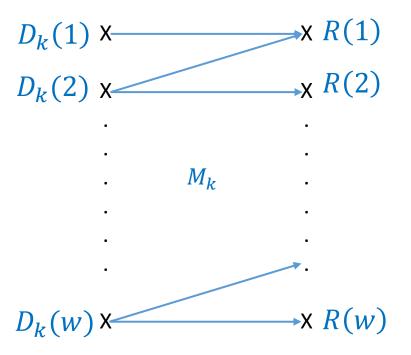
Start with final layer

- Start at the final transition matrix
- Solve max $R M_1^t D_k$ such that $c(M_1^0, M_1) \le B_k$



Start with final layer

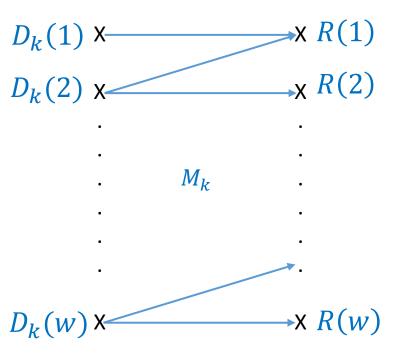
- Start at the final transition matrix
- Solve max $R M_1^t D_k$ such that $c(M_1^0, M_1) \le B_k$
- **Difficulty:** what is D_k here? Depends on early transitions! Unknown: we solve from the end.



Discretizing D_k

Solution: guess D_k

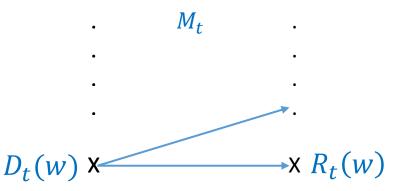
- How? Try all possible D_k 's on an ϵ -net
- Size of net $\sim \left(\frac{1}{\epsilon}\right)^{W}$
- ➔ Can only deal with constant w
- For each D_k on the net, solve program



A DP approach to finding near-optimal SW

How to iterate on previous layers t -> t+1

 Same idea, solve program for all D_t's on a net

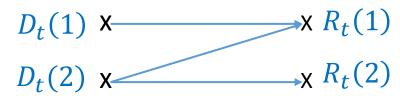


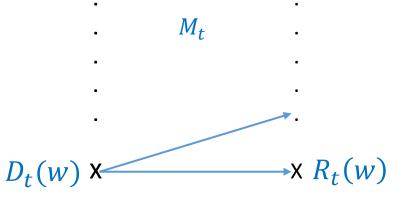
A DP approach to finding near-optimal SW

How to iterate on previous layers t -> t+1

- Same idea, solve program for all D_t's on a net
- How to deal with R_t ?

Use solutions of the previous step Each solution defines a reward vector for t-> t+1

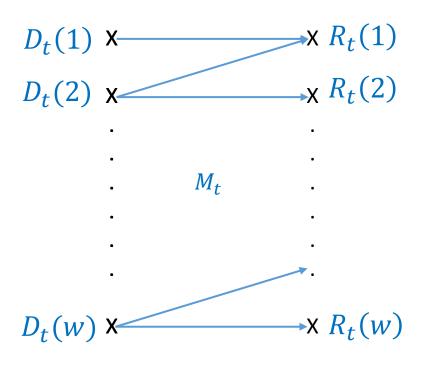




A DP approach to finding near-optimal SW

A quick note on budget:

- Note that we use B_t at each step t.
 But, OPT budget split across layers is unknown
- Idea: same approach as for D:
 - 1D grid for the budget
 - Try all budget possibilities on each transition



Guarantees of our algorithm

• Welfare guarantee:

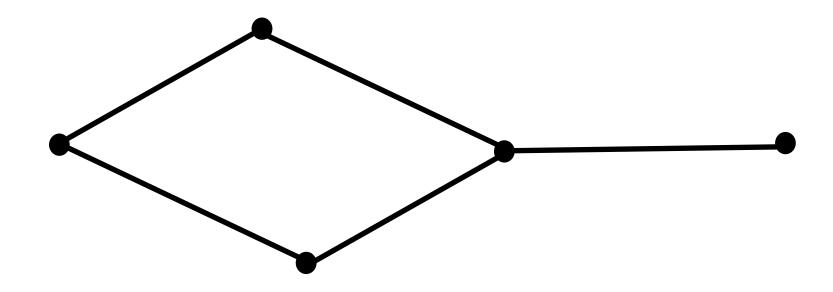
- Net makes us lose $O(\epsilon)$ at each step
- Get a $k\epsilon$ approx. to social welfare if k transitions

