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Challenges in Unsupervised Learning

Learn a latent variable model without labeled examples.

E.g. topic models, hidden Markov models, Gaussian mixtures,
community detection.

Maximum likelihood is NP-hard in most scenarios.

Practice: EM, Variational Bayes have no consistency guarantees.

Efficient computational and sample complexities?

In this talk: guaranteed and efficient learning through tensor methods



How to model hidden effects?

Basic Approach: mixtures/clusters

Hidden variable h is categorical.

Advanced: Probabilistic models

Hidden variable h has more general distributions.

Can model mixed memberships.

x1 x2 x3 x4 x5

h1

h2 h3



Moment Based Approaches

Multivariate Moments

M1 := E[x], M2 := E[x⊗ x], M3 := E[x⊗ x⊗ x].

Matrix

E[x⊗ x] ∈ R
d×d is a second order tensor.

E[x⊗ x]i1,i2 = E[xi1xi2 ].

For matrices: E[x⊗ x] = E[xx⊤].

Tensor

E[x⊗ x⊗ x] ∈ R
d×d×d is a third order tensor.

E[x⊗ x⊗ x]i1,i2,i3 = E[xi1xi2xi3 ].
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Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

Dimension reduction through PCA (on data matrix)

Clustering on projected vectors (e.g. k-means).

Basic method works only for single memberships.

Failure to cluster under small separation.

Require long documents for good concentration bounds.

Efficient Learning Without Separation Constraints?



Beyond SVD: Spectral Methods on Tensors

How to learn the mixture components without separation constraints?

◮ Are higher order moments helpful?

Unified framework?

◮ Moment-based Estimation of probabilistic latent variable models?

SVD gives spectral decomposition of matrices.
◮ What are the analogues for tensors?
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Spectral Decomposition

M2 =
∑
i
λiui ⊗ vi

= + ....

Matrix M2 λ1u1 ⊗ v1 λ2u2 ⊗ v2

M3 =
∑
i
λiui ⊗ vi ⊗ wi

= + ....

Tensor M3 λ1u1 ⊗ v1 ⊗ w1 λ2u2 ⊗ v2 ⊗ w2

u⊗ v ⊗ w is a rank-1 tensor since its (i1, i2, i3)
th entry is ui1vi2wi3 .
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Decomposition of Orthogonal Tensors

A has orthogonal columns.

M3 =
∑

i

wiai ⊗ ai ⊗ ai.

M3(I, a1, a1) =
∑

iwi〈ai, a1〉2ai = w1a1.

ai are eigenvectors of tensor M3.

Analogous to matrix eigenvectors:
Mv = M(I, v) = λv.

Two Problems

How to find eigenvectors of a tensor?

A is not orthogonal in general.



Whitening

M3 =
∑

i

wiai ⊗ ai ⊗ ai, M2 =
∑

i

wiai ⊗ ai.

Find whitening matrix W s.t. W⊤A = V is an orthogonal matrix.

When A ∈ R
d×k has full column rank, it is an invertible

transformation.

v1

v2
v3

W
a1
a2
a3

Use pairwise moments M2 to find W s.t. W⊤M2W = I.

Eigen-decomposition of M2 = UDiag(λ̃)U⊤, then
W = UDiag(λ̃−1/2).



Using Whitening to Obtain Orthogonal Tensor

Tensor M3 Tensor T

Multi-linear transform

M3 ∈ R
d×d×d and T ∈ R

k×k×k.

T = M3(W,W,W ) =
∑

iwi(W
⊤ai)

⊗3.

T =
∑
i∈[k]

λi · vi ⊗ vi ⊗ vi is orthogonal.

Dimensionality reduction when k ≪ d.



Putting it together

M2 =
∑

i

wiai ⊗ ai, M3 =
∑

i

wiai ⊗ ai ⊗ ai.

Obtain whitening matrix W from SVD of M2.

Use W for multi-linear transform: T = M3(W,W,W ).

