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Motivation

* Challenge of real-world decision-making problems

Collected data lack diversity, despite
quantity, as data can only be
collected by qualified policies

Data collection is costly and risky

—

How to make decisions under
systematic uncertainty caused
by missing data coverage?




Oftline Reinforcement Learning

* Goal: learn good decision policies from
non-exploratory datasets.

* Core challenge:

Because of missing data coverage, in
general, it’s impossible to estimate how
well a policy performs.

How to optimize a policy without being
able to estimate how well it performs?

How to understand a driving behavior is unsafe if all the data are safe?



Oftline Reinforcement Learning

* Principle of Pessimism:

Optimize performance lower bounds, that is,
worst-case performance.

* But there’re many ways to define and
construct worst-case scenarios.

How to properly trade off between
conservatism and generalization??

How to understand a driving behavior is unsafe if all the data are safe?



A Game Theoretic Approach to Offline RL

Offline RL

e

s.t. no env interaction

Maximize return in the true
environment using data with
partial coverage

Two-player Game

Learner Adversary

A

maX,cry min ;. ~ J(m)

A lower bound
s.t. J 1s data consistent

JeJ

Maximize a performance lower
bound by a two-player game



A Game Theoretic Approach to Offline RL

Two-player game naturally handles the missing data
uncertainty according to a prior hypothesis class 7 .

Thus, the learned policy can generalize well!

conservative
tight lower bound lower bound

Generalizable
region of J

Two-player Game

Learner Adversary

A

maX,cry min ;. ~ J(m)

A lower bound
s.t. J 1s data consistent

JeJ

Maximize a performance lower
bound by a two-player game



A Game Theoretic Approach to Offline RL

Outline

A generic game-theoretic framework for
designing offline RL algorithms

Different concepts of pessimism
e Absolute pessimism
* Relative pessimism

Robust policy improvement (RPI)

Two-player Game

Learner Adversary

A

maX,cry min ;. ~ J(m)

A lower bound
s.t. J 1s data consistent

JeJ

Maximize a performance lower
bound by a two-player game



Problem Setup

Suppose the world is a Markov decision process

P(s'|s,a)

Offline setting assumption: offline data D,
collected by a starting from s.
No interaction with environment for learning.

r(s,a)

d
rewar Goal: Find a policy  that has high return

starting from s.

J(m) = Eqr[r(s,a)] = Ex 327 v'r(st, ar)]




Problem Setup

Suppose the world is a Markov decision process

P(s'|s,a) This talk will focus on the model-free version.

Bellman operator and Q function
(T7f)(s,a) =r(s,a) + VEgsalf (s, 7))
r(s,a)

reward m(als) Q™ (s,a) = (T"Q™)(s,a)
J(m) = Q" (s0, )

ac A
action Assumption: Given a function class F such that
e Realizability Q™ € F

« Completeness T F ¢ F
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Stackelberg Game for Offline RL

Each game is defined an objective ¢ and a
regularization £ to encourage data-consistency.

Learner optimizes policy /
¥ € arg mag
mell

Adversary selects the worst-case hypothesis

f™ € arg min ¢(m, YT PE(r, f)

fer

~ .
maxwaqm\inj crd (WD

$t. J is data consistent
JeJ

Maximize a performance lower
bound by a two-player game

Follower can also use a constrained version.
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Stackelberg Game for Offline RL

Each game is defined an objective ¢ and a
regularization £ to encourage data-consistency.

Learner optimizes policy
7% € argmax ¢(m, f7)

mell

Adversary selects the worst-case hypothesis

f* € argmin ¢(m, f) + BE(m, f)

fer

Follower can also use a constrained version.

Pessimism Lemma
If E(m,f) >0 and E(m,Q7) =0
theng(m, f™) < (7, Q"),VB > 0

Absolute Pessimism Game

Model-free

Bellman-consistent pessimism (Xie and Cheng, et al, 2021)

Since J(7) = Q™ (so, m) by Pessimism Lemma,
learner optimizes a performance LCB

o(m, f7) < J(m)
This would imply for any comparator 7’

J(r') = J(7) < J(x') — ¢(n', f™)

underestimation error 4,
measured at the comparator

Vi3 >0




An lllustrative Example of Absolute Pessimism Game

reward

Let’s use a toy example to compare
 Absolute Pessimism Game
 Pointwise Pessimism:

Algorithms based on bonus/truncations
(Kostrikov et al., 2021, Liu et al., 2020, Jin et al.

