Learning Latent Variable Models through Tensor **Methods**

Anima Anandkumar

U.C. Irvine

K ロ K イロ K モ X モ X モ X モ コ の Q Q C

Challenges in Unsupervised Learning

- Learn a latent variable model without labeled examples.
- E.g. topic models, hidden Markov models, Gaussian mixtures, community detection.
- Maximum likelihood is NP-hard in most scenarios.
- **•** Practice: EM, Variational Bayes have no consistency guarantees.
- Efficient computational and sample complexities?

In this talk: guaranteed and efficient learning through tensor methods

How to model hidden effects?

Basic Approach: mixtures/clusters

 \bullet Hidden variable h is categorical.

Advanced: Probabilistic models

- \bullet Hidden variable h has more general distributions.
- Can model mixed memberships.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Moment Based Approaches

Multivariate Moments

$$
M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].
$$

Matrix

 $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.

$$
\bullet \ \mathbb{E}[x \otimes x]_{i_1,i_2} = \mathbb{E}[x_{i_1}x_{i_2}].
$$

• For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^\top]$.

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\mathbb{E}[x \otimes x \otimes x]_{i_1, i_2, i_3} = \mathbb{E}[x_{i_1}x_{i_2}x_{i_3}].$

Outline

[Introduction](#page-1-0)

2 [Spectral Methods: Matrices to Tensors](#page-4-0)

[Tensor Forms for Different Models](#page-18-0)

[Experimental Results](#page-42-0)

5 [Overcomplete Tensors](#page-48-0)

Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

- Dimension reduction through PCA (on data matrix)
- \bullet Clustering on projected vectors (e.g. k -means).

K ロ X K @ X K 할 X K 할 X 및 및 X O Q O

Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

- Dimension reduction through PCA (on data matrix)
- Clustering on projected vectors (e.g. k -means).

- Basic method works only for single memberships.
- **•** Failure to cluster under small separation.
- Require long documents for good concentration bounds.

Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

- Dimension reduction through PCA (on data matrix)
- Clustering on projected vectors (e.g. k -means).

- Basic method works only for single memberships.
- **•** Failure to cluster under small separation.
- Require long documents for good concentration bounds.

Efficient Learning Without Separation Constraints?

Beyond SVD: Spectral Methods on Tensors

- How to learn the mixture components without separation constraints?
	- ► Are higher order moments helpful?
- **Q** Unified framework?
	- ▶ Moment-based Estimation of probabilistic latent variable models?

- SVD gives spectral decomposition of matrices.
	- ▶ What are the analogues for tensors?

Spectral Decomposition

Spectral Decomposition

 $u \otimes v \otimes w$ is a rank-1 tensor since its $(i_1, i_2, i_3)^\text{th}$ entry is $u_{i_1}v_{i_2}w_{i_3}$.

 \bullet A has orthogonal columns.

$$
M_3=\sum_i w_i a_i\otimes a_i\otimes a_i.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet A has orthogonal columns.

$$
M_3=\sum_i w_i a_i\otimes a_i\otimes a_i.
$$

•
$$
M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet A has orthogonal columns.

$$
M_3=\sum_i w_i a_i\otimes a_i\otimes a_i.
$$

•
$$
M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.
$$

 \bullet a_i are eigenvectors of tensor M_3 .

• Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v.$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \bullet A has orthogonal columns.

$$
M_3=\sum_i w_i a_i\otimes a_i\otimes a_i.
$$

•
$$
M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.
$$

 \bullet a_i are eigenvectors of tensor M_3 .

• Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v.$

Two Problems

- How to find eigenvectors of a tensor?
- \bullet A is not orthogonal in general.

Whitening

$$
M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.
$$

- \bullet Find whitening matrix W s.t. $W^TA = V$ is an orthogonal matrix.
- When $A \in \mathbb{R}^{d \times k}$ has full column rank, it is an invertible transformation.

