Impact of Regularization on Spectral Clustering

Antony Joseph^{*} and Bin Yu#

** Walmart Research Lab in San Francisco (formerly UCB and LBNL)*

Departments of Statistics and EECS UC Berkeley

Workshop on Spectral Algorithms, Simons Inst, Oct. , 2014

spectral clustering in graphs

Berkeley Drosophila Genome Project (BDGP) (The fruit fly project)

collaborators :

- Siqi Wu, UC Berkeley
- Erwin Frise, Lawrence Berkeley Lab
- Ann Hammonds, Lawrence Berkeley Lab
- Sue Celniker, Lawrence Berkeley Lab

spectral clustering in graphs

Berkeley Drosophila Genome Project (BDGP) (The fruit fly project)

collaborators :

- Siqi Wu, UC Berkeley
- Erwin Frise, Lawrence Berkeley Lab
- Ann Hammonds, Lawrence Berkeley Lab
- Sue Celniker, Lawrence Berkeley Lab

...

Context Nodes

Social network *people*

The fruit fly project *pixels/points in the embryo template*

The fruit fly project (Berkeley Drosophila Genome Project)

Drosophila (fruit fly)

Widely studied :

- genetic mechanism similar to humans
- easy to maintain in the lab
- short life cycle
- ...

• Over 100,000 stained embryo images (over 7000 genes)

• Over 100,000 stained embryo images (over 7000 genes)

Goals: Contribute to the understanding of ...

- the interaction between different genes
- the genes required for development of various organs.

'Fate' map in early embryos

Lohs-Schardin et. al ('70), Hartenstein et. al. ('85) Laser ablation experiments in embryos in early stages of development

'Fate' map in early embryos

Laser ablation experiments in embryos in early stages of development

Lohs-Schardin et. al ('70), Hartenstein et. al. ('85)

Do genes explain the 'fate' map?

.... early stage gene expression images

Nodes : pixels/points in the embryo

Edge if lot of genes are co-expressed at the two nodes

fate map

 $X_i =$ at the *i*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression)

 $X_i =$ at the *i*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression) $X_i =$ at the *j*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression)

 $X_i =$ at the *i*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression) $X_j =$ at the *j*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression)

Edge between node *i* and node *j* if $X_iX_j^T > t$, for some $t > 0$.

 $X_i =$ at the *i*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression) X_i = at the *j*-th pixel (gene, expression, ..., ..., gene₁₆₄₀ expression) Edge between node *i* and node *j* if $X_iX_j^T > t$, for some $t > 0$.

90-th percentile

Comparing unregularized vs. regularized SC

Take
$$
K = 8
$$

 $\tau = 0$ $\tau = 24$

Comparing unregularized vs. regularized SC

Communities

pixels/points in embryo *area of future organs*

...

Nodes Communities

people *like minded people*

Finding communities

Finding communities

Notion of (two) communities

 Γ ² Partition of nodes into sets C_1 and C_2 , so that there are very few edges between the nodes in C_1 and C_2 "

Finding communities

Notion of (two) communities

[']'Partition of nodes into sets C_1 and C_2 ,
Methods are there are very few edges between the nodes in C_1 and C_2 "

Spectral clustering (Fiedler ('73), Donath & Hoffman ('73), ...)

Modularity (Newman & Girvan ('03)), Latent space methods (Hoff et. al. ('02)) Profile-likelihood (Bickel & Chen ('09)), Pseudo-Likelihood (Amini et. al. ('13)),

Spectral Clustering

Notation

Number of nodes: *n*

Adjacency matrix: (symmetric binary)

$$
A \in \mathbb{R}^{n \times n}
$$

\n
$$
A_{ij} = A_{ji} = \begin{cases} 1, & \text{if } (i, j) \text{ is an edge} \\ 0, & \text{otherwise} \end{cases}
$$

Notation

Number of nodes: *n*

Adjacency matrix: (symmetric binary)

$$
A \in \mathbb{R}^{n \times n}
$$

\n
$$
A_{ij} = A_{ji} = \begin{cases} 1, & \text{if } (i, j) \text{ is an edge} \\ 0, & \text{otherwise} \end{cases}
$$