2021, Kidambi et al., 2020, Yu et al. 2020)

\ 4

action

data
hypothesis f (s, -) with small BE(, f)



An lllustrative Example of Absolute Pessimism Game

Pointwise Pessimism

n
>

Multiple hypotheses are merged into a
new hypothesis that may be outside the
original hypothesis class

data
memshypothesis f (s, ) with small BE(m, f)

Absolute Pessimism Game

o

| A

\

v

Learner needs to balance multiple
hypotheses in the hypothesis class

mmm== |earned policy
mm == objective(s)
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7% = arg max ¢(m, f™)

Solving the Stackelberg Game

ST € argmin ¢(, f) + BE(m, f)

fer

No-Regret + Best Response Scheme

f* € argmin ¢(r*, f) + BE(", f)

fer
Repeat for ¢, Y are approximated by samples
K iterations

m**T1 = NoRegret (7", f*)

e.g. mt1(als) oc exp(n Zle fi(s,a))

_ Output uniform mixture of policies 7

For Absolute Pessimistic Game, this algorithm is known as PSPI
(Pessimistic Soft Policy Iteration) (Xie and Cheng, et al., 2021)



Theory (Absolute Pessimism Game)

With a well tuned 3, the learned policy can compete

Lea rning Optlmallty with any policy within the data coverage.

Assume F satisfies realizability and completeness.

Given dataset D s.t. |D| = N. With g = 3 VES—W. Then V7 € II,

_ J(# VCVinax s/drn 22{21 Egry,[e”] Vinax Regret(K)
J () J()§O<(1’y) {/ N>+ Py +0(1—7 - )

where v(s,a) is any distribution satisfying MaXpe (K] T 137
d™\v(s,a) = max(d™(s,a) — v(s,a),0)
/. L |F||I

| =
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Theory (Absolute Pessimism Game)

Learning Optimality

Assume F satisfies realizability and completeness.

Given dataset D s.t. |D| = N. With 8 = ¢/Yma=" Then V7 € II,

dF 1

A \/évmax?) d 1
J(w)—J(w)S(’)( ) i fv )

In-Support Error

where v(s,a) is any distribution satisfying maxpe|K) e
d™\v(s,a) = max(d™(s,a) — v(s,a),0)
Glar - fla: o T’/Tk flaf d}—ﬂ — ]Og ‘Ffm

C

With a well tuned 3, the learned policy can compete
with any policy within the data coverage.
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Theory (Absolute Pessimism Game)

With a well tuned 3, the learned policy can compete

Lea rning Optlmallty with any policy within the data coverage.

Assume F satisfies realizability and completeness.
Given dataset D s.t. |D| = N. With 8 = ¢/Yma=" Then V7 € II,

d]-",l'[

i et egre
J(m) — J(7) < Zk]:;(IlECfE;/)[ ] Lo (I/riai; R gKt(K))

Out-of-Support Error

£, [(,")}
E.le?]

\

where v(s,a) is any distribution satisfying maxycx; < C,

d™\v(s,a) = max(d™(s,a) — v(s,a),0)
Glar - fla: o T’/Tk flaf d}—ﬂ — ]Og ]:TH’
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Theory (Absolute Pessimism Game)

With a well tuned 3, the learned policy can compete

Lea rning Optlmallty with any policy within the data coverage.

Assume F satisfies realizability and completeness.
Given dataset D s.t. |D| = N. With 8 = ¢/Yma=" Then V7 € II,

d]-",l'[

J(’/T)—J(ﬁ')g O(I/riai;Regr[e;(K))

Optimization Error in o(1)

where v(s,a) is any distribution satisfying maxcix] 5157
d™\v(s,a) = max(d™(s,a) — v(s,a),0)
ek - fla: o ’7”/Tl“ fk d}—ﬂ — 10% ‘Ffm
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Theory (Absolute Pessimism Game)

e Proof Sketch:

T(m) — () = S () — T(x*)
k=1



Theory (Absolute Pessimism Game)

e Proof Sketch:

21



Theory (Absolute Pessimism Game)

e Proof Sketch:




