Sparse Network Estimation

Olga Klopp

ESSEC CREST

BUSINESS SCHOOL



Joint works with

oty 5
~ 5 (e o

A : i
Nicolas Verzelen

Alexandre Tsybakov

4

Solenne Gaucher



Network model

Approach

» Model-based statistical
analysis.

» The modeling of real
networks as random
graphs.

East-river trophic network [Yoon et al.(04)]



Stochastic Block-Model (SBM) Holland et al. (1980)

P> Fit observed networks to parametric or non-parametric models
of random graphs.

» SBM popular in applications: it allows to generate graphs
with a community structure

» Parameters:

» Partition of n nodes into & disjoint groups {C1,...,Ck}

» each node i is associated with a community z(%)
» z:[n] — [k]: the index function
> 2: a parameter to estimate (the conditional SBM), or a latent
variable
» Symmetric k X k matrix @ of inter-community edge
probabilities.

»> Any two vertices u € C; and v € C; are connected with
probability Q;;
» Regularity Lemma: basic approximation units for more
complex models.



Inhomogeneous random graph model

» We observe the n x n adjacency matrix A = (A;;) of a graph

» A;; are Bernoulli random variables with parameter ©;;

> Op is the n x n symmetric matrix with entries (©;;) (the
matrix of probabilities associated to the graph)

> vertices 7 and j are connected by an edge with probability ®;;
independently from any other edge

> sparsity parameter p, = max®;; — 0 and p,, > 1/n
ij

» Given a single observation A, we want to estimate @



Minimax rate for sparse SBM in Frobenius norm

The best rate of convergence that any estimator may achieve:

K., Tsybakov & Verzelen (2017)
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Sparse network estimation problem

» The optimal rates can be achieved by the Least Squares
Estimator

» But: not realizable in polynomial time
> Better choices:

» Maximum Likelihood Estimator
» Hard thresholding estimator

> .



Maximum Likelihood Estimator

» Wolfe and Olhede (2013), Bickel et al (2013), Amini et
al (2013), Celisse et al (2012) , Tabouy et al (2017) ...

> Also NP hard ...
» Computationally efficient approximations:

» Pseudo-likelihood methods

» Variational approximation

» Quite successful in practice

Is MLE minimax optimal?



Convergence rate for the MLE

The conditional log-likelihood:

L(A;2,Q) =Y Aylog(Qu)x(j) + (1 — Aij)log(1

i<j
The maximum log-likelihood estimator of @*:

(Q, Z) € argmax  L(A;z,Q).

QE0, 1Rk 2€2,, 1

Z,,.1 the set of all possible mappings z from [n] to [k]

Theorem (Gaucher & K., 2021)
With high probability
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Variational approximation

» The optimization of the likelihood function requires a search
over the set of k™ labels = MLE is computationally
intractable

» Solution: Variational approximation
P serves to approximate the posterior

» distributions for the unobserved variables (parameters, latent
variables)

> often hard-to-solve integrals
» Kullback—Leibler divergency as a measure of good
approximation

» Assuming the unknown variables can be partitioned so that
each partition is independent: the mean-field approximation

» Often results in easy to compute interactive algorithms



Subhabrata’s talk: variational approximation can lead to a quite
accurate approximation

S. Sen’s courtesy

The mean field approximation works exceptionally well for the SBM



Variational approximation to the MLE

» Celisse et al (2008) and Bickel et al (2013): variational
approximation

» asymptotic normality for variational methods for parameter
estimates of stochastic block data

» The problem of community detection: Edoardo et al (2008),
Hofman et al (2008), Zhang et al (2020), Razaee et al (2019)

» Gaucher & K. (2021):

» optimal statistical accuracy

> labels recovery



SBM with random labels

» Nodes are classified into & communities:
» each node i is associated with a community z(%)
> z:[n] — [k]: the index function

> z: a parameter to estimate (the conditional SBM), or a latent
variable

» The indexes follow a multinomial distribution:

Vi z(7) s M(1; )

» Vi € [k], oy is the probability that node i belongs to the
community [

> «apn is the expected size of community &

» the probabilities of connection are given by a k X k matrix Q

» We consider a SBM with parameters (o, Q).



Variational approximation to the MLE

» SBM with parameters (o, Q)

» The likelihood of the observed adjacency matrix A:

(A;0,Q) = Z Ha exp (L(A;2,Q)) .

2€Z,k \I<N

» the maximization still requires to evaluate the expectation of
the label function z by summing over k™ possible labels

» Solution: use the mean-field approximation



Mean-field approximation

(A50,Q) = D [[]eze | exp(£(A;2,Q)).

