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Context Nodes

The fruit fly project pixels/points in the embryo template

Social network beople
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The fruit ﬂy project (Berkeley Drosophila Genome Project)_

4 /46

Monday, November 3, 2014



Drosophila Widely studied :

(fruit fly) * genetic mechanism similar to humans
* easy to maintain in the lab
* short life cycle
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Image dataset from the fruit fly project
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Image dataset from the fruit fly project
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Image dataset from the fruit fly project

rib

Mes2 e Over 100,000 stained embryo images (over 7000 genes)
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Image dataset from the fruit fly project

rib

>

Mes2 e Over 100,000 stained embryo images (over 7000 genes)
aay
. ’ Goals: Contribute to the understanding of ...

CG11200 * the interaction between different genes

lik '* '-'

* the genes required for development of various organs.
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‘Fate’ map in early embryos

Laser ablation experiments in embryos in early stages of development
Lohs-Schardin et. al (’70), Hartenstein et. al. (‘85)
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‘Fate’ map in early embryos

procephalic neurogenic region

ventral neurogenic region

pharynx
dorsal epidermis

hind gut

mesoderm

esophagus |

anterior mid-gut

Laser ablation experiments in embryos in early stages of development
Lohs-Schardin et. al (’70), Hartenstein et. al. (‘85)
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Do genes explain the fate’ map!?

... early stage gene
expression images
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Discovery of fate map
&
communities on graphs
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Discovery of fate map
&
communities on graphs

Nodes : pixels/points in the embryo
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Discovery of fate map
&
communities on graphs
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Discovery of fate map
&
communities on graphs

Edge if lot of genes are co-expressed at the two nodes
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Discovery of fate map
&
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Discovery of fate map
&
communities on graphs
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Edge between node i and node |
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Edge between node i and node |

X; = at the i-th pixel ( gene| expression, ..., ..., gene g4 €Xpression)
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Edge between node i and nhode |

X; = at the i-th pixel ( gene| expression, ..., ..., gene g4 €Xpression)

X; = at the j-th pixel ( gene| expression, ..., ..., gene|g49 €Xpression)
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Edge between node i and nhode |

X; = at the i-th pixel ( gene| expression, ..., ..., gene g4 €Xpression)

X; = at the j-th pixel ( gene| expression, ..., ..., gene|g49 €Xpression)

Edge between node i and node j if X,-XJ-T > t, for some t > 0.
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Edge between node i and nhode |

X; = at the i-th pixel ( gene| expression, ..., ..., gene g4 €Xpression)

X; = at the j-th pixel ( gene| expression, ..., ..., gene|g49 €Xpression)

Edge between node i and node j if X,-XJ-T > t, for some t > 0.

Histogram of X X' |

§i
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Comparing unregularized vs. regularized SC

Take K =8
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Comparing unregularized vs. regularized SC

Take K _ 8 procephalic neurogenic region

ventral neurogenic region

pharynx dorsal epidermis

hind gut

T = 24 mesoderm
anferior ‘mid-gut

esophagus
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Communities

Nodes

Communities

pixels/points in embryo area of future organs

people

like minded people

12/46

Monday, November 3, 2014



Finding communities
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Finding communities

Notion of (two) communities

" Partition of nodes into sets C| and C,,
so that there are very few edges between the nodes in C| and C,"
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Finding communities

Notion of (two) communities

"Partition of nodes into sets C| and C,,
so that there are very few edges between the nodes in C; and ;"

Methods

Spectral clustering (Fiedler ("73), Donath & Hoffman ('73),...)
Modularity (Newman & Girvan (‘03)),

Latent space methods (Hoff et.al. ('02))
Profile-likelihood (Bickel & Chen ('09)), Pseudo-Likelihood (Amini et.al. ('l3)),
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Spectral Clustering
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Notation

Number of nodes: n

Adjacency matrix:
(symmetric binary) 1, if (2, ) is an edge

0, otherwise
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Notation

Number of nodes: n
nXxXn
Adjacency matrix: A€k
(symmetric binary) 1, if (4, j) is an edge
Aij = Aji = ,
0, otherwise

