Multiresolution Graph Models

Risi Kondor, The University of Chicago

Nedelina Teneva UChicago Vikas K Garg TTI-C, MIT

Spectral Graph Theory

1. Given a graph *G*, take its Laplacian *L* and diagonalize it

$$
L = \sum_{i=1} \lambda_i u_i u_i^{\top}.
$$

2. To analyze a function $f \colon \mathcal{G} \to \mathbb{R}$, express it in the $\{u_i\}_{i=1}^n$ basis

$$
f = \sum_{i=1}^{n} \alpha_i u_i.
$$

- *•* Long history and rich theory (partitioning, learning, dimensionality reduction).
- *•* In many ways the analog of Fourier analysis on graphs.
- *•* Eigenvectors at different frequencies capture structure at different scales. Nonetheless, the transform is still essentially flat: the u_i are not localized.

Multiresolution analysis

In contrast, multiresolution expands *f* in the form

$$
f(x) = \sum_{\ell=1}^{L} \sum_{m} \alpha_m^{\ell} \psi_m^{\ell}(x) + \sum_{m} \beta_m \phi_m^L(x),
$$

where the support of the ψ_m^{ℓ} wavelets and ϕ_m^{ℓ} scaling functions is **local** (but increasing with *ℓ*).

- \bullet The $\{\psi^{\ell}_m\}_{m}$ wavelets capture structure at resolution $\ell.$
- \bullet The $\{\phi^L_m\}_m$ scaling functions mop up what remains at the coarsest level.

 \cdot 3 ³*/*33

Multiresolution analysis

In general, multiresolution analysis on a space *X* is a filtration

$$
L_2(X) \rightarrow \cdots \rightarrow V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots
$$

\n
$$
W_1 \searrow W_2 \searrow W_3
$$

where $V_{\ell} = V_{\ell+1} \oplus W_{\ell+1}$ and

- \bullet Each V_ℓ 's orthonormal basis is $\{\phi_m^\ell\}_m$
- \bullet Each W_ℓ 's orthonormal basis is $\{\psi_m^\ell\}_m$.

The spaces are chosen so that as *ℓ* increases, *V^ℓ* contain functions that are increasingly smooth w.r.t. some self-adjoint operator $T: L(X) \to L(X)$.

The multiresolution mantra

Multiresolution analysis is a an attractive idea for graphs because:

- *•* Real world graphs/networks have structure at several different scales.
- *•* There is a hierarchical structure of communities, meta-communities, meta-meta-communities, etc., but multiple such hierarchies may overlap.
- Multiresolution is not just a way of modeling G , but also leads to fast computational methods (multigrid, fast multipole, structured matrices).

5/33 ⁵*/*33

The multiresolution mantra

The central dogma of harmonic analysis is that the structure of the space of functions on a set *X* can shed light on the structure of *X* itself.

$$
\mathcal{G} \quad \longleftrightarrow \quad L(\mathcal{G})
$$

"The interplay between geometry of sets, function spaces on sets, and operators on sets is classical in Harmonic Analysis."

[Coifman & Maggioni, 2006]

But how do we define multiresolution analysis on a graph???

Recent approaches

- *•* Diffusion Wavelets [Coifman & Maggioni, 2006]
- *•* Treelets [Lee, Nadler & Wasserman, 2008]
- *•* Spectral graph wavelets [Hammond, Vandergheynst & Gribonval, 2010]
- *•* Tree wavelets [Gavish, Nadler & Coifman, 2010]
- *•* Multiresolution factorizations [K, Teneva & Garg, 2014]

[For an overview of "Signal Processing on Graphs", see [Shuman et al., 2013]]

 $\frac{1}{3}$ ⁸*/*33

Fundamentals of multiresolution analysis

Multiresolution on $\mathbb R$

Mallat [1989] defined multiresolution on $\mathbb R$ by the following axioms:

- 1. $\bigcap_j V_\ell = \{0\},\$
- 2. $\bigcup_{\ell} V_{\ell}$ is dense in $L_2(\mathbb{R})$,
- 3. If $f \in V_\ell$ then $f'(x) = f(x 2^\ell m)$ is also in V_ℓ for any $m \in \mathbb{Z},$
- 4. If $f \in V_{\ell}$, then $f'(x) = f(2x)$ is in $V_{\ell-1}$,

which imply the existence of a mother wavelet *ψ* and a father wavelet *ϕ* s. t.