2€2Z, 1k \I<n

> Approximate the posterior distribution of z by a simpler
distribution:

» the posterior distribution P (-|A, «, Q) is approximated by a
multinomial distribution P, s.t. Pr(2) = [],,<, M(2|7")

> ri= (Tli, ...,T}()
> 7= (7'1, ...,T")

» Use the KL-divergence as a measure of how well our
approximation fits the true posterior



Variational approximation to the MLE

The variational estimator:

(aVAR7 QVAR, $VAR) = argmax J(A;7,q,Q) (1)
0€AQEQrET

for J(AiT,0,Q) = I(Asa,Q)— KL (P ()|[P(|A,a,Q))

> A, Q and T: the parameter spaces for the parameters o, Q
and T

» K L: the Kullback-Leibler divergence
» J(A;T,a,Q) provides a lower bound on [(A; o, Q)



EM algorithm

The expectation - maximization (EM) algorithm Tabouy et al
(2020):
» Estimation Step: given parameters (o, Q), the variational
parameter 7 maximizing J (A; T, a, Q) is given by the fixed
point equation :

mocar [T 11 (Q?zij (1- le)l_A”>Tl ;

JAISK

» Maximisation Step: given parameter 7, the parameters (a, Q)
maximizing J (A; T, «, Q) are given by

_ > Tli Ei#]’ T/iTl]Aij
n

» Qr = ]
Ei;éj 7127'1]

093



Statistical guarantees for the variational estimator

» Celisse et al ( 2008) and Bickel et al (2013):

» maximizing max,c7 J (A; T, o, Q) is equivalent to maximising
(A;a,Q)

> the estimator obtained by maximizing [(A;a, Q) converges to
the true parameters (a, Q)

> (QVAR, QVAR) also converges to (o, Q)

» does not provide guarantees on the recovery of the true labels z



The label estimator

» The label estimator ZVAER:

Vi <n, 2V4%(i) £ argmax (?VAR)Z‘
k<K

> Replace QVAR by the empirical mean estimator:

QML VAR 2 i€(2VAR) "1 (a),jE(ZVAR)~1(b) i)
Nab
| 2
nap(2V ARy = [ IEVAD @)l x (VA% 1 () ifa#b
“ |(ZYAR) ()] x (|(ZY47) (@) — 1)  otherwise

. ~VAR
» Define ® as

~ VAR ~VAR
AML-VAR
zyég Q"VAR ),ZVAR(5) 0, =0.



Statistical guarantees for the variational estimator

ZVAR QML—VAR) is minimax optimal:

This new estimator (

Theorem (Gaucher & K., 2021)

Assume that Q° has no identical columns and the sparsity inducing
sequence p,, satisfies p, > log(n)/n. Then, there exists a
constant Cqo > 0 depending on QY such that

IP’(H@O—@VARHzSCQopn(k2+nlog(k))> 1

n—o0

1. a = aY for some fixed a® such that a2 > 0 for any
acd{l, ..k}
2. Q = p,QO for some fixed Q° € (0, 1)**¥ such that

k
0.0m0 _
Z aaaanb - ]‘
a,b=1



How does it work 7

» Variational approximation to the MLE has been used for
estimation of (Q, )

» We show that both the maximum likelihood estimator
and its variational counterpart can perfectly recover all
labels:

P with large probability, there exists a permutation ¢ of
{1, ..., K} such that (EVAR(o(k)))k<K = (Z(k)r<x

» (under certain conditions) MLE recovers the true labels

> exact recovery of the labels have already been established in
this regime under more restricted assumptions (see Abbe

(2018)):

» the SBM is symmetric, assortative and has balanced
communities



Non-parametric Model

» SBM does not allow to analyze the fine structure of extremely
large networks, in particular when the number of groups is
growing.

» Non-parametric models of random graphs: Graphon Model

» Graphons are symmetric measurable functions

W :[0,1]* — [0,1].

> Play a central role in the recent theory of graphs limits: every
graph limit can be represented by a graphon.

» Graphons give a natural way of generating random graphs.



Graphon Model

» Graphon Model:
> £=(&,...,&,) are latent i.i.d. uniformly distributed on [0, 1].

0,; = Wo(&, &)
» The diagonal entries ®;; are zero and Oy = (0;;)

P> Given ©®g the graph is sampled according to the
inhomogeneous random graph model:

> vertices ¢ and j are connected by an edge with probability ®;;
independently from any other edge.

> If W, is a step-function with k steps, the graph is distributed
as a SBM with & groups.



Sparse Graphon Model

2

> The expected number of edges < n® = dense case.

» In real life networks often sparse
» Sparse Graphon Model:
» Take p,, > 0 such that p, = 0 as n — oc.

» The adjacency matrix A is sampled according to graphon Wy
with scaling parameter p,,:

0;; = puWo(&i, &), i < J.
> p, = “expected proportion of non-zero edges”,

» the number of edges is of the order O(p,n?),

> p, =1 dense case

> pn =1/n very sparse



Graphon: invariance with respect to the change of labeling

» Graphon estimation is more challenging than probability
matrix estimation

» Multiple graphons can lead to the same distribution on the
space of graphs of size n.

» The topology of a network is invariant with respect to any
change of labeling of its nodes

> We consider equivalence classes of graphons defining the
same probability distribution on random graphs.