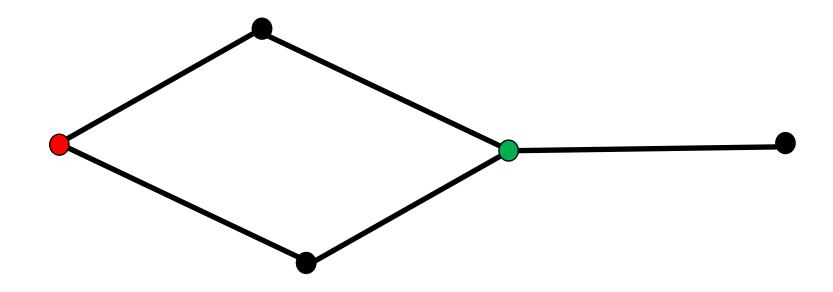
Computational efficiency:

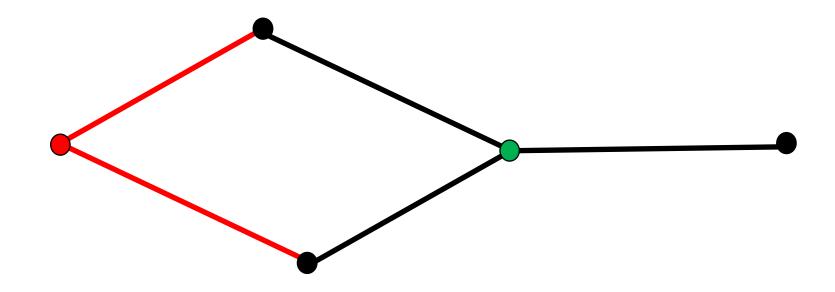
- Each step requires looking at $poly((1/\epsilon)^w)$ possibilities due to discretization.
- Need w constant (think coarse grouping of outcomes in each stage)
- But need to do this only k times.
- Maximin objective:
 - Instead of keeping track of all possible D_t 's at the start of layer t, keep track of more fine-grained $D_{t,i}$ for each starting node i
 - Then, use the same approach

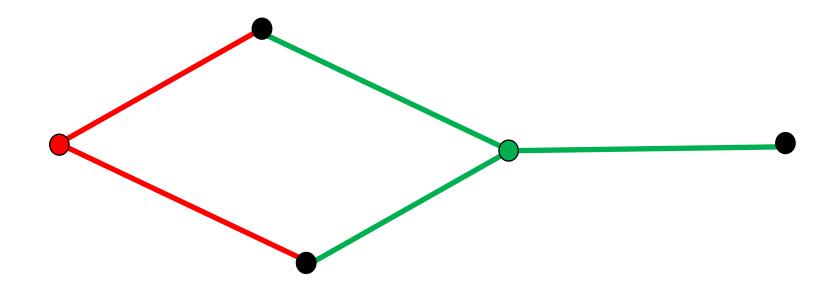
Hardness: Super-polynomial dependencies on width are unavoidable

• Can be seen via reduction to vertex cover









- Can be seen via reduction to vertex cover
- Why vertex cover again?

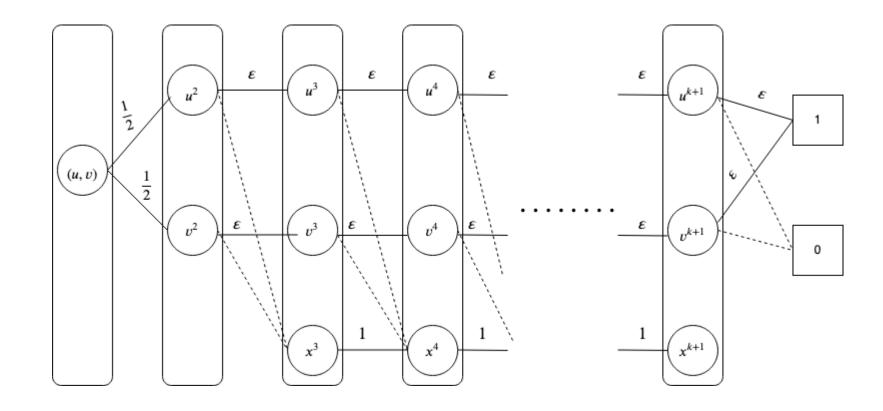
- Can be seen via reduction to vertex cover
- Why vertex cover again?
 - We'll see the reduction in a second...

