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Spectral Graph Theory

1. Given a graph G, take its Laplacian L and diagonalize it
i=1

2. To analyze a function f: G — R, express it in the {ui}?zl basis
n
= Z o U
i=1

® | ong history and rich theory (partitioning, learning, dimensionality reduction).
® |n many ways the analog of Fourier analysis on graphs.

® Eigenvectors at different frequencies capture structure at different scales.
Nonetheless, the transform is still essentially flat: the u; are not localized. ®



Multiresolution analysis

In contrast, multiresolution expands f in the form

L
F@)=>">ab b () + > Bndh (@),

/=1 m

where the support of the ¢fn wavelets and qbfn scaling functions is local (but
increasing with £).

e The {4’ },, wavelets capture structure at resolution /.

® The {gbﬁ%}m scaling functions mop up what remains at the coarsest level.
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Multiresolution analysis

In general, multiresolution analysis on a space X is a filtration

Ly X) = ... =V —

where Vp = V11 @ Wy and
e Each Vs orthonormal basis is {¢!, }.,,
e Each IW;'s orthonormal basis is {15, }m.

The spaces are chosen so that as ¢ increases, 1/ contain functions that are
increasingly smooth w.r.t. some self-adjoint operator 7" : L(X) — L(X).
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The multiresolution mantra

Multiresolution analysis is a an attractive idea for graphs because:
® Real world graphs/networks have structure at several different scales.

e There is a hierarchical structure of communities, meta-communities,
meta-meta-communities, etc., but multiple such hierarchies may overlap.

e Multiresolution is not just a way of modeling G, but also leads to fast
computational methods (multigrid, fast multipole, structured matrices).
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The multiresolution mantra

The central dogma of harmonic analysis is that the structure of the space of
functions on a set X can shed light on the structure of X itself.

G <+— L(G)

“The interplay between geometry of sets, function spaces on sets, and
operators on sets is classical in Harmonic Analysis.”
[Coifman & Maggioni, 2006]
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But how do we define multiresolution analysis on a graph???
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Recent approaches

Diffusion Wavelets [Coifman & Maggioni, 2006]
Treelets [Lee, Nadler & Wasserman, 2008]
Spectral graph wavelets [Hammond, Vandergheynst & Gribonval, 2010]

® Tree wavelets [Gavish, Nadler & Coifman, 2010]

Multiresolution factorizations [K, Teneva & Garg, 2014]

[For an overview of “Signal Processing on Graphs”, see [Shuman et al., 2013]]
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Fundamentals of multiresolution analysis




Multiresolution on R

Mallat [1989] defined multiresolution on R by the following axioms:
1. ﬂj Vi = {0}’

2. |, Veis densein La(R),

3. If f € Vpthen f/(x) = f(z — 2m) is also in V} for any m € Z,
4. If f € Vy, then f/(x) = f(2z)isin Vp_q,

which imply the existence of a mother wavelet 1) and a father wavelet ¢ s. t.

Wl =272 927 % —m)  and ¢ =272 p(27'2 —m).
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Multiresolution on discrete spaces

LQ(X)—)- —2‘=-IDJ,- 1—= ¥a —

Which of the ideas from classical multiresolution still make sense?
e Recursively split L(X) into smoother and rougher parts. v’

e Basis functions should be localized in space & frequency. v/

e Each &, &) D11 U Wy transform is orthogonal and sparse. v*
® Each 1/1,{1 is derived by translating z/ﬂf — MAYBE
Each v is derived by scaling ¢ — 2?7
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General principles

1. The sequence L(X) = Vp D Vi D Vi D ... is afiltration of R"™ in terms
of smoothness with respect to " in the sense that

increases at a given rate.

2. The wavelets are localized in the sense that

l
inf sup %(y)a
zeX yeX d(fE, y)
increases no faster than a certain rate.