- \bullet Use pairwise moments M_2 to find W s.t. $W^{\top}M_2W = I$.
- Eigen-decomposition of $M_2=U{\rm Diag}(\tilde\lambda)U^\top$, then $W = U \text{Diag}(\tilde{\lambda}^{-1/2}).$

Using Whitening to Obtain Orthogonal Tensor

Tensor M_3 Tensor T

ADD YEARS ARA YOUR

Multi-linear transform

- $M_3 \in \mathbb{R}^{d \times d \times d}$ and $T \in \mathbb{R}^{k \times k \times k}$.
- $T = M_3(W, W, W) = \sum_i w_i (W^\top a_i)^{\otimes 3}.$
- $T = \sum_{i=1}^n \lambda_i \cdot v_i \otimes v_i \otimes v_i$ is orthogonal. $i \in [k]$
- Dimensionality reduction when $k \ll d$.

Putting it together

$$
M_2 = \sum_i w_i a_i \otimes a_i, \quad M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.
$$

- Obtain whitening matrix W from SVD of M_2 .
- Use W for multi-linear transform: $T = M_3(W, W, W)$.
- Find eigenvectors of T through power method and deflation.

For what models can we obtain M_2 and M_3 forms?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Outline

[Introduction](#page-1-0)

2 [Spectral Methods: Matrices to Tensors](#page-4-0)

3 [Tensor Forms for Different Models](#page-18-0)

[Experimental Results](#page-42-0)

[Overcomplete Tensors](#page-48-0)

Topic Modeling

k topics (distributions over vocab words). Each document \leftrightarrow mixture of topics. Words in document \sim_{iid} mixture dist.

Geometric Picture for Topic Models Topic proportions vector $\left(h\right)$

イロト イ母 トイミト イミト ニヨー りんぴ

Geometric Picture for Topic Models Single topic $\left(h\right)$

イロト イ母 トイミト イミト ニヨー りんぴ

Word generation (x_1, x_2, \ldots)

Moments for Single Topic Models

$$
\bullet \quad \boxed{\mathbb{E}[x_i|h] = Ah.}
$$

$$
\bullet \quad \boxed{w := \mathbb{E}[h].}
$$

 \bullet Learn topic-word matrix A , vector w

イロト イ伊 トイヨ トイヨト

Þ

Moments for Single Topic Models

$$
\bullet \ \boxed{\mathbb{E}[x_i|h] = Ah.}
$$

$$
\bullet \ \boxed{w := \mathbb{E}[h].}
$$

 \bullet Learn topic-word matrix A , vector w

Pairwise Co-occurence Matrix M_x

$$
M_2 := \mathbb{E}[x_1 \otimes x_2] = \mathbb{E}[\mathbb{E}[x_1 \otimes x_2|h]] = \sum_{i=1}^k w_i a_i \otimes a_i
$$

Triples Tensor M_3

$$
M_3 := \mathbb{E}[x_1 \otimes x_2 \otimes x_3] = \mathbb{E}[\mathbb{E}[x_1 \otimes x_2 \otimes x_3 | h]] = \sum_{i=1}^k w_i a_i \otimes a_i \otimes a_i
$$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 $2Q$

э

Moments under LDA

$$
M_2 := \mathbb{E}[x_1 \otimes x_2] - \frac{\alpha_0}{\alpha_0 + 1} \mathbb{E}[x_1] \otimes \mathbb{E}[x_1]
$$

\n
$$
M_3 := \mathbb{E}[x_1 \otimes x_2 \otimes x_3] - \frac{\alpha_0}{\alpha_0 + 2} \mathbb{E}[x_1 \otimes x_2 \otimes \mathbb{E}[x_1]] - \text{more stuff...}
$$

α

Then

$$
M_2 = \sum \tilde{w}_i \ a_i \otimes a_i
$$

$$
M_3 = \sum \tilde{w}_i \ a_i \otimes a_i \otimes a_i.
$$

K ロ K イロ K モ X モ X モ X モ コ の Q Q C

- Three words per document suffice for learning LDA.
- Similar forms for HMM, ICA, etc.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @

K ロンス 御 > ス 할 > ス 할 > 「 할 … 2990

3-star counts sufficient for identifiability and learning of MMSB

3-star counts sufficient for identifiability and learning of MMSB

3-Star Count Tensor

$$
\tilde{M}_3(a, b, c) = \frac{1}{|X|} \# \text{ of common neighbors in } X
$$

$$
= \frac{1}{|X|} \sum_{x \in X} G(x, a) G(x, b) G(x, c).
$$

$$
\tilde{M}_3 = \frac{1}{|X|} \sum_{x \in X} [G_{x, A}^\top \otimes G_{x, B}^\top \otimes G_{x, C}^\top]
$$

 \equiv

 2990

イロメ イ部メ イ君メ イ君メ

Multi-view Representation

- Conditional independence of the three views
- \bullet π_x : community membership vector of node x.