Loss function for graphon estimation

» Consider a sparse graphon f(x,y) = p,W(z,y)
> f(x,y) estimator of f(z,y)
» The squared error is defined by

83 (f, f) := inf —f 2dzd

fe=int [ [ 16w r) - flap iy
M is the set of all measure-preserving bijections
7:[0,1] — [0,1]

Property (Lovasz 2012)

d(+,-) defines a metric on the quotient space W of graphons.



From probability matrix estimation to graphon estimation

> To any n x n probability matrix ® we can associate a
graphon.

> Given a n x n matrix © with entries in [0, 1], define the
empirical graphon fg as the following piecewise constant
function: B
fe(2,y) = Onal fny]
for all z and y in (0, 1].

00 02 04 06 08 10

T
00 02 04 06 08 10

» This provides a way of deriving an estimator of the graphon
function f(-,-) = p,W (-, -) from any estimator of the
probability matrix ©y.



From probability matrix estimation to graphon estimation

» Empirical graphon f@(x,y) = Olne1,[ny]-
» For any estimator T of O :
~ 1~ ~
204 T - 2 2
B (%3 )] < 28 | I - €l + 28 [ (7o)

N—_———

agnostic error

(from the triangle inequality). Here, f,f and fgo are empirical
graphons.



Bound for the d-risk of step-function graphon

Step function graphons: For some k& x k symmetric matrix Q
and some ¢ : [0, 1] — [k],

W(z,y) = Qpa),e(y) forall z,y€[0,1].

Theorem (K., Tsybakov and Verzelen, 2017)
Consider the py,-sparse step-function graphon model Wk, p,,].

inf sup E [52 (f, f)] = [pn <f; + loifk)) + p2 k] .

I feEWk,pn] n




Missing Links

Real-life networks are only partially observed

» Exhaustive exploration of all interactions in a network is
expensive

» Survey data: non-response or drop-out of participants

» Online social network data: sub-sample of the network

Input: Partitioned social network Output: Link formulation prediction
intralinks = = — — - potential intraLinks ground truth links
interlinks - — — - potential interLinks

A balanced modularity maximization link prediction model in social networks [Wu et al.(2017)]



Conditional maximum likelihood estimator

» the log-likelihood function with respect to the observed entries
of the adjacency matrix A and sampling matrix X:

Lx(A;2,Q) = > Xy (Aijlog(Quiz())

1<i<j<n

+(1 - Al]) log(l - Qz(z)z(])))

= Z log(Qas) Z XijAjj

a<b i€z 1(a), jE2~1(b)
i
+3 log(1 — Qu) > Xij(1 - Ayj)
a<b i€z~ 1(a), jez—1(b)
i

> X;; are iid Bernoulli (p)



Theorem (Gaucher & K., 2021)

Assume that Q" has no identical columns and the sparsity inducing
sequence p,, satisfies p, > log(n)/(pn). Then,

P(zV4R ~ 2) 51

when n — oco. Moreover, there exists a constant Cqo > 0
depending on Q° such that

b (H@* B C:)VARH2 _ Cqo (k? +nlog(k))> L

- n—00

2 p




Empirical performances of the variational approximation of
MLE

We compare the variational approximation to the MLE to
> missSBM
» softimpute

» the oracle estimator with knowledge of the label z*
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Robustness against sparsity and missing observations

Error of connection probabilities estimation as a function of the
sparsity parameter p and of the sampling rate p (n = 500):
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Interactions within a elementary school

» Network of interactions within a French elementary school
Stehle et al ( 2011) :

» Physical interactions between 222 children divided into 10
classes and their 10 teachers

» Two consecutive days

» Homogeneous degrees (the maximum degree is 41, the
minimum degree is 5 and the mean degree is 20)

» Strong community structure. Therefore, we expect the
networks of interactions to be well approximated by a
stochastic block model

» Two outcomes of the same random network model:

» We use the observations collected on Day 1 to estimate the
matrix ©*

» Evaluate the estimators on the network of Day 2



Interactions within a elementary school

i ~VAR | ~missSBM ~SVT | ~naive
Estimator ‘ ® ‘ ® ‘ (C)] ‘ ®

IXo(A-0)3/IXeoAl}] 0312 | 0317 | 0.357 | 0.541

Table: Normalized squared distance between the observed adjacency
matrix for the network on interaction on Day 2, and its predicted value.

. . ~naive
» The naive estimator ® :

~naive

> ©,; =1if an interaction between i and j has been
recorded on Day 1
~natve . ) .

> © = 0 if no such interaction has been recorded
~natve ) . . . .. .

» ©,;, = d/n if the information is missing, where d is the

average degree of the graph for Day 1.



Conclusion

» Least Squares Estimator:
P attains the optimal rates in a minimax sense

» not realizable in polynomial time

» (variational) MLE:
» minimax optimal

> allows labels recovery
» Variational MLE has good performances in practice

» Can be used for Link Prediction
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Thank You !



	Maximum Likelihood Estimator