Each row/column of A associated with a node
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Number of nodes:

Adjacency matrix:
(symmetric binary)

Degree matrix:

(diagonal)

Notation

T

A e R

Ay = Ay = {é
D e R**"

if (¢, 7) is an edge

otherwise
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Spectral Clustering

Spectral clustering deals with the eigenvectors of the matrix :

| =D '/2 ApD—1/2 (Normalized

symmetric Laplacian matrix)
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Spectral Clustering

Spectral clustering deals with the eigenvectors of the matrix :

| =D '/2 ApD—1/2 (Normalized

symmetric Laplacian matrix)

Other matrices used ...

D—l A ( Normalized random walk Laplacian)

) — A (Unnormalized Laplacian)

A (Adjacency matrix)
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lllustration of SC
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e o lllustration of SC
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e o lllustration of SC
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e o lllustration of SC
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e o lllustration of SC
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SC for finding K clusters (Shi and Malik (00), Ng et. al ('02))

* Compute the n X K matrix V' of top K eigenvectors of L.

* Cluster the rows of V' into K clusters. (eg. using k-means)
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SC for finding K clusters (Shi and Malik (00), Ng et. al ('02))

* Compute the n X K matrix V' of top K eigenvectors of L.

* Cluster the rows of V' into K clusters. (eg. using k-means)

row of IV represents node in the graph
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Popularity of spectral clustering

 Computational advantage :

-requires eigenvector decomposition which is very fast

Theoretical backing :
- relaxation of various cut-based measures
(Hagen & Kahng (’92), Shi & Malik ('00), Ng et al, ('02))
- Stochastic Block Model and its extensions

(McSherry (‘01),Rohe. et.al (‘1 1), Chaudhari et.al. ('12), Sussman (’12),

Fishkind ('11))
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Regularization proposed by Amini, Chen, Bickel and Levina (AoS, 201 3)

Performance of spectral clustering improves greatly through
regularization
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Regularization proposed by Amini, Chen, Bickel and Levina (AoS, 201 3)

Performance of spectral clustering improves greatly through
regularization

* Add a constant matrix to the adjacency matrix A.

A=A+ 211, >0
T

» Construct the Laplacian L. from A..

e Cluster the rows of V. into K clusters.

V. = matrix of top K eigenvectors of L
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Regularization proposed by Amini, Chen, Bickel and Levina (AoS, 201 3)

Performance of spectral clustering improves greatly through
regularization

* Add a constant matrix to the adjacency matrix A.

A=A+ 211, >0
T

» Construct the Laplacian L. from A..

e Cluster the rows of V. into K clusters.

V. = matrix of top K eigenvectors of L

Alternative forms of regularization proposed and analyzed in
Chaudhuri et. al (2012), Qin & Rohe (’13)
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Stochastic Block Model
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Stochastic Block Model (SBM) (Holland et.al ('83))

Given a set of n nodes,

edge (4, 7), drawn independently with probability P;;
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Stochastic Block Model (SBM) (Holland et.al ('83))

Given a set of n nodes,

edge (4, 7), drawn independently with probability P;;

P

SBM with two blocks
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Edge probability matrix P Adjacency matrix A
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Edge probability matrix P Adjacency matrix A
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Analysis of regularization for the SBM
(Focus on K =2)
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Comparing unregularized vs. regularized SC

.003

n = 3000

0.1
0.04
0.08 | |
C -
8 8 0.02
O 0.06
g g
> c
c [0) o
(0] 00
.00 0.04 1 S
(0]
[0)
9 4 0.02
3 £ '
0.02
5 5
-0.041
- =
c (o)
8 0 (O]
(O] 3 -0.06
b7
_002 L L L L L L L L
20.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
008 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04
first sample eigenvector first sample eigenvector

25/46

Monday, November 3, 2014



Comparing unregularized vs. regularized SC
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Recap : Regularized spectral clustering

 Construct,

A, =A+ 111, >0
n

LT _ D;l/QATD;l/Q

e Cluster the rows of V. into two clusters.