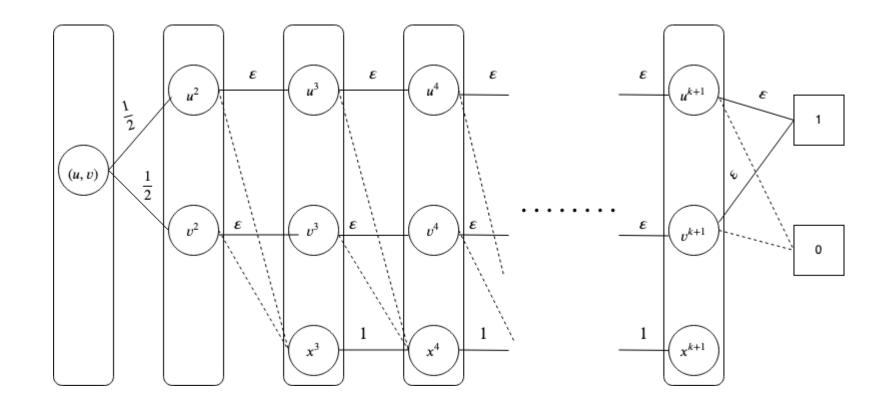
- Can be seen via reduction to vertex cover
- Why vertex cover again?
 - We'll see the reduction in a second...
 - But strong hardness results.

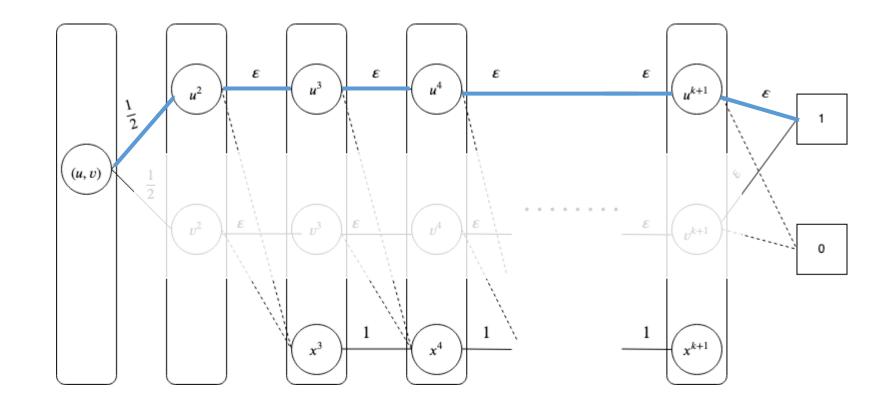
- Can be seen via reduction to vertex cover
- Why vertex cover again?
 - We'll see the reduction in a second...
 - But strong hardness results.
 - Not just NP-complete...

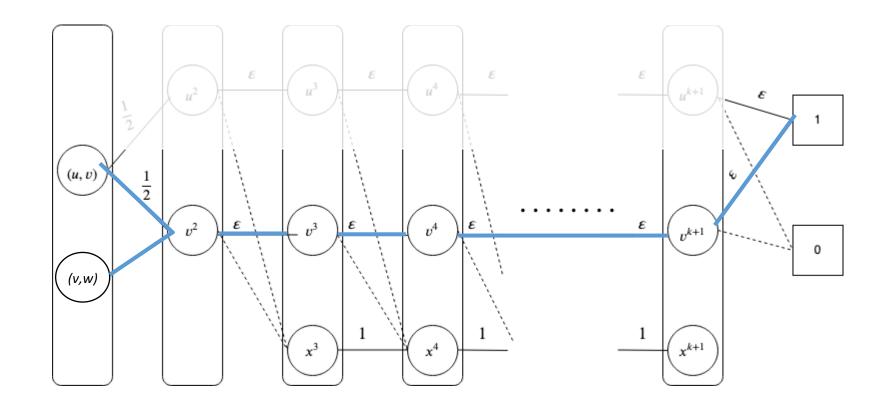
- Can be seen via reduction to vertex cover
- Why vertex cover again?
 - We'll see the reduction in a second...
 - But strong hardness results.
 - Not just NP-complete...
 - ... but also cannot be approximated to a constant factor < 1.3606 [Dinur – Safra 2005]