Similar form as M_2 and M_3 for topic models

KORK ERKER (ERKERK)

Main Results

- k communities, n nodes. Uniform communities.
- \circ α_0 : Sparsity level of community memberships (Dirichlet parameter).
- \bullet p, q: intra/inter-community edge density.

Scaling Requirements

$$
n = \tilde{\Omega}(k^2(\alpha_0 + 1)^3), \qquad \frac{p - q}{\sqrt{p}} = \tilde{\Omega}\left(\frac{(\alpha_0 + 1)^{1.5}k}{\sqrt{n}}\right).
$$

"A Tensor Spectral Approach to Learning Mixed Membership Community Models" by A. Anandkumar, R. Ge, D. Hsu, and S.M. Kakade. COLT 2013. (B) (B) (B) (B) (B) (B)

Main Results

- \bullet k communities, n nodes. Uniform communities.
- \bullet α_0 : Sparsity level of community memberships (Dirichlet parameter).
- \bullet p, q: intra/inter-community edge density.

Scaling Requirements

$$
n = \tilde{\Omega}(k^2(\alpha_0 + 1)^3), \qquad \frac{p - q}{\sqrt{p}} = \tilde{\Omega}\left(\frac{(\alpha_0 + 1)^{1.5}k}{\sqrt{n}}\right).
$$

- For stochastic block model $(\alpha_0 = 0)$, tight results
- Tight guarantees for sparse graphs (scaling of p, q)
- Tight guarantees on community size: require at least \sqrt{n} sized communities
- **•** Efficient scaling w.r.t. sparsity level of memberships α_0

"A Tensor Spectral Approach to Learning Mixed Membership Community Models" by A. Anandkumar, R. Ge, D. Hsu, and S.M. Kakade. COLT 2013. (B) (B) (B) (B) (B) (B)

Main Results (Contd)

- \circ α_0 : Sparsity level of community memberships (Dirichlet parameter).
- Π : Community membership matrix, $\Pi^{(i)}\colon\,i^{\text{th}}$ community
- \widehat{S} : Estimated supports, $\widehat{S}(i, j)$: Support for node j in community i.

Norm Guarantees

$$
\boxed{\frac{1}{n} \max_i \|\widehat{\Pi}^i - \Pi^i\|_1 = \tilde{O}\left(\frac{(\alpha_0+1)^{3/2}\sqrt{p}}{(p-q)\sqrt{n}}\right)}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Main Results (Contd)

- \circ α_0 : Sparsity level of community memberships (Dirichlet parameter).
- Π : Community membership matrix, $\Pi^{(i)}\colon\,i^{\text{th}}$ community
- \widehat{S} : Estimated supports, $\widehat{S}(i, j)$: Support for node j in community i.

Norm Guarantees

$$
\boxed{\frac{1}{n} \max_i \|\widehat{\Pi}^i - \Pi^i\|_1 = \tilde{O}\left(\frac{(\alpha_0+1)^{3/2}\sqrt{p}}{(p-q)\sqrt{n}}\right)}
$$

Support Recovery

 $\exists \xi$ s.t. for all nodes $j \in [n]$ and all communities $i \in [k]$, w.h.p $\Pi(i,j) \geq \xi \Rightarrow \widehat{S}(i,j) = 1 \quad \text{ and } \quad \Pi(i,j) \leq \frac{\xi}{2}$ $\frac{5}{2} \Rightarrow S(i, j) = 0.$

Zero-error Support Recovery of Significant Memberships of All Nodes

Outline

[Introduction](#page-1-0)

- 2 [Spectral Methods: Matrices to Tensors](#page-4-0)
	- **[Tensor Forms for Different Models](#page-18-0)**
- 4 [Experimental Results](#page-42-0)
	- 5 [Overcomplete Tensors](#page-48-0)

Computational Complexity $(k \ll n)$

- $n=\#$ of nodes $\qquad \qquad \bullet \ \ k=\#$ of communities.
- $N=\#$ of iterations $\quad \bullet \ \ c=\#$ of cores.