V., = matrix of top two eigenvectors of L.,
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Population level quantities
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Population level quantities

Adjacency matrix A, : P.=P+ I11’

Laplacian matrix L; : LPoP
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Population level quantities

Adjacency matrix A; : P, =P+ 11
Laplacian matrix L; : LPeoP
Recall:

* V. is the n X 2 sample eigenvector matrix.

* Rows of V. corresponds to nodes in the graph.
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Population level quantities

Adjacency matrix A, : P,=P+ I11’

Laplacian matrix L; : LPeoP

* The population version of V- (V. P°P) has two distinct rows.

* Distinct rows corresponds to nodes in the two communities

27146
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Population level quantities

Adjacency matrix A, : P,=P+ I11’

Laplacian matrix L; : LPeoP

* The population version of V- (V. P°P) has two distinct rows.

* Distinct rows corresponds to nodes in the two communities

Denote these by center; ,, centers -

27146
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Scatter plot for a particular 7
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Scatter plot for a particular 7

0.08

Vi : i-th row of the sample eigenvector matrix
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Scatter plot for a particular 7
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Scatter plot for a particular 7

0.08

0.06

0.04

0.02

-0.02

-0.04

—-0.06 |-

second sample eigenvector

-0.08 -

-0.1
-0.052 -0.05 -0.048 —-0.046 -0.044 -0.042 -0.04 -0.038

first sample eigenvector

28/46

Monday, November 3, 2014



Scatter plot for a particular 7
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Scatter plot for a particular 7
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Scatter plot for a particular 7
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Scatter plot for a particular 7
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MaXg—=12 IaX; - cluster k |

|center| , — center; .||

Vi - — centery .||

pert._ =
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Understanding pert_

MaXg=1,2 INaX; - c|lyster

|center| ; — center .||

k IVi,r — centery - |

pert_ =
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Understanding pert_

"Distance” between eigenvector matrices of L., and LP°P

ert. =
PETtr |center; - — centers .||
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Understanding pert_

"Distance” between eigenvector matrices of L., and LP°P

ert. =
PETtr |center; - — centers .||

|

does not depend on 7
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Understanding pert_

"Distance” between eigenvector matrices of L., and LP°P

ert. =
PETtr |center; - — centers .||
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Understanding pert

"Distance” between eigenvector matrices of L., and LP°P

ert,. =
pPert; |center; - — centers .||

Implication of matrix perturbation theory (Davis - Kahan) :

. LPOP H

L,
pert_ < +/n |

,UZ,T
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Understanding pert

"Distance” between eigenvector matrices of L., and LP°P

ert,. =
pPert; |center; - — centers .||

Implication of matrix perturbation theory (Davis - Kahan) :

. LPOP H

L,
pert_ < +/n |

,UZ,T

|

second eigenvalue of L2
(f2,+ decreases with T)
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Understanding pert

"Distance” between eigenvector matrices of L., and LP°P

ert,. =
pPert; |center; - — centers .||

Implication of matrix perturbation theory (Davis - Kahan) :

. LPOP H

L,
pert_ < +/n |

,UZ,T

Implication of concentration of Laplacian (Oliveira (" 10)):

If = 2 logn,

L, — LP°P|| < min { | , 2. ; } V/1ogn  with high probability

\/C|,n—|—7' (C|,n—|—7'
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Understanding pert

"Distance” between eigenvector matrices of L., and LP°P

ert. =
PETtr |center; - — centers .||

Implication of matrix perturbation theory (Davis - Kahan) :

- L7

L,
pert. < v/n H
12,

Improvements using extension of techniques in Balakrishnan et.al. (| I).
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Let,

d,, := average expected degree of the nodes

Set,
T=d,
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Let,

d,, := average expected degree of the nodes

Set,
T=d,

Result (SBM with two blocks):
If

P vnlogn
e 12,0

then regularized SC recovers the clusters with high probability.
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Let,

d,, := average expected degree of the nodes

Set,
T=d,

Result (SBM with two blocks):
If

P vnlogn
e 12,0

then regularized SC recovers the clusters with high probability.