Theory (Absolute Pessimism Game)

e Proof Sketch:

J(m) = J(7)

=2 S Barle] Eur[f5(s,m) — (s, 7] + (£ (s0,7) — T())
k=1

\so

\/avmax 3 d}_,H 4 Zf:l Ed“\l/[ek] + 0O (Vmax Regl’et(K))
(=) V. N K(1—7) l—y K
In-Support Error Out-of-Support Error Optimization Errorin o(1)

J(r) — J(7) <O
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/B — 3 vaax]\f2
p— pp
Foo

* In the offline setting, it is hard to tune hyperparameters, but
when S (i.e., the degree of pessimism) is selected
incorrectly, we lose the guarantees. When f§ is wrong, the
learned can be even worse than the behavior policy! Same

for other LCB-based algorithms.

What is
missing?

* Why? Recall, by optimizing LCB, we have

J(n') = J(7) <|J(x') — p(x’, fT)
But this gap depends on [

Can we design offline RL algorithms that
are robust to hyperparameter selection?
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Relative Pessimism Game

(Cheng* and Xie* et al, 2022)

Absolute Pessimism Game Relative Pessimism Game

o(m, f) = f(s0,7) o(m, f) = Eau[f(s,m) — f(s,0)
7 =FK

E(m, f) u[(f_TWf)2] E(m, f) = Eu[(f_Tﬁf)z]

Model-free Model-free

J(r) = Q" (s0,) objective  J () — J (1) = Eau [Q" (5,) — Q" (5, )]

We can solve this Stackelberg Game with the same no-regret + best response scheme. This algorithm is known
as ATAC (Adversarially Trained Actor Critic) (Cheng* and Xie, et al, 2022)

While optimizing the two is the same in online RL, the results are different in the offline case!
Because the agent cannot explore to reduce the uncertainty due to partial data coverage.

25



Absolute Pessimism vs Relative Pessimism

Hypothesis class

g

1. Good traffic: Bus 5 min, Walk 30 min, Bike 20 min
2. Bad traffic: Bus 30 min, Walk 30 min, Bike 30 min




Absolute Pessimism vs Relative Pessimism

Hypothesis class

g

1. Good traffic: Bus 5 min, Walk 30 min, Bike 20 min
2. Bad traffic: Bus 30 min, Walk 30 min, Bike 30 min

Absolute Time

Case 1
Case 2 30 30 30

Absolute Pessimism

Either



Absolute Pessimism vs Relative Pessimism

Hypothesis class

g

1. Good traffic: Bus 5 min, Walk 30 min, Bike 20 min
2. Bad traffic: Bus 30 min, Walk 30 min, Bike 30 min

Relative Time to Bus

Case 1
Case 2 0 0 0

Absolute Pessimism Relative Pessimism

Either Take Bus!

28



Relative Pessimism Game

(Cheng* and Xie* et al, 2022)

Absolute Pessimism Game Relative Pessimism Game

o(m, f) = f(s0,7) o(m, f) = Eau[f(s,m) — f(s,0)
7 =FK

E(m, f) =Eu[(f =T f)? E(m, [) =Eu[(f = T"f)

Model-free Model-free

J(m) = Q™ (sg, ) Objective J(m) —J(pn) =Equ[Q" (s,m) — Q7 (s, a)]

We can solve this Stackelberg Game with the same no-regret + best response scheme. This algorithm is known
as ATAC (Adversarially Trained Actor Critic) (Cheng* and Xie, et al, 2022

While optimizing the two is the same in online RL, the results are different in the offline case!
Because the agent cannot explore to reduce the uncertainty due to partial data coverage.
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Relative Pessimism Game

(Cheng* and Xie* et al, 2022)

Absolute Pessimism Game Relative Pessimism Game

o(m, f) = f(s0,7) o(m, [) = Eaqu[f(s,7) = f(s,0a)]

E(m, f) =Eu[(f =T f)? E(m, [) =Eu[(f = T"f)

Model-free Model-free

J(x) = Q" (so, ) Objective J(r) = J (1) = Equ [Q7 (5, 7) — Q" (5,0)]
l Pessimism Lemma
J(m) > ¢(m, fT) VB >0 Lowerbound - J (1) — J (1) > ¢(m, f7) VB >0

