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Spectral Graph Theory

1. Given a graph G, take its Laplacian L and diagonalize it

L =
∑
i=1

λiuiu
⊤
i .

2. To analyze a function f : G → R, express it in the {ui}ni=1 basis

f =

n∑
i=1

αiui.

• Long history and rich theory (partitioning, learning, dimensionality reduction).
• In many ways the analog of Fourier analysis on graphs.
• Eigenvectors at different frequencies capture structure at different scales.

Nonetheless, the transform is still essentially flat: the ui are not localized.
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Multiresolution analysis

In contrast, multiresolution expands f in the form

f(x) =

L∑
ℓ=1

∑
m

αℓ
mψ

ℓ
m(x) +

∑
m

βmϕ
L
m(x),

where the support of the ψℓ
m wavelets and ϕℓm scaling functions is local (but

increasing with ℓ).

• The {ψℓ
m}m wavelets capture structure at resolution ℓ.

• The {ϕLm}m scaling functions mop up what remains at the coarsest level.
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Multiresolution analysis

In general, multiresolution analysis on a spaceX is a filtration

where Vℓ = Vℓ+1 ⊕Wℓ+1 and

• Each Vℓ’s orthonormal basis is {ϕℓm}m
• EachWℓ’s orthonormal basis is {ψℓ

m}m.

The spaces are chosen so that as ℓ increases, Vℓ contain functions that are
increasingly smooth w.r.t. some self-adjoint operator T : L(X)→ L(X).
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The multiresolution mantra

Multiresolution analysis is a an attractive idea for graphs because:

• Real world graphs/networks have structure at several different scales.
• There is a hierarchical structure of communities, meta-communities,

meta-meta-communities, etc., but multiple such hierarchies may overlap.
• Multiresolution is not just a way of modeling G, but also leads to fast

computational methods (multigrid, fast multipole, structured matrices).
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The multiresolution mantra

The central dogma of harmonic analysis is that the structure of the space of
functions on a setX can shed light on the structure ofX itself.

G ←→ L(G)

“The interplay between geometry of sets, function spaces on sets, and
operators on sets is classical in Harmonic Analysis.”

[Coifman & Maggioni, 2006]
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But how do we define multiresolution analysis on a graph???
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Recent approaches

• Diffusion Wavelets [Coifman & Maggioni, 2006]
• Treelets [Lee, Nadler & Wasserman, 2008]
• Spectral graph wavelets [Hammond, Vandergheynst & Gribonval, 2010]
• Tree wavelets [Gavish, Nadler & Coifman, 2010]
• Multiresolution factorizations [K, Teneva & Garg, 2014]

[For an overview of “Signal Processing on Graphs”, see [Shuman et al., 2013]]

8/33...

8/33



Fundamentals of multiresolution analysis



.

Multiresolution on R
Mallat [1989] defined multiresolution on R by the following axioms:

1.
∩

j Vℓ = {0},
2.

∪
ℓ Vℓ is dense in L2(R),

3. If f ∈ Vℓ then f ′(x) = f(x− 2ℓm) is also in Vℓ for anym∈Z,

4. If f ∈ Vℓ, then f ′(x) = f(2x) is in Vℓ−1,

which imply the existence of a mother wavelet ψ and a father wavelet ϕ s. t.

ψℓ
m = 2−ℓ/2 ψ(2−ℓx−m) and ϕℓm = 2−ℓ/2 ϕ(2−ℓx−m).
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Multiresolution on discrete spaces

Which of the ideas from classical multiresolution still make sense?

• Recursively split L(X) into smoother and rougher parts. ✓
• Basis functions should be localized in space & frequency. ✓
• Each Φℓ

Qℓ−→ Φℓ+1 ∪Ψℓ+1 transform is orthogonal and sparse. ✓
• Each ψℓ

m is derived by translating ψℓ → MAYBE

• Each ψℓ is derived by scaling ψ → ???
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General principles
1. The sequence L(X) = V0 ⊃ V1 ⊃ V2 ⊃ . . . is a filtration of Rn in terms

of smoothness with respect to T in the sense that

µℓ = inf
f∈Vℓ\{0}

⟨f, Tf⟩ / ⟨f, f⟩

increases at a given rate.