Take graph G on which we want to solve vertex cover. For each edge (u,v) *in the vertex cover graph*, build:

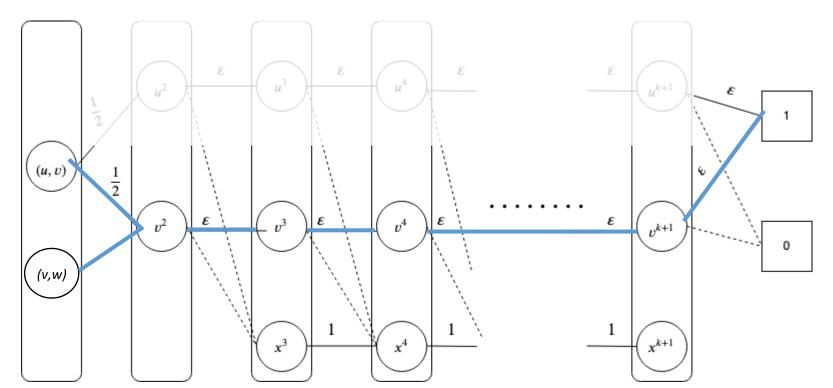








- But, picking a path
 picking a
 vertex in og graph
- Using as few paths as possible
 ⇔ using as few vertices as possible in og graph



$$P_f = \frac{OPT \; SW}{SW \; of \; maximin \; sol}$$

- Simple case: linear cost 1 for changing transition by 1
- Result: *tight* bounds
 - $P_f = w$ for very very small B
 - $P_f = w/B$ for intermediate B
 - $P_f = 1$ for large B

$$P_f = \frac{OPT \; SW}{SW \; of \; maximin \; sol}$$

- Simple case: linear cost 1 for changing transition by 1
- Result: *tight* bounds
 - $P_{\neq} = w$ for small B (corner case)
 - $P_f = w/B$ for intermediate B
 - $P_f = 1$ for large B

$$P_f = \frac{OPT \ SW}{SW \ of \ maximin \ sol}$$

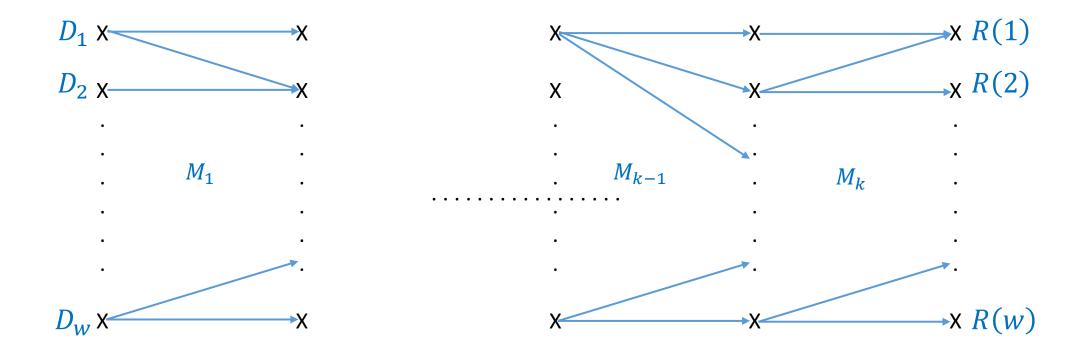
- Simple case: linear cost 1 for changing transition by 1
- Result: *tight* bounds
 - $P_{\neq} = w$ for small B
 - $P_f = w/B$ for intermediate B