Each row/column of *A* associated with a node

Notation

Number of nodes: *n*

Adjacency matrix: (symmetric binary)

$$
A \in \mathbb{R}^{n \times n}
$$

\n
$$
A_{ij} = A_{ji} = \begin{cases} 1, & \text{if } (i, j) \text{ is an edge} \\ 0, & \text{otherwise} \end{cases}
$$

Degree matrix: (diagonal)

$$
D \in \mathbb{R}^{n \times n}
$$

$$
D_{ii} = \sum_{j} A_{ij}
$$

Spectral Clustering

Spectral clustering deals with the eigenvectors of the matrix :

$$
L = D^{-1/2} A D^{-1/2}
$$

(Normalized symmetric Laplacian matrix)

Spectral Clustering

Spectral clustering deals with the eigenvectors of the matrix :

$$
L = D^{-1/2} A D^{-1/2}
$$

(Normalized symmetric Laplacian matrix)

Other matrices used ...

A

D^{−1} *A* (Normalized random walk Laplacian)

D − *A* (Unnormalized Laplacian)

(Adjacency matrix)

First eigenvector

SC for finding *K* clusters (Shi and Malik (00), Ng et. al ('02))

- Compute the $n \times K$ matrix V of top K eigenvectors of L.
- Cluster the rows of V into K clusters. (eg. using k-means)

SC for finding *K* clusters (Shi and Malik (00), Ng et. al ('02))

- Compute the $n \times K$ matrix V of top K eigenvectors of L.
- Cluster the rows of V into K clusters. (eg. using k-means)

row of V represents node in the graph

Popularity of spectral clustering

- Computational advantage :
	- -requires eigenvector decomposition which is very fast

 Theoretical backing :

- relaxation of various *cut*-based measures

(Hagen & Kahng ('92), Shi & Malik ('00), Ng et al, ('02))

- Stochastic Block Model and its extensions (McSherry ('01), Rohe. et. al ('11), Chaudhari et. al. ('12), Sussman ('12), Fishkind ('11))

Regularization proposed by Amini, Chen, Bickel and Levina (*AoS, 2013*)

Performance of spectral clustering improves greatly through regularization

Regularization proposed by Amini, Chen, Bickel and Levina (*AoS, 2013*)

Performance of spectral clustering improves greatly through regularization

• Add a constant matrix to the adjacency matrix A .

$$
A_{\tau}=A+\frac{\tau}{n}\mathbf{1}\mathbf{1}',\qquad \tau>0.
$$

- Construct the Laplacian L_{τ} from A_{τ} .
- Cluster the rows of V_{τ} into K clusters.

 V_τ = matrix of top K eigenvectors of L_τ

Regularization proposed by Amini, Chen, Bickel and Levina (*AoS, 2013*)

Performance of spectral clustering improves greatly through regularization

• Add a constant matrix to the adjacency matrix A .

$$
A_{\tau}=A+\frac{\tau}{n}\mathbf{1}\mathbf{1}',\qquad \tau>0.
$$

- Construct the Laplacian L_{τ} from A_{τ} .
- Cluster the rows of V_{τ} into K clusters.

 V_τ = matrix of top K eigenvectors of L_τ

Alternative forms of regularization proposed and analyzed in Chaudhuri et. al (2012), Qin & Rohe ('13)

Stochastic Block Model

Stochastic Block Model (SBM) (Holland et. al ('83))

Given a set of n nodes,

edge (i, j) , drawn independently with probability P_{ij}

Stochastic Block Model (SBM) (Holland et. al ('83))

Given a set of n nodes,

edge (i, j) , drawn independently with probability P_{ij}

SBM with two blocks

Edge probability matrix P **Adjacency matrix A**

Edge probability matrix P **Adjacency matrix A**

Analysis of regularization for the SBM (Focus on *K* =2)

Comparing unregularized vs. regularized SC

Comparing unregularized vs. regularized SC

Recap : Regularized spectral clustering

• Construct,

$$
A_{\tau} = A + \frac{\tau}{n} \mathbf{1} \mathbf{1}', \qquad \tau > 0.
$$

$$
L_{\tau} = D_{\tau}^{-1/2} A_{\tau} D_{\tau}^{-1/2}
$$

• Cluster the rows of V_{τ} into two clusters.