2. The wavelets are localized in the sense that

inf
x∈X

sup
y∈X

ψℓ
m(y)

d(x, y)α

increases no faster than a certain rate.

3. LettingQℓ be the matrix expressingΦℓ∪Ψℓ in the previous basisΦℓ−1, i.e.,

ϕℓm =
∑dim(Vℓ−1)

i=1 [Qℓ]m,i ϕ
ℓ−1
i

ψℓ
m =

∑dim(Vℓ−1)
i=1 [Qℓ]m+dim(Vℓ−1),i ϕ

ℓ−1
i ,

eachQℓ orthogonal transform is sparse, guaranteeing the existence of a
fast wavelet transform (Φ0 is taken to be the standard basis, ϕ0m = em).
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Key observation

If |X |= n is finite, representing T by a symmetric matrix A∈R, each basis
transform Vℓ → Vℓ+1 ⊕Wℓ+1 is like applying a rotation matrix

A 7→ Q1AQ
⊤
1 7→ Q2Q1AQ

⊤
1 Q

⊤
2 7→ . . .

and then fixing a subset of the coordinates as wavelets. In addition,
Q1, . . . , QL must obey sparsity constraints.

multiresolution analysis ←→ multilevel matrix factorization
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Multiresolution factorization

( . )
QL

. . .

( . )
Q1

P

( .. )
A

P⊤
( . )

Q⊤
1

. . .

( . )
Q⊤

L

≈
( . )

H

Definition. Given a symmetric matrixA∈Rn×n, a class of sparse rotationsQ,
and a sequence n ≥ δ1 ≥ . . . ≥ δL, a multiresolution factorization of A is

A = Q⊤
1 Q

⊤
2 . . . Q

⊤
LHQL . . . Q2Q1,

where each Qℓ ∈Q rotation satisfies [Qℓ][n]\Sℓ, [n]\Sℓ
= In−δℓ−1

for some
nested sequence of sets [n] = S1 ⊇ S2 ⊇ . . . ⊇ SL+1 with |Sℓ | = δℓ−1,
andH is SL+1–core diagonal.

Definition. If this is factorization is exact, we say that A is multiresolution
factorizable (over G with δ1, . . . , δL). → generalization of “rank”

15/33...

15/33



.

Form of the Qℓ local rotations

It is critical that theQℓ must be very simple and local rotations. Two choices:

1. Elementary k–point rotation: → “Jacobi MMFs”

Q = In−k ⊕(i1,...,ik) O = P

(. )
P⊤

for some O ∈ SO(k) → for k= 2, just a Givens rotation.

2. Compound k–point rotation: → “Parallel MMFs”

Q = ⊕(i11,...,i
1
k1
)O1⊕(i21,...,i2k2)

O2 . . .⊕(im1 ,...,imkm)Om = P

(. )
P⊤

for some O1, . . . , Om ∈ SO(k).
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The optimization problem

Given A, ideally, we would like to solve

minimize
[n]⊇ S1 ⊇ . . .⊇ SL

H∈Hn
SL

; Q1, . . . , QL∈Q

∥A−Q⊤
1 . . . Q

⊤
LH QL . . . Q1 ∥2Frob.

for a given classQ of local rotations and dimensions δ1 ≥ δ2 ≥ . . . δL.