- Whiten: matrix/vector products and SVD.
- **O.** STGD: Stochastic Tensor Gradient Descent
- Unwhiten: matrix/vector products

Our approach: $O(\frac{nsk}{c} + k^3)$

Embarrassingly Parallel and fast!

Scaling Of The Stochastic Iterations

Summary of Results

Facebook $n \sim 20k$

Yelp $n \sim 40k$

DBLP(sub) $n \sim 1$ million($\sim 100k$)

Error (\mathcal{E}) and Recovery ratio (\mathcal{R})

Thanks to Prem Gopalan and David Mimno for [pr](#page-44-0)[ovi](#page-46-0)[d](#page-44-0)[in](#page-45-0)[g](#page-46-0) [v](#page-41-0)[a](#page-42-0)[r](#page-47-0)[ia](#page-48-0)[t](#page-41-0)[i](#page-42-0)[o](#page-47-0)[n](#page-48-0)[al](#page-0-0) [cod](#page-60-0)e.

Experimental Results on Yelp

Lowest error business categories & largest weight businesses

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Bridgeness: Distance from vector $[1/\hat{k},\ldots,1/\hat{k}]^{\top}$

Top-5 bridging nodes (businesses)

Outline

[Introduction](#page-1-0)

- 2 [Spectral Methods: Matrices to Tensors](#page-4-0)
	- **[Tensor Forms for Different Models](#page-18-0)**
- **[Experimental Results](#page-42-0)**
- 5 [Overcomplete Tensors](#page-48-0)
	- **[Conclusion](#page-59-0)**

$$
T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• k : tensor rank, d: ambient dimension. $k > d$: overcomplete.

$$
T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.
$$

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

- k : tensor rank, d: ambient dimension. $k > d$: overcomplete.
- A is incoherent: $\langle a_i, a_j \rangle \sim \frac{1}{\sqrt{2}}$ $\frac{1}{d}$ for $i \neq j$.

$$
T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

- k : tensor rank, d: ambient dimension. $k > d$: overcomplete.
- A is incoherent: $\langle a_i, a_j \rangle \sim \frac{1}{\sqrt{2}}$ $\frac{1}{d}$ for $i \neq j$.
- Guaranteed Recovery when $k = o(d^{1.5})$.

$$
T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.
$$

- k : tensor rank, d: ambient dimension. $k > d$: overcomplete.
- A is incoherent: $\langle a_i, a_j \rangle \sim \frac{1}{\sqrt{2}}$ $\frac{1}{d}$ for $i \neq j$.
- Guaranteed Recovery when $k = o(d^{1.5})$.
- Tight sample complexity bounds.

"Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates" by A., R. Ge, M. Janzamin. Preprint, Feb. 2014.

"Provable Learning of Overcomplete Latent Variable Models: Semi-supervised & Unsupervised".

High-level Intuition for Sample Bounds

- Gaussian mixture model: $x = Ah + z$, where z is noise.
- Exact moment $T = \sum_i w_i a_i \otimes a_i \otimes a_i$.
- Sample moment: $\hat{T} = \frac{1}{n}$ $\frac{1}{n} \sum_i x^i \otimes x^i \otimes x^i - \dots$

Naive Idea: $\|\hat{T} - T\| \leq \|\text{mat}(\hat{T}) - \text{mat}(T)\|$, apply matrix Bernstein's.

- Our idea: Careful ϵ -net covering for $\hat{T} T$.
- $\hat{T}-T$ has many terms, e.g. $\frac{1}{n}\sum_iz^i\otimes z^i\otimes z^i.$
- Need to bound $\displaystyle{\frac{1}{n}}$ $\sum \langle z^i,u\rangle^3$, for all $u\in \mathcal{S}^{d-1}.$ i
- Classify inner products into buckets and bound them separately.

High-level Intuition for Sample Bounds

- Gaussian mixture model: $x = Ah + z$, where z is noise.
- Exact moment $T = \sum_i w_i a_i \otimes a_i \otimes a_i$.
- Sample moment: $\hat{T} = \frac{1}{n}$ $\frac{1}{n} \sum_i x^i \otimes x^i \otimes x^i - \dots$

Naive Idea: $\|\hat{T} - T\| \leq \|\text{mat}(\hat{T}) - \text{mat}(T)\|$, apply matrix Bernstein's.