3. Letting Q¢ be the matrix expressing ®,U W in the previous basis ®,_1, i.e.,

6h = i [Qelmi 67
dim(Vy_
wm = Zi:l( = [Q@]m—&-dlm(‘/g 1) ¢€ !

each (Qy orthogonal transform is sparse, guaranteeing the existence of a

fast wavelet transform (P, is taken to be the standard basis, (f>9n = €m).
12
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Multiresolution Matrix Factorization (MMF)




Key observation

If | X | = n is finite, representing T" by a symmetric matrix A € R, each basis
transform Vy — Vi1 @ Wy is like applying a rotation matrix

A QIAQ] = Q2Q1AQ] Qg — ...

and then fixing a subset of the coordinates as wavelets. In addition,
Q1, ..., QL must obey sparsity constraints.

multiresolution analysis — multilevel matrix factorization
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Multiresolution factorization

(B (W)~ ([ ) (M) - (M= (")

Qr Q, A Q QL H

Definition. Given a symmetric matrix A € R"*"™, a class of sparse rotations Q,
and a sequence 1o > 01 > ... > 0, a multiresolution factorization of A is

where each () € Q rotation satisfies [Q¢](\s,, [n)\s, = In—s,_, for some
nested sequence of sets [n] = S1 2 So D ... D Sp4q with [ S¢| = 1,
and H is Sy 1—core diagonal.

Definition. If this is factorization is exact, we say that A is multiresolution

factorizable (over G with 41, ...,d1). — generalization of “rank”
y



Form of the ()y local rotations

It is critical that the (), must be very simple and local rotations. Two choices:

1. Elementary k—point rotation: — “Jacobi MMFs”

Q=1 D, i) O=P <\.\> pT

for some O € SO(k) — for k=2, just a Givens rotation.

2. Compound k-point rotation: — “Parallel MMFs”

.
Q= @(i%,...,iil)ol @(ﬁ,l..,i§2)02 B, ) Om = P (..'-..) P

for some O1, ..., 0y, € SO(k).
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The optimization problem

Given A, ideally, we would like to solve

minimize IA=Q!...QLHQL...Q1 |2

[n]2S12...25;
HeHg, ; Q1,...,QLeQ

for a given class Q of local rotations and dimensions 61 > d9 > ... dy.

® |n general, this optimization problem is combinatorially hard.

e Easy to approximate it in a greedy way (level by level).

® To solve the combinatorial part of the problem (at each level) use a
o Deterministic strategy, or a
o Randomized strategy.
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Opftimization details — Jacobi MMF

Proposition. If Qy = I,,_;®1O with I = (i1, ...,i) and Jp = {ix}, then
the contribution of level £ to the MMF approximation error (in Frobenius norm) is

E =60 = 22 [Ar]iiO 1}, + 2[0BO ik,
where B = [AZ—I]LSg ([Aé—l]l,Sz) :
Corollary. In the special case of k=2 and Iy = (3, j),

& =EQ 5 = 2[0[Ae1](15),i.O 15,1 +2[0BO ik
with B = [Ag_1] 5.5, ([Ae=1].5),8,) -



Opftimization details — Jacobi MMF

Proposition. Let A € R?*? be diagonal, B € R?*? symmetric and
0= (cosa 7smo¢>. Seta = (Al,l — A2,2)2/4, b= BLQ,

sina cosa
c=(B22—DB11)/2, e=Vb?+c? 0 =2aandw = arctan(c/b). Then if
o minimizes ([OAOT]2.1)? + [OBO )3 2, then 0 satisfies

(a/e)sin(260) + sin(f + w + 7/2) = 0.
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Opftimization details — Parallel MMF

Proposition. If () is a compound rotation of the form
Q¢ = ®1,01. .. ®1,,On, for some partition I U ... U I, of [n] with

ki,...,kmn <k, and some sequence of orthogonal matrices O1, . . ., Oy,
then level £’s contribution to the MMF error obeys
m ki1
T
5g<22[z A1l 1,0/ 17, +10;B;0] ;. (1)
p=1

where B; = [Ae 1]17,52,1\11 ([Aely, s n\,)

For compression tasks parallel MMFs are generally preferable to Jacobi MMFs
because

® Unrelated parts of the matrix are processed independently, in parallel.

® Gives more compact factorizations.

e Jacobi MMFs can exhibit cascades.

e ThesetsIy,...,I,, can be found by a randomized strategy or exact
matching (O(n?) time)
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Hierarchical stfructure

= Uy Us Us
™ A N _ 4 AN
Us — d3 Us Ui &510
7 7 A
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by 85 8 Oy by b5 01 Oy 56}59

The sequence in which MMF (with k& > 3) eliminates dimensions induces a
(soft) hierarchical clustering amongst the dimensions (mixture of trees).

— Connection to hierarchical clustering.



Applications

Find a (hierarchically) sparse basis for A.
Hierarchically cluster data.

Find community structure.

Generate hierarchical graphs.

Compress graphs & matrices .

Provide a basis for sparse approximations such as the LASSO.