 V_τ = matrix of top two eigenvectors of L_τ

A =

Adjacency matrix A_τ:

 $P_{\tau} = P + \frac{\tau}{n}$ $11'$

Laplacian matrix L_{τ} **:**

Lpop τ

Adjacency matrix A_τ: $P_{\tau} = P + \frac{\tau}{n}$ $11'$

Laplacian matrix L_{τ} **:** *Lpop* τ

Recall:

- V_τ is the $n \times 2$ sample eigenvector matrix.
- Rows of V_τ corresponds to nodes in the graph.

Adjacency matrix A_τ: $P_{\tau} = P + \frac{\tau}{n}$ $11'$

Laplacian matrix L_{τ} **:** *Lpop* τ

- The population version of V_τ (V^{pop}_τ) has two distinct rows.
- Distinct rows corresponds to nodes in the two communities

Adjacency matrix A_τ: $P_{\tau} = P + \frac{\tau}{n}$ $11'$

Laplacian matrix L_{τ} **:** *Lpop* τ

- The population version of V_τ (V^{pop}_τ) has two distinct rows.
- Distinct rows corresponds to nodes in the two communities

Denote these by center_{1,τ}, center_{2,τ}

Understanding pert $_\tau$

$$
\text{pert}_{\tau} = \frac{\max_{k=1,2} \max_{i \in \text{cluster } k} ||V_{i,\tau} - \text{center}_{k,\tau}||}{\|\text{center}_{1,\tau} - \text{center}_{2,\tau}||}
$$

Understanding pert $_{\tau}$

 $pert_\tau =$ "Distance" between eigenvector matrices of L_{τ} and L_{τ}^{pop} $||center_{1, \tau} - center_{2, \tau}||$

Implication of matrix perturbation theory (Davis - Kahan) :

$$
\text{pert}_{\tau} \lesssim \sqrt{n} \frac{\|\boldsymbol{L}_{\tau}-\boldsymbol{L}_{\tau}^{\text{pop}}\|}{\mu_{2,\tau}}
$$

 $pert_\tau =$ "Distance" between eigenvector matrices of L_{τ} and L_{τ}^{pop} $||center_{1, \tau} - center_{2, \tau}||$

Implication of matrix perturbation theory (Davis - Kahan) :

$$
\text{pert}_{\tau} \lesssim \sqrt{n} \frac{\Vert L_{\tau} - L_{\tau}^{pop} \Vert}{\mu_{2, \tau}}
$$
\n
$$
\text{second eigenvalue of } L_{\tau}^{pop}
$$
\n
$$
(\mu_{2, \tau} \text{ decreases with } \tau)
$$

 $pert_\tau =$ "Distance" between eigenvector matrices of L_{τ} and L_{τ}^{pop} $||center_{1, \tau} - center_{2, \tau}||$

Implication of matrix perturbation theory (Davis - Kahan) :

$$
\text{pert}_{\tau} \lesssim \sqrt{n} \frac{\|\boldsymbol{L}_{\tau}-\boldsymbol{L}_{\tau}^{\text{pop}}\|}{\mu_{2,\tau}}
$$

Implication of concentration of Laplacian (Oliveira ('10)):

$$
\begin{aligned}\n\text{If } \tau &\gtrsim \log n, \\
\|L_{\tau}-L_{\tau}^{pop}\| &\lesssim & \min\left\{\frac{1}{\sqrt{c_{1,n}+\tau}},\,\frac{c_{2,n}}{(c_{1,n}+\tau)}\right\}\sqrt{\log n} \qquad\text{with high probability}\n\end{aligned}
$$

 $pert_\tau =$ "Distance" between eigenvector matrices of L_{τ} and L_{τ}^{pop} $||center_{1, \tau} - center_{2, \tau}||$

Implication of matrix perturbation theory (Davis - Kahan) :

$$
\text{pert}_{\tau} \lesssim \sqrt{n} \frac{\|\boldsymbol{L}_{\tau}-\boldsymbol{L}_{\tau}^{\text{pop}}\|}{\mu_{2,\tau}}
$$

Improvements using extension of techniques in Balakrishnan et. al. ('11).

Let,

$d_n :=$ average expected degree of the nodes

Set,

$$
\tau=d_n
$$

Let,

$d_n :=$ average expected degree of the nodes

Set,

$$
\tau=d_n
$$

Result (SBM with two blocks):

 $|f|$

$$
d_n \gtrsim \frac{\sqrt{n \log n}}{\mu_{2,0}}
$$

then regularized SC recovers the clusters with high probability.