• In general, this optimization problem is combinatorially hard.
• Easy to approximate it in a greedy way (level by level).
• To solve the combinatorial part of the problem (at each level) use a
◦ Deterministic strategy, or a
◦ Randomized strategy.
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Optimization details — Jacobi MMF

Proposition. IfQℓ = In−k⊕IO with I = (i1, . . . , ik) and Jℓ = {ik}, then
the contribution of level ℓ to the MMF approximation error (in Frobenius norm) is

Eℓ = EOI = 2

k−1∑
p=1

[O[Aℓ−1]I,IO
⊤]2k,p + 2[OBO⊤]k,k,

where B = [Aℓ−1]I,Sℓ
([Aℓ−1]I,Sℓ

)⊤.

Corollary. In the special case of k=2 and Iℓ = (i, j),

Eℓ = EO(i,j) = 2[O[Aℓ−1](i,j),(i,j)O
⊤]22,1 + 2[OBO⊤]k,k

with B = [Aℓ−1](i,j),Sℓ
([Aℓ−1](i,j),Sℓ

)⊤.
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Optimization details — Jacobi MMF

Proposition. Let A∈R2×2 be diagonal, B ∈R2×2 symmetric and

O=
(
cosα − sinα
sinα cosα

)
. Set a= (A1,1−A2,2)

2/4, b=B1,2,

c= (B2,2−B1,1)/2, e=
√
b2+ c2, θ = 2α and ω= arctan(c/b). Then if

α minimizes ([OAO⊤]2,1)
2 + [OBO⊤]2,2, then θ satisfies

(a/e) sin(2θ) + sin(θ + ω + π/2) = 0.
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Optimization details — Parallel MMF
Proposition. IfQℓ is a compound rotation of the form
Qℓ = ⊕I1O1. . .⊕ ImOm for some partition I1 ∪· . . . ∪· Im of [n] with
k1, . . . , km ≤ k, and some sequence of orthogonal matrices O1, . . . , Om,
then level ℓ’s contribution to the MMF error obeys

Eℓ ≤ 2

m∑
j=1

[kj−1∑
p=1

[Oj [Aℓ−1]Ij ,IjO
⊤
j ]

2
kj ,p

+[OjBjO
⊤
j ]kj ,kj

]
, (1)

where Bj = [Aℓ−1]Ij ,Sℓ−1\Ij ([Aℓ−1]Ij ,Sℓ−1\Ij )
⊤.

For compression tasks parallel MMFs are generally preferable to Jacobi MMFs
because

• Unrelated parts of the matrix are processed independently, in parallel.

• Gives more compact factorizations.

• Jacobi MMFs can exhibit cascades.

• The sets I1, . . . , Im can be found by a randomized strategy or exact
matching (O(n3) time)
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Hierarchical structure

The sequence in which MMF (with k≥ 3) eliminates dimensions induces a
(soft) hierarchical clustering amongst the dimensions (mixture of trees).

→ Connection to hierarchical clustering.
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Applications

1. Find a (hierarchically) sparse basis for A.

2. Hierarchically cluster data.

3. Find community structure.

4. Generate hierarchical graphs.

5. Compress graphs & matrices .

6. Provide a basis for sparse approximations such as the LASSO.

7. Provide a basis for fast numerics (NLA, multigrid, etc).
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Relationship to Diffusion Wavelets

• Diffusion wavelets also start with the matrix representation of a smoothing
operator (the diffusion operator) and compress it in multiple stages.

• However, at each stage, the wavelets are constructed from the columns of
A itself by a rank-revealing QR type process

A ≈ Q1R1

A2 ≈ Q1 R1R
†
1︸ ︷︷ ︸

≈Q2R2

Q†
1

A4 ≈ Q1Q2 R2R
†
2︸ ︷︷ ︸

≈Q3R3

Q†
2Q

†
1.

• Very strong theoretical foundations, but the sparsity (locality) of theQℓ

matrices is hard to control.

[Coifman & Maggioni, 2006]
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Relationship to Treelets

Treelets are a special case of Jacobi MMF

. . . Q3Q2Q1AQ
⊤
1Q

⊤
2Q

⊤
3 . . . ,

but

• Restricted to Givens rotations (k= 2) → only recovers a single tree.
• EachQi is chosen to eliminate the maximal off-diagonal entry, rather than

minimizing overall error → not intended as a factorization method.
• A is regarded as a covariance matrix → probabilistic analysis.

