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A Graph

   Social network                                        people      

 The fruit fly project                pixels/points in the embryo template      
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The fruit fly project (Berkeley Drosophila Genome  Project) 
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Drosophila
(fruit fly)

Widely studied :
• genetic mechanism similar to humans 
• easy to maintain in the lab
• short life cycle 
• ...
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Image dataset from the fruit fly project
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Image dataset from the fruit fly project

tailless
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Image dataset from the fruit fly project

• Over 100,000 stained embryo images (over 7000 genes)
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Image dataset from the fruit fly project

• Over 100,000 stained embryo images (over 7000 genes)

•  the interaction between different genes

•  the genes required for development of various organs.

Goals: Contribute to the understanding of ...
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‘Fate’ map in early embryos 

Lohs-Schardin et. al (’70), Hartenstein et. al.   (‘85)

Laser ablation experiments in embryos in early stages of development
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‘Fate’ map in early embryos 

hind gut

anterior mid-gut

dorsal epidermis

ventral neurogenic region

procephalic neurogenic region

pharynx

mesoderm

esophagus

Lohs-Schardin et. al (’70), Hartenstein et. al.   (‘85)

Laser ablation experiments in embryos in early stages of development
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Do genes explain the `fate’ map?

.... early stage gene 
expression images
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Discovery of fate map
 & 

communities on graphs
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Discovery of fate map
 & 

communities on graphs

Nodes :  pixels/points in the embryo
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Discovery of fate map
 & 

communities on graphs
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Discovery of fate map
 & 

communities on graphs

Edge if lot of genes are co-expressed at the two nodes
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Discovery of fate map
 & 

communities on graphs

fate map

9
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Edge between node i and node j

10
Monday, November 3, 2014



/46

= . . . . . .

Edge between node i and node j

10
Monday, November 3, 2014



/46

= . . . . . .

= . . . . . .

Edge between node i and node j

10
Monday, November 3, 2014



/46

= . . . . . .

= . . . . . .

> >

Edge between node i and node j
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Edge between node i and node j

90-th percentile
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τ = τ =

Take  K = 8

11

Comparing unregularized vs. regularized SC
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Communities

                  people                                     like minded people      

        pixels/points in embryo                 area of future organs

...

Nodes Communities
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Finding communities
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Finding communities

Notion of (two) communities
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Finding communities

Notion of (two) communities

Methods

Spectral clustering (Fiedler (’73), Donath & Hoffman (’73), ...)

Modularity (Newman & Girvan (‘03)), 
Latent space methods (Hoff et. al. (’02))
Profile-likelihood (Bickel & Chen (’09)),  Pseudo-Likelihood (Amini et. al. (’13)), 
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Spectral Clustering
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Notation

15

Adjacency matrix:
(symmetric binary)

Number of nodes: n

A ∈ Rn×n

Aij = Aji =

�
1, (i, j)

0,
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Notation

15

Adjacency matrix:
(symmetric binary)

Number of nodes: n

A ∈ Rn×n

Aij = Aji =

�
1, (i, j)

0,

Each row/column of A associated with a node

Monday, November 3, 2014



/46

Notation

15

Adjacency matrix:
(symmetric binary)

Number of nodes: n

A ∈ Rn×n

Aij = Aji =

�
1, (i, j)

0,

Degree matrix:
(diagonal)

D ∈ Rn×n

Dii =
�

j

Aij
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Spectral Clustering

16

(Normalized
symmetric Laplacian matrix)

= − / − /

Spectral clustering deals with the eigenvectors of the matrix :
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Spectral Clustering

16

(Normalized
symmetric Laplacian matrix)

= − / − /

Spectral clustering deals with the eigenvectors of the matrix :

Other matrices used ...

D −A

A

D−1 A ( Normalized random walk Laplacian)

(Unnormalized Laplacian)

(Adjacency matrix)
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Illustration of SC 
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Illustration of SC 
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Illustration of SC 
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L = 

Illustration of SC 
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SC for finding K clusters (Shi and Malik (00), Ng et. al (’02))
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SC for finding K clusters (Shi and Malik (00), Ng et. al (’02))
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Popularity of spectral clustering

• Computational advantage :  

-requires eigenvector decomposition which is very fast 

          Theoretical backing : 

- relaxation of various cut-based measures

        (Hagen & Kahng (’92), Shi & Malik (’00), Ng et al, (’02))