Summary:

Unlike McSherry (‘'01), Rohe et. al. ('l ), Chaudhuri et. al ('12),
the results don't depend on the minimum degree.
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Choice of regularization parameter
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Recall: trade-offs dictated by

L — 12|
12,1
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Recall: trade-offs dictated by

L — 12|
12, T

 Consider,

|L — L)
,[LZ,T

* Choose 7 that minimizes the statistic, over a grid of values.
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Recall: trade-offs dictated by

L — L
2,
e Consider,
L, — [ POP _ Estimates based on

corrected SBM)

* Choose 7 that minimizes the statistic, over a grid of values.
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Recall: trade-offs dictated by

L — 12|
12, T

 Consider,

|L — L)
,[LZ,T

* Choose 7 that minimizes the statistic, over a grid of values.
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For a particular T,

* Let (1, (5 be clusters outputted from regularized SC algorithm.

The estimates

L5

v 2, T

pi
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For a particular T,

* Let (1, (5 be clusters outputted from regularized SC algorithm.

The estimates

L5

v 2, T

pi

* Estimate p;, ps and g from C'; and ()

e.g. p1 = fraction of edges for nodes in 4

33/46

Monday, November 3, 2014



The estimates [P i, -

For a particular T,

* Let (1, (5 be clusters outputted from regularized SC algorithm.

* Estimate p;, ps and g from C'; and ()

e.g. p1 = fraction of edges for nodes in 4
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The estimates [P i, -

For a particular T,

* Let (1, (5 be clusters outputted from regularized SC algorithm.

* Estimate p;, ps and g from C'; and ()

e.g. p1 = fraction of edges for nodes in 4

* Use P to calculate LP°P. Take fi2 , to be the second eigenvalue of L2,
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Example
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n = 3000

015+

01

0.05

-0.05 L 1 I I 1

-0.1 -0.05 0 0.05 0.1

first sample eigenvector
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01}

0.05 -

second sample eigenvector

Example
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-0.05

-0.1 -0.05 0 0.05 0.1

first sample eigenvector

k-means success : 75%

n = 3000

0.1

e

-0.05 1 1 1 + 1 1

-0.1 -0.05 0 0.05 01

first sample eigenvector

k-means success : 94%
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Political blog data

35/46

Monday, November 3, 2014



* Nodes are political blog sites. (n = 1222)

red nodes : conservative blogs

blue nodes : liberal blogs

* Edge between two nodes if either website has a link to the other.

source : Adamic & Glance (°05)
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Histogram of degrees

* Nodes are political blog sites. (n = 1222)

red nodes : conservative blogs

blue nodes : liberal blogs

* Edge between two nodes if either website has a link to the other.

source : Adamic & Glance (°05)
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Political blogs data set
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Regularized SC for political blogs dataset
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Regularized SC for political blogs dataset
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compared to 48% for unregularized
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Comparing unregularized vs. regularized
Spectral Clustering (SC)

Take K =8
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Comparing unregularized vs. regularized
Spectral Clustering (SC)
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Summary

* Theoretical upper bound under SBM shows “bias-variance’-
like trade-off while the amount of regularization increases in SC

* Theoretical analysis motivates practically useful scheme (using
SBM or degree-corrected SBM) to select regularization
parameter in RSC.

Promising results in fruitfly image segmentation

Paper at (2014 rev):
http://arxiv.org/pdf/1312.1733.pdf
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Ongoing/future directions

The BDGP project
(with Antony Joseph, Sigi Wu, Ann Hammonds, Sue Celniker, Erwin Frise)

* Analysis of gene interactions in different regions of early stage embryos
* Extension of analysis to later stage embryos

Spectral Clustering (with Antony Joseph)

* Fast algorithm for computing the data-driven choice of regularization parameter
* Role of regularization in other scenarios, such as hierarchical clusters
e Regularization parameter choice for continuous data

42/46

Monday, November 3, 2014