[Lee, Nadler & Wasserman, 2008]
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Relationship to multigrid, fast
multipole, and hierarchical matrices

• Multigrid methods solve systems of p.d.e.’s by shuttling back and forth
between grids/meshes at different levels of resolution [Brandt, 1973; Livne &
Brandt, 2010].

• Fast multipole methods evaluate a kernel (such as the Gaussian kernel)
between a large number of particles, by aggregating them at different levels
[Greengard & Rokhlin, 1987].

• H–matrices [Hackbusch, 1999],H2 matrices [Borm, 2007] and
Hierarchically Semi-Separable matrices [Chandrasekaran et al., 2005]
iteratively decompose into blocked matrices, with low rank structure in each
of the blocks.
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Hölder condition

In classical wavelet transforms one proves that if f is α–Hölder, i.e.,

|f(x)−f(y)| ≤ cH d(x, y)α ∀x, y ∈X,

then the wavelet coefficients decay at a certain rate, e.g.,

| ⟨f, ψm
ℓ ⟩ | ≤ c′ℓα+β

Results of this type generally hold for spaces of homogeneous type, in which

Vol(B(x, 2r)) ≤ chom Vol(B(x, r)) ∀x∈X, ∀r > 0.

Natural notion of distance between rows in MMF is d(i, j) = | ⟨Ai,:, Aj,:⟩ |−1.
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Λ–rank homogeneous matrices

Definition. We say that a symmetric matrix A∈Rn×n is Λ–rank
homogeneous up to orderK , if for any S ⊆ [n] of size at mostK , letting
Q = AS,:A:,S , settingD to be the diagonal matrix withDi,i = ∥Qi,:∥1, and
Q̃ = D−1/2QD−1/2, the λ1, . . . , λ|S| eigenvalues of Q̃ satisfy
Λ < |λi | < 1− Λ, and furthermore c−1

T ≤Di,i ≤ cT for some constant cT .

Inuitively

• Different rows are neither too parallel or totally orthogonal

• Generalization of the restricted isometry property from compressed sensing
[Candes & Tao, 2005]
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Theorem

Let A∈Rn×n be a symmetric matrix that is Λ–rank homogeneous up to order
K and has an MMF factorization A = U⊤

1 . . . U⊤
LHUL . . . U1. Assume ψℓ

m

is a wavelet in this factorization arising from row i ofAℓ−1 supported on a set S
of sizeK ≤K and that ∥Hi,:∥2 ≤ ϵ. Then if f : [n]→ R is
(cH , 1/2)–Hölder with respect to d(i, j) = | ⟨Ai,:, Aj,:⟩ |−1, then

| ⟨f, ψℓ
m⟩ | ≤ cT

√
cHcΛ ϵ

1/2K

with cΛ = 4/(1− (1− 2Λ)2).
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Experimental Results

Frobenius norm error on the Zackary Karate Club graph (left) and a matrix of
genetic relationship between 50 individuals from [Crossett, 2013](right).
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Experimental Results

Frobenius norm error of the MMF and Nyström methods on a random vs. a
structured (Kronecker product) matrix.
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Experimental Results

Frobenius norm error of the MMF and Nyström methods on large network
datasets.
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CONCLUSIONS

• MMF is a new type of matrix factorization mirroring multiresolution analysis
→ generalization of “rank”.

• MMF exploits hierarchical structure, but does not enforce a single hierarchy.
• Empirical evidence suggests that MMF is a good model for real networks.

• Finding MMF factorizations is a fundamentally local and parallelizable
process → O(n log n) algorithms should be within reach.

• Once in MMF form, a range of matrix computations become faster.

• MMF has strong ties to: Diffusion wavelets, Treelets, Multiscale SVD,
structured matrices, algebraic multigrid, and fast multipole methods.
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