Find eigenvectors of T through power method and deflation.

For what models can we obtain M2 and M3 forms?
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Topic Modeling



Geometric Picture for Topic Models
Topic proportions vector (h)

Document
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Single topic (h)

AAA

x1

x2

x3
Word generation (x1, x2, . . .)

Linear model: E[xi|h] = Ah .



Moments for Single Topic Models

E[xi|h] = Ah.

w := E[h].

Learn topic-word matrix A, vector w
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Moments for Single Topic Models

E[xi|h] = Ah.

w := E[h].

Learn topic-word matrix A, vector w
x1 x2 x3 x4 x5

AAAAA

h

Pairwise Co-occurence Matrix Mx

M2 := E[x1 ⊗ x2] = E[E[x1 ⊗ x2|h]] =
k∑

i=1

wiai ⊗ ai

Triples Tensor M3

M3 := E[x1 ⊗ x2 ⊗ x3] = E[E[x1 ⊗ x2 ⊗ x3|h]] =
k∑

i=1

wiai ⊗ ai ⊗ ai



Moments under LDA

M2 := E[x1 ⊗ x2] − α0

α0 + 1
E[x1]⊗ E[x1]

M3 := E[x1 ⊗ x2 ⊗ x3] − α0

α0 + 2
E[x1 ⊗ x2 ⊗ E[x1]]−more stuff...

Then

M2 =
∑

w̃i ai ⊗ ai

M3 =
∑

w̃i ai ⊗ ai ⊗ ai.

Three words per document suffice for learning LDA.

Similar forms for HMM, ICA, etc.



Network Community Models
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Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

3-Star Count Tensor

M̃3(a, b, c) =
1

|X|# of common neighbors in X

=
1

|X|
∑

x∈X
G(x, a)G(x, b)G(x, c).

M̃3 =
1

|X|
∑

x∈X
[G⊤

x,A ⊗G⊤
x,B ⊗G⊤

x,C ]

x

a b c

A B C

X



Multi-view Representation

Conditional independence of the three views

πx: community membership vector of node x.

3-stars

xX

A B C

Graphical model

πx

G⊤
x,A G⊤

x,B
G⊤

x,C

Similar form as M2 and M3 for topic models



Main Results
k communities, n nodes. Uniform communities.

α0: Sparsity level of community memberships (Dirichlet parameter).

p, q: intra/inter-community edge density.

Scaling Requirements

n = Ω̃(k2(α0 + 1)3),
p− q√

p
= Ω̃

(
(α0 + 1)1.5k√

n

)
.

“A Tensor Spectral Approach to Learning Mixed Membership Community Models” by A.

Anandkumar, R. Ge, D. Hsu, and S.M. Kakade. COLT 2013.



Main Results
k communities, n nodes. Uniform communities.

α0: Sparsity level of community memberships (Dirichlet parameter).

p, q: intra/inter-community edge density.

Scaling Requirements

n = Ω̃(k2(α0 + 1)3),
p− q√

p
= Ω̃

(
(α0 + 1)1.5k√

n

)
.

For stochastic block model (α0 = 0), tight results

Tight guarantees for sparse graphs (scaling of p, q)

Tight guarantees on community size: require at least
√
n sized

communities

Efficient scaling w.r.t. sparsity level of memberships α0

“A Tensor Spectral Approach to Learning Mixed Membership Community Models” by A.

Anandkumar, R. Ge, D. Hsu, and S.M. Kakade. COLT 2013.
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Main Results (Contd)

α0: Sparsity level of community memberships (Dirichlet parameter).

Π: Community membership matrix, Π(i): ith community

Ŝ: Estimated supports, Ŝ(i, j): Support for node j in community i.

Norm Guarantees

1

n
max

i
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2

√
p

(p− q)
√
n

)

Support Recovery

∃ ξ s.t. for all nodes j ∈ [n] and all communities i ∈ [k], w.h.p

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0.