Optimizing LCB

J(a') = J(&) < (') = g, f7)  pedormuce J(n') — J(27) < J(x') — T(n) — ¢, /)

Robust Policy Improvement (RP1)  J(7™) — J(u) > ¢(7", fﬁ*) > o(p, f1Y=0VB=>0
30



Source of Robust Policy Improvement

N -* Relative Pessimism Game (ATAC)
&"--
- P~
good [ ,f’ 7" € argmax Equ[f(s,m) — f(s,a)]
Offline RL mell
‘ s.t. fT €argminEqe|f(s,m) — f(s,a)] + BE(T, f)

feF

R
e _‘;g&.: Actor = Conditional generator
B too small ,{f”/’ Critic = Discriminator
Relative Pessimism Game provides a bridge

between offline RL and imitation learning with
IPM via the lens of generative adversarial

Imitation networks (GAN)
Learning

Offline RL + Relative Pessimism
= IL + Bellman Regularization

31



Theory (Relative Pessimism Game)

With a well tuned 3, the learned policy can compete

Lea rning Optlmallty with any policy within the data coverage.

Same as Absolute Pessimism!

e \/évmax s/dF Zf:l ]Ed"\l/[ek] Vmax Regret(K)
e JWSO( (1-7) V N >+ K(1—7) +O<1—7 K )

In-Support Error Out-of-Support Error  Optimization Errorin o(1)

E,[e;]
E, ler]

3 N

<C,

where v/(s,a) is any distribution satisfying maxc(x;

d™\v(s,a) = max(d™(s,a) — v(s,a),0)

ek: - fk - kafk d]—",H — log ’fgﬂ

N
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Theory (Relative Pessimism Game)

Robust Policy Improvement (RPI)

Assume F satisfies realizability, thoughfnot necesssarily completeness.
Given dataset D s.t. |D| = N if 1 € II, then

R Vinax dr 1 5‘/2 dr 1 Vinax Regret(K)
J _ J T S O 9 _|_ max ) +
() = J(#) ((1—7) N T (1-9N "1—4 K

Statistical Error Optimization Errorin o(1)

33



Theory (Relative Pessimism Game)

* Proof Sketch (Robust Policy Improvement):

T(1) — () = S () — I
k=1
3 (000~ )+ 6 19) o

1



Theory (Relative Pessimism Game)

* Proof Sketch (Robust Policy Improvement):



Theory (Relative Pessimism Game)

* Proof Sketch (Robust Policy Improvement):

J(p) = J(7)

:% > (T() = T(@) + o(x*, 12)) +HEaw [* (s, 1) = [ (s, 7]

. Vimax Jdrm . BVZ..drm || Vimax Regret(K)
Jp)—J@") <O 1L Tmax 00 )
) =) ((1v) N ooy T1oy T K

Statistical Error Optimization Errorin o(1)
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Comparison of Offline RL Approaches

Relative Pessimism Absolute Pessimism
. Relative Pessimism Game Absolute Pessimism Game
Ga mE'TheorEtlc (Cheng et al. 2022) (Xie et al., 2021, Uehara et al., 2021)

RPI

Behavior regularization Algorithms based on
: (Fujimoto et al. 2019,2021, Kuma et al., 2019, 1
Slngle MDP Laroche et al. 2019) bon_us/truncat_lons )
(Kostrikov et al., 2021, Liu et al., 2020, Jin et al.
RP| 2021, Kidambi et al., 2020, Yu et al. 2020)
Simple Simple
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Practical Implementation

* We approximate the No-Regret + Best Response scheme by a two-timescale stochastic gradient
update rule.

Algorithm
No-Regret + Best Response Scheme Input: Batch data D, policy =, critics fi, f2, constants
B>0,7€(0,1],w € [0,1]
flC € arg min ¢(7Tk, f) + ﬁg(ﬂk, f) 1: Initialize target networks fl « f1, f2 « fo
fer 2: fork=1,2,...,K do
) 3: Sample minibatch D,,;,; from dataset D.

mk+1 = NoRegret(r*, f*) 4: For f € {fi1, f2}, update critic networks
lcritic = Cb’Dm;ni (f; 77) =+ ngrnini (fv 77)
[+ Proj]—'(f = nfaSKVIcrilic)

. . . 3 Update actor network
We trained NN policies and values on the hovr = —6p(f. 1)
D4RL benchmark and compare the results 7 4= Projp (7 — Nsiow Viactor)

6:  For (f,f) € {(fi, }:) }i=1,2, update target networks

with other deep offline RL algorithms (CQL, Fe(—nf+rf.