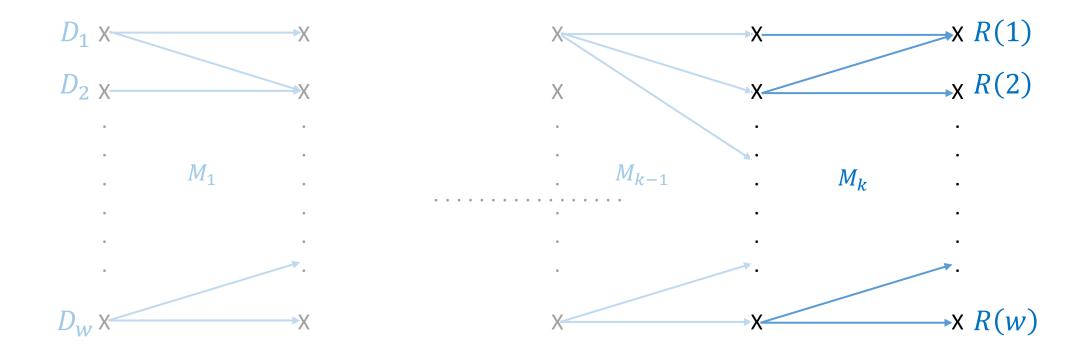
• $P_{\neq} = 1$ for large B "trivial – the proof is left to the reader as an exercise"

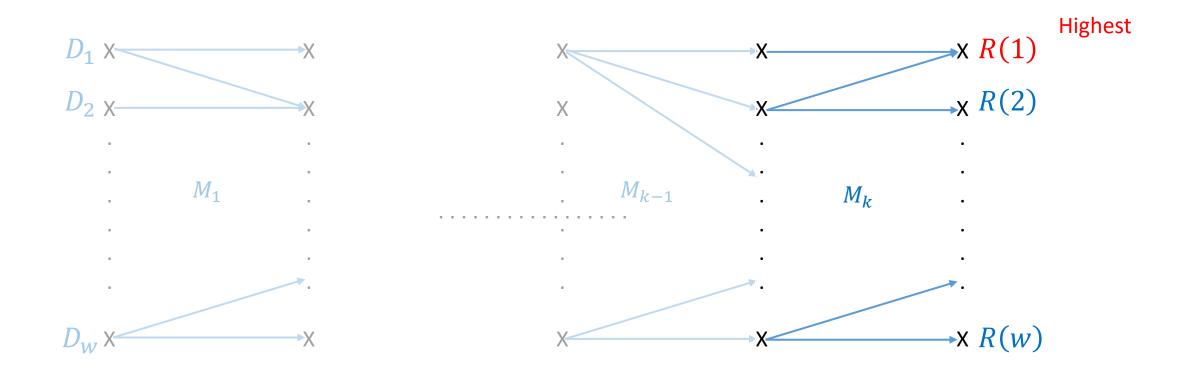
$$P_f = \frac{OPT \; SW}{SW \; of \; maximin \; sol}$$

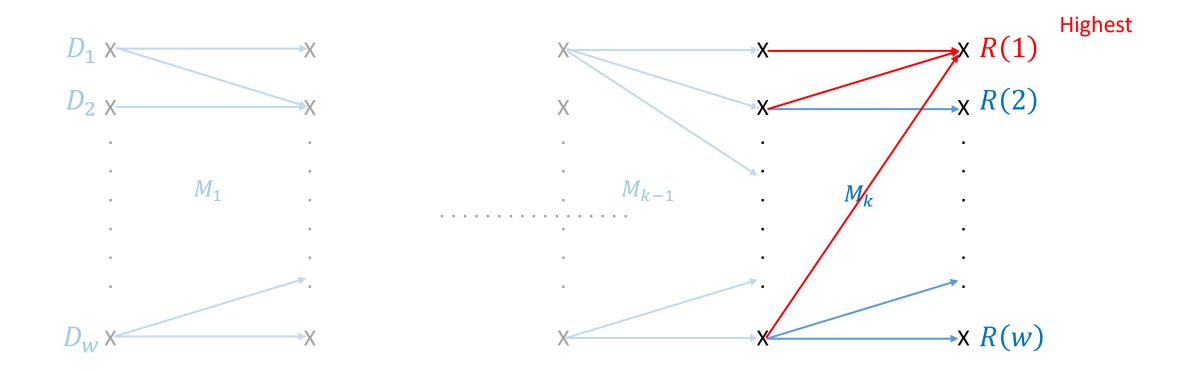
- Simple case: linear cost 1 for changing transition by 1
- Result: *tight* bounds
 - $P_{\neq} = w$ for small B
 - $P_f = w/B$ for intermediate B