Let,

$d_n :=$ average expected degree of the nodes

Set,

$$
\tau=d_n
$$

Result (SBM with two blocks): $|f|$ $d_n \gtrsim$ $\sqrt{n \log n}$ $\mu_{2,0}$

then regularized SC recovers the clusters with high probability.

Summary:

Unlike McSherry ('01), Rohe et. al. ('11), Chaudhuri et. al ('12), the results don't depend on the minimum degree.

Choice of regularization parameter

$$
\frac{||L_{\tau}-L_{\tau}^{\text{pop}}||}{\mu_{2,\tau}}
$$

$$
\frac{||L_{\tau}-L_{\tau}^{\text{pop}}||}{\mu_{2,\tau}}
$$

• Consider,

$$
\frac{||\bm{L}_\tau-\hat{\bm{L}}_\tau^{\text{pop}}||}{\hat{\mu}_{\bm{2},\tau}}
$$

• Choose τ that minimizes the statistic, over a grid of values.

$$
\frac{||L_{\tau}-L_{\tau}^{\text{pop}}||}{\mu_{2,\tau}}
$$

• Consider,

• Choose τ that minimizes the statistic, over a grid of values.

$$
\frac{||L_{\tau}-L_{\tau}^{\text{pop}}||}{\mu_{2,\tau}}
$$

• Consider,

$$
\frac{||\bm{L}_\tau-\hat{\bm{L}}_\tau^{\text{pop}}||}{\hat{\mu}_{\bm{2},\tau}}
$$

• Choose τ that minimizes the statistic, over a grid of values.

• Let C_1 , C_2 be clusters outputted from regularized SC algorithm.

- Let C_1 , C_2 be clusters outputted from regularized SC algorithm.
- Estimate p_1 , p_2 and *q* from C_1 and C_2

 $e.g.$ \hat{p}_1 = fraction of edges for nodes in C_1

- Let C_1 , C_2 be clusters outputted from regularized SC algorithm.
- Estimate p_1 , p_2 and *q* from C_1 and C_2

 $e.g.$ \hat{p}_1 = fraction of edges for nodes in C_1

- Let C_1 , C_2 be clusters outputted from regularized SC algorithm.
- Estimate p_1 , p_2 and *q* from C_1 and C_2

 $e.g.$ \hat{p}_1 = fraction of edges for nodes in C_1

• Use \hat{P} to calculate $\hat{L}_{\tau}^{pop}.$ Take $\hat{\mu}_{2,\tau}$ to be the second eigenvalue of $\hat{L}_{\tau}^{pop}.$

Example

Example

Political blog data

• Nodes are political blog sites. $(n = 1222)$

red nodes : conservative blogs blue nodes : liberal blogs

source : Adamic & Glance ('05) • Edge between two nodes if either website has a link to the other.

Histogram of degrees

• Nodes are political blog sites. $(n = 1222)$

red nodes : conservative blogs blue nodes : liberal blogs

source : Adamic & Glance ('05) • Edge between two nodes if either website has a link to the other.

Political blogs data set

nodes

nodes

Unregularized Spectral Clustering

third eigenvector

Regularized SC for political blogs dataset $\tau = 2.5$

nodes

Regularized SC for political blogs dataset $\tau = 2.5$

nodes

13% of misclassified nodes for regularized compared to 48% for unregularized

Comparing unregularized vs. regularized Spectral Clustering (SC)

Take
$$
K = 8
$$

 $\tau = 0$ $\tau = 24$

Comparing unregularized vs. regularized Spectral Clustering (SC)

Summary

• Theoretical upper bound under SBM shows "bias-variance" like trade-off while the amount of regularization increases in SC

• Theoretical analysis motivates practically useful scheme (using SBM or degree-corrected SBM) to select regularization parameter in RSC.

Promising results in fruitfly image segmentation

Paper at (2014 rev): <http://arxiv.org/pdf/1312.1733.pdf>

Ongoing/future directions

 The BDGP project (with Antony Joseph, Siqi Wu, Ann Hammonds, Sue Celniker, Erwin Frise)

- Analysis of gene interactions in different regions of early stage embryos
- Extension of analysis to later stage embryos

Spectral Clustering (with *Antony Joseph*)

- Fast algorithm for computing the data-driven choice of regularization parameter
- Role of regularization in other scenarios, such as hierarchical clusters
- Regularization parameter choice for continuous data