$$
\psi_m^\ell = 2^{-\ell/2}\,\psi(2^{-\ell}x - m) \qquad \text{and} \qquad \phi_m^\ell = 2^{-\ell/2}\,\phi(2^{-\ell}x - m).
$$

10/33 ¹⁰*/*33

Multiresolution on discrete spaces

$$
L_2(X) \rightarrow \cdots \rightarrow V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots
$$

$$
W_1 \searrow W_2 \searrow W_3
$$

Which of the ideas from classical multiresolution still make sense?

- *•* Recursively split *L*(*X*) into smoother and rougher parts. ✓
- *•* Basis functions should be localized in space & frequency. ✓
- *•* Each Φ*^ℓ ^Q^ℓ −→* ^Φ*ℓ*+1 *[∪]* ^Ψ*ℓ*+1 transform is orthogonal and sparse. ✓
- \bullet Each ψ_m^ℓ is derived by translating $\psi^\ell \to$ MAYBE
- $\bullet \,\,$ Each ψ^ℓ is derived by scaling $\psi \,\to ???$

General principles

1. The sequence $L(X) = V_0 \supset V_1 \supset V_2 \supset \dots$ is a filtration of \mathbb{R}^n in terms of smoothness with respect to *T* in the sense that

$$
\mu_{\ell} = \inf_{f \in V_{\ell} \setminus \{0\}} \langle f, Tf \rangle / \langle f, f \rangle
$$

increases at a given rate.

2. The wavelets are localized in the sense that

$$
\inf_{x \in X} \sup_{y \in X} \frac{\psi_m^{\ell}(y)}{d(x, y)^{\alpha}}
$$

increases no faster than a certain rate.

3. Letting Q_ℓ be the matrix expressing $\Phi_\ell\!\cup\!\Psi_\ell$ in the previous basis $\Phi_{\ell-1}$, i.e.,

$$
\phi_m^{\ell} = \sum_{i=1}^{\dim(V_{\ell-1})} [Q_{\ell}]_{m,i} \; \phi_i^{\ell-1}
$$

$$
\psi_m^{\ell} = \sum_{i=1}^{\dim(V_{\ell-1})} [Q_{\ell}]_{m+\dim(V_{\ell-1}),i} \; \phi_i^{\ell-1},
$$

each *Q^ℓ* orthogonal transform is sparse, guaranteeing the existence of a fast wavelet transform (Φ_0 is taken to be the standard basis, $\phi^0_m \,{=}\, e_m$).

> 12/33 ¹²*/*33

Multiresolution Matrix Factorization (MMF)

Key observation

If $|X| = n$ is finite, representing *T* by a symmetric matrix $A \in \mathbb{R}$, each basis transform $V_{\ell} \to V_{\ell+1} \oplus W_{\ell+1}$ is like applying a rotation matrix

$$
A \mapsto Q_1 A Q_1^\top \mapsto Q_2 Q_1 A Q_1^\top Q_2^\top \mapsto \dots
$$

and then fixing a subset of the coordinates as wavelets. In addition, Q_1, \ldots, Q_L must obey sparsity constraints.

multiresolution analysis *←→* multilevel matrix factorization

Multiresolution factorization

<code>Definition.</code> Given a symmetric matrix $A\in \mathbb{R}^{n\times n}$, a class of sparse rotations $\mathcal{Q},$ and a sequence $n \geq \delta_1 \geq \ldots \geq \delta_L$, a multiresolution factorization of A is

$$
A = Q_1^\top Q_2^\top \dots Q_L^\top H Q_L \dots Q_2 Q_1,
$$

where each $\;Q_{\ell}\in\mathcal{Q}\;$ rotation satisfies $\;[Q_{\ell}]_{[n]\setminus S_{\ell},\;[n]\setminus S_{\ell}}=I_{n-\delta_{\ell-1}}\;$ for some d sequence of sets $[n] = S_1 \supseteq S_2 \supseteq \ldots \supseteq S_{L+1}$ with $|S_\ell| = \delta_{\ell-1},$ and H is S_{L+1} -core diagonal.