COMBO, 1QL, TD3+BC). 7. end for




Experimental Results

PSPI (Absolute Pessimism) outperforms baseline algorithms in 17/24 datasets

Behavior | ATAC CQL COMBO TD3BC IQL BC
halfcheetah-rand -0.1 4.8 35.4 38.8 10.2 - 2.1
walker2d-rand 0.0 8.0 7.0 7.0 1.4 - 1.6
hopper-rand 1.2 31.8 10.8 17.9 11.0 - 9.8
halfcheetah-med 40.6 54.3 d44 54.2 42.8 474  36.1
walker2d-med 62.0 91.0 74.5 75.5 79.7 78.3 6.6
hopper-med 44.2 102.8 86.6 94.9 99.5 66.3 29.0
halfcheetah-med-replay 27.1 49.5 46.2 55.1 43.3 44.2 38.4
walker2d-med-replay 14.8 9.1 32.6 56.0 25.2 73.9 11.3
hopper-med-replay 14.9 102.8 48.6 73.1 314 94.7 11.8
halfcheetah-med-exp 64.3 95.5 62.4 90.0 97.9 86.7 35.8
walker2d-med-exp 82.6 116.3 98.7 96.1 101.1 109.6 64
hopper-med-exp 64.7 112.6 111.0 111.1 112.2 91.5 1119
pen-human 207.8 79.3 37.5 - - 71.5 34.4
hammer-human 25.4 6.7 44 - - 1.4 1.5
door-human 28.6 8.7 9.9 . - 4.3 0.5
relocate-human 86.1 0.3 0.2 - - 0.1 0.0
pen-cloned 107.7 73.9 39.2 - - 37.3 56.9
hammer-cloned 8.1 2.3 2.1 - - 2.1 0.8
door-cloned 12.1 8.2 0.4 - - 1.6 -0.1
relocate-cloned 28.7 0.8 -0.1 . - -0.2 -0.1
pen-exp 105.7 159.5 107.0 - - - 85.1
hammer-exp 96.3 128.4 86.7 - - - 125.6
door-exp 100.5 105.5 101.5 - - - 34.9
relocate-exp 101.6 106.5 95.0 - - - 101.3
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Experimental Results

ATAC (Relative Pessimism) achieves SOTA performance,
outperforming baseline algorithms in 21/24 datasets

9% improvement (median)
compared with the best

baseline algorithm.

Behavior PSPI CQL COMBO TD3BC IQL BC
halfcheetah-rand -0.1 2.3 35.4 38.8 10.2 - 2.1
walker2d-rand 0.0 7.6 7.0 7.0 1.4 - 1.6
hopper-rand 1.2 31.6 10.8 17.9 11.0 - 9.8
halfcheetah-med 40.6 43.9 44.4 54.2 42.8 474  36.1
walker2d-med 62.0 90.5 74.5 75.5 79.7 78.3 6.6
hopper-med 44.2 103.5 86.6 94.9 99.5 66.3 29.0
halfcheetah-med-replay 27.1 49.2 46.2 55.1 43.3 44.2 38.4
walker2d-med-replay 14.8 94.2 32.6 56.0 25.2 73.9 11.3
hopper-med-replay 14.9 102.7 48.6 73.1 314 94.7 11.8
halfcheetah-med-exp 64.3 41.6 62.4 90.0 97.9 86.7 35.8
walker2d-med-exp 82.6 114.5 98.7 96.1 101.1 109.6 64
hopper-med-exp 64.7 83.0 111.0 111.1 112.2 915 1119
pen-human 207.8 106.1 37.5 - - 71.5 34.4
hammer-human 25.4 3.8 4.4 - - 1.4 1.5
door-human 28.6 12.2 9.9 - - 4.3 0.5
relocate-human 86.1 0.5 0.2 - - 0.1 0.0
pen-cloned 107.7 104.9 39.2 - - 37.3 56.9
hammer-cloned 8.1 3.2 2.1 - - 2.1 0.8
door-cloned 12.1 6.0 0.4 - - 1.6 -0.1
relocate-cloned 28.7 0.3 -0.1 . - -0.2 -0.1
pen-exp 105.7 154.4 107.0 - - - 85.1
hammer-exp 96.3 118.3 86.7 - - - 125.6
door-exp 100.5 103.6 101.5 - - - 34.9
relocate-exp 101.6 104.0 95.0 - - - 101.3
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Experimental Results

Robust Policy Improvement

RPI is also verified empirically, This property can be used for
online HP selection: we can gradually increase 5 to tune its
performance without breaking the baseline performance.