N o ok~ 0N =

Provide a basis for fast numerics (NLA, multigrid, etc).



Relationship to Diffusion Wavelets

e Diffusion wavelets also start with the matrix representation of a smoothing
operator (the diffusion operator) and compress it in multiple stages.

® However, at each stage, the wavelets are constructed from the columns of
A itself by a rank-revealing QR type process

A~ Q1R
A%~ Qi RiR! Q!
——
~RQ2R2
At~ Q1Q2 R2R; Q;QI-
~——
~Q3R3

e Very strong theoretical foundations, but the sparsity (locality) of the (),
matrices is hard to control.

[Coifman & Maggioni, 2006]
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Relationship to Treelets

Treelets are a special case of Jacobi MMF

Q3Q2Q1AQT Q204 ...,

but

e Restricted to Givens rotations (k = 2) — only recovers a single tree.

e Each (); is chosen to eliminate the maximal off-diagonal entry, rather than
minimizing overall error — not intended as a factorization method.

e A is regarded as a covariance matrix — probabilistic analysis.

[Lee, Nadler & Wasserman, 2008]
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Relationship to mulfigrid, fast
multipole, and hierarchical matrices

e Multigrid methods solve systems of p.d.e.’s by shuttling back and forth
between grids/meshes at different levels of resolution [Brandt, 1973; Livne &
Brandt, 2010].

® Fast multipole methods evaluate a kernel (such as the Gaussian kernel)
between a large number of particles, by aggregating them at different levels
[Greengard & Rokhlin, 1987].

e H-matrices [Hackbusch, 1999], H? matrices [Borm, 2007] and
Hierarchically Semi-Separable matrices [Chandrasekaran et al., 2005]
iteratively decompose into blocked matrices, with low rank structure in each
of the blocks.
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Holder condition

In classical wavelet transforms one proves that if f is a—Holder, i.e.,

If(z) = fyl < ey d(z,y)*  Vz,yeX,

then the wavelet coefficients decay at a certain rate, e.g.,

|(foufy | < deotP

Results of this type generally hold for spaces of homogeneous type, in which

Vol(B(z,2r)) < ¢hom Vol(B(x,r)) Ve X, Vr>0.

Natural notion of distance between rows in MMF is d(, j) = | (Ai:, A;:) =1



A-rank homogeneous matrices

Definition. We say that a symmetric matrix A € R"*" is A-rank
homogeneous up to order K, if for any S C [n] of size at most K, letting

Q = Ag A; g, setting D to be the diagonal matrix with D; ; = = ||Qi.:]/1, and
Q=D 1/QQD 12 the Ay, .. -y A|5) eigenvalues of Q satisfy

A < |A\i| <1—A,and furthermore c}l < D, ; < er for some constant cp.

Inuitively
e Different rows are neither too parallel or totally orthogonal

® Generalization of the restricted isometry property from compressed sensing
[Candes & Tao, 2005]

ﬂ



Theorem

Let A € R™*™ be a symmetric matrix that is A—rank homogeneous up to order
K and has an MMF factorization A = U, ... ULTHUL ... Uy. Assume ¥,
is a wavelet in this factorization arising from row 7 of A;_1 supported on a set S
of size K <K and that ||H;.||* < e Thenif f: [n] — Ris
(crr,1/2)-Holder with respect to d(i, ) = | (A;., A;.) | ", then

‘ <f7 w£n> ’ < chelﬂK

withey =4/(1 — (1 — 2A)2)_
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Experimental Results




Experimental Results
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Frobenius norm error on the Zackary Karate Club graph (left) and a matrix of
genetic relationship between 50 individuals from [Crossett, 2013](right).



Experimental Results

10° random matrix Kronecker graph
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Frobenius norm error of the MMF and Nystrém methods on a random vs. a
structured (Kronecker product) matrix.



Experimental Results
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CONCLUSIONS

® MMF is a new type of matrix factorization mirroring multiresolution analysis
— generalization of “rank”.

® MMF exploits hierarchical structure, but does not enforce a single hierarchy.

e Empirical evidence suggests that MMF is a good model for real networks.

® Finding MMF factorizations is a fundamentally local and parallelizable
process — O(n logn) algorithms should be within reach.

® Once in MMF form, a range of matrix computations become faster.

e MMF has strong ties to: Diffusion wavelets, Treelets, Multiscale SVD,
structured matrices, algebraic multigrid, and fast multipole methods.
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