Definition. If this is factorization is exact, we say that *A* is **multiresolution factorizable** (over G with $\delta_1, \ldots, \delta_L$). \rightarrow generalization of "rank"

> 15/33 ¹⁵*/*33

Form of the *Q^ℓ* local rotations

It is critical that the *Q^ℓ* must be very simple and local rotations. Two choices:

1. **Elementary** *k***–point rotation**: *→* "Jacobi MMFs"

$$
Q = I_{n-k} \oplus_{(i_1,\ldots,i_k)} O = P \left(\bigcup_{k=1}^{n} P^{\top} \right)
$$

for some $O \in SO(k) \rightarrow$ for $k=2$, just a Givens rotation.

2. **Compound** k **–point rotation:** \rightarrow "Parallel MMFs"

$$
Q = \bigoplus_{\substack{(i_1^1,\ldots,i_{k_1}^1)} Q_1 \oplus_{\substack{(i_1^2,\ldots,i_{k_2}^2)} Q_2 \ldots \oplus_{\substack{(i_1^m,\ldots,i_{k_m}^m)} Q_m}} = P \begin{pmatrix} \blacksquare \\ & \blacksquare \\ & \blacksquare \end{pmatrix} P^{\top}
$$
 for some $O_1, \ldots, O_m \in SO(k)$.

The optimization problem

Given *A*, ideally, we would like to solve

$$
\underset{H \in \mathcal{H}_{S_L}^n}{\text{minimize}} \quad \|A - Q_1^\top \dots Q_L^\top H \ Q_L \dots Q_1\|_{\text{Frob}}^2.
$$
\n
$$
H \in \mathcal{H}_{S_L}^n; \ Q_1, \dots, Q_L \in \mathcal{Q}
$$

for a given class $\mathcal Q$ of local rotations and dimensions $\delta_1 \geq \delta_2 \geq \ldots \delta_L$.

- *•* In general, this optimization problem is combinatorially hard.
- *•* Easy to approximate it in a greedy way (level by level).
- *•* To solve the combinatorial part of the problem (at each level) use a
	- *◦* Deterministic strategy, or a
	- *◦* Randomized strategy.

Optimization details — Jacobi MMF

Proposition. If $Q_{\ell} = I_{n-k} \oplus I$ with $I = (i_1, \ldots, i_k)$ and $J_{\ell} = \{i_k\}$, then the contribution of level *ℓ* to the MMF approximation error (in Frobenius norm) is

$$
\mathcal{E}_\ell=\mathcal{E}_\mathrm{I}^O=2\sum_{p=1}^{k-1}[O[A_{\ell-1}]_{\mathrm{I},\mathrm{I}}O^\top]^2_{k,p}+2[OBO^\top]_{k,k},
$$
 where $B=[A_{\ell-1}]_{\mathrm{I},S_\ell}\,([A_{\ell-1}]_{\mathrm{I},S_\ell})^\top.$

Corollary. In the special case of $k = 2$ and $I_{\ell} = (i, j)$,

$$
\mathcal{E}_{\ell} = \mathcal{E}_{(i,j)}^{O} = 2[O[A_{\ell-1}]_{(i,j),(i,j)} O^{\top}]_{2,1}^{2} + 2[OBO^{\top}]_{k,k}
$$

with
$$
B = [A_{\ell-1}]_{(i,j),S_{\ell}} ([A_{\ell-1}]_{(i,j),S_{\ell}})^{\top}.
$$