100, — Relative Pess. (ATAC) 100 100 100
~— Absoluate Pess.
€ 75{ —— Behavior Policy e 75 e 75 g7
: E 2 : N—
8 s0 so,  ____—~_ | 850 g so
25 25 v__/ L — 25 \/
0552 = 0 1 0'm= = 0553 = 0553 = o 1
102 10 10° 10 102 107 10° 10! 102 101 10° 10' 102 107 10° 10
Beta Beta Beta Beta
(a) halfcheetah-random (b) halfcheetah-medium (c) halfcheetah-medium-replay (d) halfcheetah-medium-expert

Return
Return
Return
Return

25 /'v 25 ,\/ 25 25

100 — l:zlatlivetPe:s‘ (ATAC) 100 100 100
S— soluate Pess.
75/ —— Behavior Policy 75 75 2 AN
50 50 50 50 A \Q
10!

067 10T 100 100 0 1071 10! o 101 10° 0 1071
Beta Beta Beta Beta
(e) hopper-random (f) hopper-medium (g) hopper-medium-replay (h) hopper-medium-expert
100/ — Relative Pess. (ATAC) | 109 100 100 /_’?
~— Absoluate Pess. E——
g 75{ —— Behavior Policy 5 75 / E 75 5 75
g 50 g 50 / g s0 g so
25 25 25 25
"
067 10 10° 100 0952 16T 100 1o 0902 10T 100 10 9 1671 10°
Beta Beta Beta Beta
(i) walker2d-random (j) walker2d-medium (k) walker2d-medium-replay (1) walker2d-medium-expert
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Summary

Offline RL

We propose a game theoretic approach to offline RL

Learner optimizes policy

max J ()

7% € argmax ¢(m, f7) mell
e » s.t. mno env interaction
Adversary selects the worst-case hypothesis Maximize return in the true
fT € argmin ¢(m, f) + BE(m, f) environment using data with
feF partial coverage

Follower can also use a constrained version.
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summary *;,;f._,;*

Papers Github Code

@-ﬁ& 1@ @ N ™
e ":’"" = 7 = arg max o(r /)

?:Q f™ € argmin ¢(, f) + BE(, f)

@hﬁ-’u' =
Absolute Pessimism Relative Pessimism
Robust Policy Improvement (RPI)
Model-free
f(s,a) o, f) = f(s0,7) o(m, f) = Eau [f(s,7) — f(5,a)
T (Xie and Cheng et al., 2021) (Cheng* and Xie* et al., 2022)
E(m, [) = Eul(f = T7f)?] |
Lea rning Learn the best policy that
SoTA Empirical Results ) i the data can afford despite
Optlmallty missing coverage
Useful for online HP tuning and Robust Policy ‘eana policy better than
applications where decisions can the data collection policy,
lead to risky consequences Improvement regardiess of

hyperparameters. 43



Papers Github Code

;::E] @ ?$h@ T arg manb(ﬂ', fﬂ‘)
F' -r E‘;’ e €= well
>ummary ‘}‘ff-,e% pARaR
ey fT e argmin ¢(m, f) + BE(m, f)
g @SR e
Absolute Pessimism Relative Pessimism
Model-free Robust Policy Improvement (RPI)
f(s,a) ¢, f) = fls0,m) o(m, f) =B [f(5,7) — f(5,0)]
E(m, f) =E,[(f—T"f)? (Xie and Cheng et al., 2021) (Cheng* and Xie* et al., 2022)

Model-based
M = (#,P) ¢(m, M) = J () o(m, M) = J g (m) — Ty (12)

E(m, M) =Egu[(r — r)z — log P] (Uehara and Sun., 2021) (Xie and Bhardwaj et al., 2022)

Many more choices to explore in the future...