- Our idea: Careful ϵ -net covering for $\hat{T} T$.
- $\hat{T}-T$ has many terms, e.g. $\frac{1}{n}\sum_iz^i\otimes z^i\otimes z^i.$
- Need to bound $\displaystyle{\frac{1}{n}}$ $\sum \langle z^i,u\rangle^3$, for all $u\in \mathcal{S}^{d-1}.$ i
- Classify inner products into buckets and bound them separately.
- Tight sample bounds for a range of latent variable models.
- **•** E.g. Require $\tilde{\Omega}(k)$ samples for k-Gaussian mixtures in low-noise regime.

Main Result: Local Convergence

- Initialization: $||a_1 a^{(0)}|| \leq \epsilon_0$, and $\epsilon_0 <$ const.
- Noise: $\hat{T} := T + E$, and $||E|| \leq 1/\text{polylog}(d)$.

$$
\bullet\ \text{Error:}\ \epsilon_T:=\|E\|+\tilde{O}\left(\tfrac{\sqrt{k}}{d}\right)
$$

Theorem (Local Convergence)

After $O(\log(1/\epsilon_T))$ steps of alternating rank-1 updates,

$$
||a_1 - a^{(t)}|| = O(\epsilon_T).
$$

- Linear convergence: up to approximation error.
- Guarantees for overcomplete tensors: $k = o(d^{1.5})$ and for p^th -order tensors $k=o(d^{p/2})$.

• Requires good initialization. What about global convergence?

Global Convergence $k = O(d)$

SVD Initialization

- Find the top singular vector of $T(I, I, θ)$ for $θ \sim \mathcal{N}(0, I)$.
- \bullet Use them for initialization. L trials.

Conditions for global convergence

- Number of initializations: $L \geq k^{\Omega(k/d)^2}$, Tensor Rank: $k = O(d)$
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Global Convergence $k = O(d)$

SVD Initialization

.

- Find the top singular vector of $T(I, I, θ)$ for $θ \sim \mathcal{N}(0, I)$.
- \bullet Use them for initialization. L trials.

Conditions for global convergence

- Number of initializations: $L \geq k^{\Omega(k/d)^2}$, Tensor Rank: $k = O(d)$
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Latest Improvement (Assuming Gaussian a_j 's)

• Improved initialization requirements for convergence.

$$
|\langle x^{(0)},a_j\rangle|\geq d^{\beta}\frac{\sqrt{k}}{d}
$$

Global Convergence $k = O(d)$

SVD Initialization

.

- \bullet Find the top singular vector of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- \bullet Use them for initialization. L trials.

Conditions for global convergence

- Number of initializations: $L \geq k^{\Omega(k/d)^2}$, Tensor Rank: $k = O(d)$
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Latest Improvement (Assuming Gaussian a_j 's)

• Improved initialization requirements for convergence.

$$
|\langle x^{(0)},a_j\rangle|\geq d^{\beta}\frac{\sqrt{k}}{d}
$$

Initialize with samples with noise variance $d\sigma^2$ s.t. $\sigma = o$

$$
\sigma^2 \text{ s.t. } \sigma = o\left(\frac{\sqrt{d}}{\sqrt{k}}\right)
$$

Outline

[Introduction](#page-1-0)

- 2 [Spectral Methods: Matrices to Tensors](#page-4-0)
	- **[Tensor Forms for Different Models](#page-18-0)**
- **[Experimental Results](#page-42-0)**
- **[Overcomplete Tensors](#page-48-0)**

Conclusion

- Guaranteed Learning of Latent Variable Models
	- **•** Efficient sample and computational complexities
	- Better performance compared to EM, Variational Bayes etc.

In practice

- Scalable and embarrassingly parallel: handle large datasets.
- **Efficient performance: perplexity or ground truth validation.**

Software Code

- **•** Topic modeling <https://github.com/FurongHuang/TopicModeling>
- **•** Community detection [https://github.com/FurongHuang/Fast-Detection-of-Overlappi](https://github.com/FurongHuang/Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-Methods.git)

Youtube videos and slides from ML summer sch[oo](#page-59-0)l $AB + AB + AB + AB$