Optimization details — Jacobi MMF

Proposition. Let $A \in \mathbb{R}^{2 \times 2}$ be diagonal, $B \in \mathbb{R}^{2 \times 2}$ symmetric and $O = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ $\sin \alpha$ cos α). Set *a* = $(A_{1,1} - A_{2,2})^2/4$, *b* = *B*_{1,2}, *c* = (*B*2*,*² *−B*1*,*1)*/*2, *e* = *√* $b^2+c^2,~\theta=2\alpha$ and $\omega=\arctan(c/b).$ Then if α minimizes $([OAO^\top]_{2,1})^2 + [OBO^\top]_{2,2} ,$ then θ satisfies

$$
(a/e)\sin(2\theta) + \sin(\theta + \omega + \pi/2) = 0.
$$

Optimization details — Parallel MMF

Proposition. If *Q^ℓ* is a compound rotation of the form

 $Q_{\ell} = \bigoplus_{\mathrm{I}_1} Q_1 \ldots \bigoplus_{\mathrm{I}_m} Q_m$ for some partition $\mathrm{I}_1 \cup \ldots \cup \mathrm{I}_m$ of $[n]$ with $k_1,\ldots,k_m\leq k$, and some sequence of orthogonal matrices $O_1,\ldots,O_m,$ then level *ℓ*'s contribution to the MMF error obeys

$$
\mathcal{E}_{\ell} \le 2 \sum_{j=1}^{m} \left[\sum_{p=1}^{k_{j}-1} [O_{j}[A_{\ell-1}]_{I_{j},I_{j}} O_{j}^{\top}]_{k_{j},p}^{2} + [O_{j}B_{j}O_{j}^{\top}]_{k_{j},k_{j}} \right], \qquad (1)
$$

where $B_{j} = [A_{\ell-1}]_{I_{j},S_{\ell-1}\setminus I_{j}} \left([A_{\ell-1}]_{I_{j},S_{\ell-1}\setminus I_{j}} \right)^{\top}.$

For compression tasks parallel MMFs are generally preferable to Jacobi MMFs because

- *•* Unrelated parts of the matrix are processed independently, in parallel.
- *•* Gives more compact factorizations.
- *•* Jacobi MMFs can exhibit cascades.
- The sets I_1, \ldots, I_m can be found by a randomized strategy or exact matching ($O(n^3)$ time)

20/33 ²⁰*/*33

Hierarchical structure

The sequence in which MMF (with *k ≥* 3) eliminates dimensions induces a (soft) hierarchical clustering amongst the dimensions (mixture of trees).

> 21/33 ²¹*/*33

→ Connection to hierarchical clustering.

Applications

- 1. Find a (hierarchically) sparse basis for *A*.
- 2. Hierarchically cluster data.
- 3. Find community structure.
- 4. Generate hierarchical graphs.
- 5. Compress graphs & matrices .
- 6. Provide a basis for sparse approximations such as the LASSO.

22/33 ²²*/*33

7. Provide a basis for fast numerics (NLA, multigrid, etc).

Relationship to Diffusion Wavelets

- *•* Diffusion wavelets also start with the matrix representation of a smoothing operator (the diffusion operator) and compress it in multiple stages.
- *•* However, at each stage, the wavelets are constructed from the columns of *A* itself by a rank-revealing QR type process

$$
A \approx Q_1 R_1
$$

\n
$$
A^2 \approx Q_1 \underbrace{R_1 R_1^{\dagger}}_{\approx Q_2 R_2} Q_1^{\dagger}
$$

\n
$$
A^4 \approx Q_1 Q_2 \underbrace{R_2 R_2^{\dagger}}_{\approx Q_3 R_3} Q_2^{\dagger} Q_1^{\dagger}
$$

• Very strong theoretical foundations, but the sparsity (locality) of the *Q^ℓ* matrices is hard to control.

[Coifman & Maggioni, 2006]

23/33 ²³*/*33

.

Relationship to Treelets

Treelets are a special case of Jacobi MMF

$$
\ldots Q_3 Q_2 Q_1 A Q_1^\top Q_2^\top Q_3^\top \ldots,
$$

but

- Restricted to Givens rotations $(k = 2) \rightarrow$ only recovers a single tree.
- $\bullet~$ Each Q_i is chosen to eliminate the maximal off-diagonal entry, rather than minimizing overall error \rightarrow not intended as a factorization method.
- *• A* is regarded as a covariance matrix *→* probabilistic analysis.