- Stochastic Block Model and its extensions

          (McSherry (‘01), Rohe. et. al (‘11),  Chaudhari et. al. (’12), Sussman (’12), 

             Fishkind (’11))     

19
Monday, November 3, 2014



/46

Performance of spectral clustering improves greatly through 
regularization

 Regularization proposed by Amini, Chen, Bickel and Levina (AoS, 2013) 
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Performance of spectral clustering improves greatly through 
regularization
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Performance of spectral clustering improves greatly through 
regularization

 Regularization proposed by Amini, Chen, Bickel and Levina (AoS, 2013) 

Alternative forms of regularization proposed and analyzed in 
Chaudhuri et. al (2012),  Qin & Rohe (’13)

20

A

Aτ = A+
τ

n
11�, τ > 0.

Lτ Aτ

Vτ K

Vτ = K Lτ
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Stochastic Block Model
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 Stochastic Block Model (SBM) (Holland et. al (’83))

22

n

(i, j) Pij
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 Stochastic Block Model (SBM) (Holland et. al (’83))

22

SBM with two blocks

=
� �

=

n× n

n

(i, j) Pij
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Analysis of regularization for the SBM
(Focus on K =2)
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Comparing unregularized vs. regularized SC
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Comparing unregularized vs. regularized SC
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Recap : Regularized spectral clustering

26

Aτ = A+
τ

n
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Population level quantities

27

A = P=
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Population level quantities
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Population level quantities

27

τ

τ

Pτ = P + τ
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Vτ n× 2

Vτ
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Population level quantities
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Population level quantities
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Implication of matrix perturbation theory (Davis - Kahan) :
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τ
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Implication of concentration of Laplacian (Oliveira (’10)):
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Improvements using extension of techniques in Balakrishnan et. al. (’11).
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Let,

Set,

dn :=

τ = dn

Result (SBM with two blocks):

dn �
√
n log n

µ2,0
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Let,

Set,

Summary:

dn :=

τ = dn

Result (SBM with two blocks):

dn �
√
n log n

µ2,0
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Choice of regularization parameter
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� τ − τ �
µ ,τ

Recall:  trade-offs dictated by
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� τ − τ �
µ ,τ

Recall:  trade-offs dictated by

� τ − ˆτ �
µ̂ ,τ

τ
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    Estimates based on 
estimated SBM (or degree 
corrected SBM)

� τ − τ �
µ ,τ

Recall:  trade-offs dictated by

� τ − ˆτ �
µ̂ ,τ

τ
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Recall:  trade-offs dictated by

� τ − ˆτ �
µ̂ ,τ

τ

32
Monday, November 3, 2014



/46

ˆτ , µ̂ , τ

33

P=

τ

C1, C2
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ˆτ , µ̂ , τ
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P=

τ
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p1, p2 q C1 C2

e.g. p̂1 = C1
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ˆτ , µ̂ , τ
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ˆτ , µ̂ , τ
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Political blog data
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source :  Adamic & Glance (’05)

=
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Unregularized
 Spectral Clustering
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second eigenvector discriminates these 
from the remaining
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third eigenvector
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Regularized SC for political blogs dataset
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Regularized SC for political blogs dataset

13% of misclassified nodes for regularized
compared to 48% for unregularized
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τ = τ =

Take  K = 8

40

Comparing unregularized vs. regularized 
Spectral Clustering (SC)

Monday, November 3, 2014



/46

τ = τ =

Take  K = 8
dorsal epidermis

mesoderm
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ventral neurogenic region

procephalic neurogenic region

anterior mid-gut

pharynx

esophagus
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Comparing unregularized vs. regularized 
Spectral Clustering (SC)
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Summary

•   Theoretical upper bound under SBM shows “bias-variance”-
like trade-off while the amount of regularization increases in SC

•   Theoretical analysis motivates practically useful scheme (using 
SBM or degree-corrected SBM) to select regularization 
parameter in RSC.

Promising results in fruitfly image segmentation

Paper at (2014 rev):
            http://arxiv.org/pdf/1312.1733.pdf
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Ongoing/future directions

 The BDGP project 
(with Antony Joseph, Siqi Wu,  Ann Hammonds, Sue Celniker, Erwin Frise)

•   Fast algorithm for computing the data-driven choice of regularization parameter
•   Role of regularization in other scenarios, such as hierarchical clusters
•   Regularization parameter choice for continuous data

Spectral Clustering (with Antony Joseph)

•    Analysis of gene interactions in different regions of early stage embryos
•   Extension of analysis to later stage embryos
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