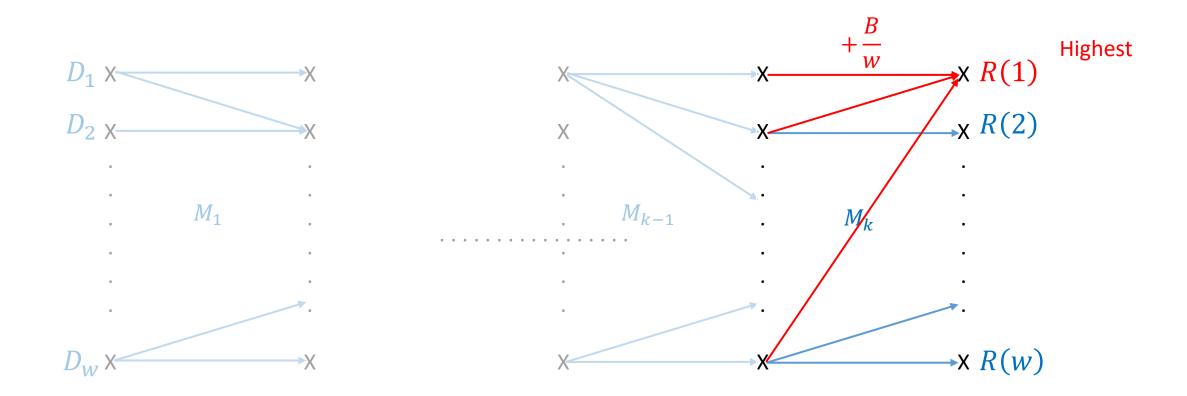
•
$$P_f = 1$$
 for large B

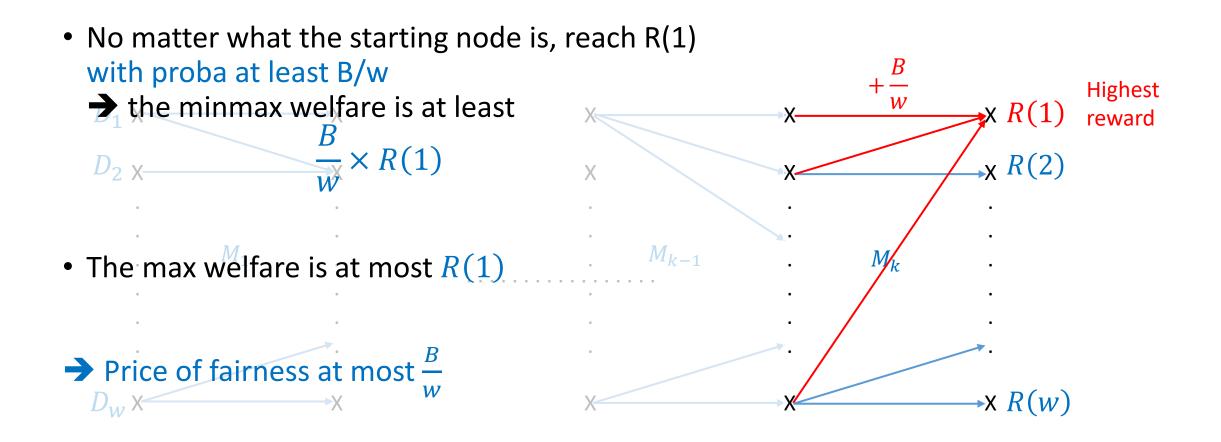












Remarks and future directions

Still a first step/stylized model; in practice, important future directions:

• Different populations may face different transitions even if on the same node in the graph

Population-specific transitions

Solution:

- Just duplicate nodes. For each outcome of a layer, there is a corresponding (outcome, starting population) node
- Can correlate effect of interventions across same outcome, different starting populations through cost function.
- E.g., if modify transition for starting population 1, can modify transition for pop 2 by some amount for free.

How does this affect the graph and algorithms?

• Quadratic blow-up w.r.t width

•
$$w \rightarrow w^2$$

Remarks and future directions

Still a first step/stylized model; in practice, important future directions:

- Different populations may face different transitions even if on the same node in the graph
- Transitions may not be stochastic, but involve strategic elements; agents make choices
- Acyclic model, does not take feedback loops into account
- Simplified/1D reward model + everyone wants the same outcomes
- What happens if non-centralized designer/different entities intervene at different stages?
- What if we try to estimate transitions/effect of interventions from real data?
- Etc.

Pipeline Interventions

Eshwar Ram Arunachaleswaran* Sampath Kannan* Aaron Roth* Juba Ziani#

*University of Pennsylvania #Georgia Tech