[Lee, Nadler & Wasserman, 2008]

24/33 ²⁴*/*33

Relationship to multigrid, fast multipole, and hierarchical matrices

- *•* Multigrid methods solve systems of p.d.e.'s by shuttling back and forth between grids/meshes at different levels of resolution [Brandt, 1973; Livne & Brandt, 2010].
- *•* Fast multipole methods evaluate a kernel (such as the Gaussian kernel) between a large number of particles, by aggregating them at different levels [Greengard & Rokhlin, 1987].
- *• H*–matrices [Hackbusch, 1999], *H*² matrices [Borm, 2007] and Hierarchically Semi-Separable matrices [Chandrasekaran et al., 2005] iteratively decompose into blocked matrices, with low rank structure in each of the blocks.

Hölder condition

In classical wavelet transforms one proves that if *f* is *α*–Hölder, i.e.,

$$
|f(x) - f(y)| \le c_H d(x, y)^\alpha \quad \forall x, y \in X,
$$

then the wavelet coefficients decay at a certain rate, e.g.,

 $|\langle f, \psi_{\ell}^{m} \rangle| \leq c' \ell^{\alpha+\beta}$

Results of this type generally hold for spaces of **homogeneous type**, in which

$$
Vol(B(x, 2r)) \le chom Vol(B(x, r)) \quad \forall x \in X, \ \forall r > 0.
$$

Natural notion of distance between rows in MMF is $d(i,j) = |\braket{A_{i,:},A_{j,:}}|^{-1}.$

Λ–rank homogeneous matrices

 $\mathsf{Definition}.$ We say that a symmetric matrix $A\in\mathbb{R}^{n\times n}$ is $\Lambda\text{-rank}$ **homogeneous** up to order \overline{K} , if for any $S \subseteq [n]$ of size at most \overline{K} , letting $Q = A_{S,:}A_{:,S}$, setting D to be the diagonal matrix with $D_{i,i} = \|Q_{i,:}\|_1$, and $\tilde{Q} = D^{-1/2} Q D^{-1/2}$, the $\lambda_1, \ldots, \lambda_{|S|}$ eigenvalues of \tilde{Q} satisfy $\Lambda < |\lambda_i| < 1-\Lambda,$ and furthermore $c_T^{-1} \leq D_{i,i} \leq c_T$ for some constant $c_T.$

Inuitively

- *•* Different rows are neither too parallel or totally orthogonal
- *•* Generalization of the restricted isometry property from compressed sensing [Candes & Tao, 2005]

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix that is Λ –rank homogeneous up to order \overline{K} and has an MMF factorization $A = U_1^\top \dots U_L^\top H\, U_L \dots U_1$. Assume ψ_m^ℓ is a wavelet in this factorization arising from row *i* of *Aℓ−*¹ supported on a set *S* $\textsf{of size } K \leq \overline{K}$ and that $\|H_{i,:}\|^2 \leq \epsilon.$ Then if $f\colon [n]\to \mathbb{R}$ is $(c_H,1/2)$ –Hölder with respect to $d(i,j) = |\braket{A_{i,:},A_{j,:}}|^{-1},$ then

$$
|\langle f, \psi_m^{\ell} \rangle| \le c_T \sqrt{c_H c_{\Lambda}} \epsilon^{1/2} K
$$

with $c_{\Lambda} = 4/(1 - (1 - 2\Lambda)^2)$.

Frobenius norm error on the Zackary Karate Club graph (left) and a matrix of genetic relationship between 50 individuals from [Crossett, 2013](right).

> 30/33 ³⁰*/*33

Frobenius norm error of the MMF and Nyström methods on a **random** vs. a **structured** (Kronecker product) matrix.

> 31/33 ³¹*/*33

Frobenius norm error of the MMF and Nyström methods on large network datasets.

32/33 $32/33$

CONCLUSIONS

- *•* MMF is a new type of matrix factorization mirroring multiresolution analysis *→* generalization of "rank".
- *•* MMF exploits hierarchical structure, but does not enforce a single hierarchy.
- *•* Empirical evidence suggests that MMF is a good model for real networks.
- *•* Finding MMF factorizations is a fundamentally local and parallelizable process \rightarrow $O(n \log n)$ algorithms should be within reach.
- *•* Once in MMF form, a range of matrix computations become faster.
- *•* MMF has strong ties to: Diffusion wavelets, Treelets, Multiscale SVD, structured matrices, algebraic multigrid, and fast multipole methods.