Zero-error Support Recovery of Significant Memberships of All Nodes
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Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities.

c = # of cores.

Whiten STGD Unwhiten

Space O(nk) O(k2) O(nk)
Time O(nsk/c+ k3) O(Nk3/c) O(nsk/c)

Whiten: matrix/vector products and SVD.

STGD: Stochastic Tensor Gradient Descent

Unwhiten: matrix/vector products

Our approach: O(nskc + k3)

Embarrassingly Parallel and fast!



Scaling Of The Stochastic Iterations
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MATLAB Tensor Toolbox(CPU)

CULA Standard Interface(GPU)

CULA Device Interface(GPU)

Eigen Sparse(CPU)



Summary of Results

Friend
Users

Facebook

n ∼ 20k

Business
User
Reviews

Yelp

n ∼ 40k

Author
Coauthor

DBLP(sub)

n ∼ 1 million(∼ 100k)

Error (E) and Recovery ratio (R)

Dataset k̂ Method Running Time E R
Facebook(k=360) 500 ours 468 0.0175 100%
Facebook(k=360) 500 variational 86,808 0.0308 100%
.
Yelp(k=159) 100 ours 287 0.046 86%
Yelp(k=159) 100 variational N.A.
.
DBLP sub(k=250) 500 ours 10,157 0.139 89%
DBLP sub(k=250) 500 variational 558,723 16.38 99%
DBLP(k=6000) 100 ours 5407 0.105 95%

Thanks to Prem Gopalan and David Mimno for providing variational code.



Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31



Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31

Bridgeness: Distance from vector [1/k̂, . . . , 1/k̂]⊤

Top-5 bridging nodes (businesses)

Business Categories
Four Peaks Brewing Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe
Pizzeria Bianco Restaurants, Pizza, Phoenix
FEZ Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix
Matt’s Big Breakfast Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Co Restaurants, Bars, Nightlife, Pubs, Tempe
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Beyond Orthogonal Tensor Decomposition

T =
∑

j∈[k]
wjaj ⊗ aj ⊗ aj .

k: tensor rank, d: ambient dimension. k > d: overcomplete.

A is incoherent: 〈ai, aj〉 ∼ 1√
d
for i 6= j.

Guaranteed Recovery when k = o(d1.5) .

Tight sample complexity bounds.

“Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates” by A., R.

Ge, M. Janzamin. Preprint, Feb. 2014.

“Provable Learning of Overcomplete Latent Variable Models: Semi-supervised & Unsupervised”.



High-level Intuition for Sample Bounds

Gaussian mixture model: x = Ah+ z, where z is noise.

Exact moment T =
∑

i wiai ⊗ ai ⊗ ai.

Sample moment: T̂ = 1
n

∑
i x

i ⊗ xi ⊗ xi − . . ..

Naive Idea: ‖T̂ − T‖ ≤ ‖mat(T̂ )−mat(T )‖, apply matrix Bernstein’s.

Our idea: Careful ǫ-net covering for T̂ − T .

T̂ − T has many terms, e.g. 1
n

∑
i z

i ⊗ zi ⊗ zi.

Need to bound
1

n

∑

i

〈zi, u〉3, for all u ∈ Sd−1.

Classify inner products into buckets and bound them separately.
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Exact moment T =
∑

i wiai ⊗ ai ⊗ ai.

Sample moment: T̂ = 1
n

∑
i x

i ⊗ xi ⊗ xi − . . ..

Naive Idea: ‖T̂ − T‖ ≤ ‖mat(T̂ )−mat(T )‖, apply matrix Bernstein’s.

Our idea: Careful ǫ-net covering for T̂ − T .

T̂ − T has many terms, e.g. 1
n

∑
i z

i ⊗ zi ⊗ zi.

Need to bound
1

n

∑

i

〈zi, u〉3, for all u ∈ Sd−1.

Classify inner products into buckets and bound them separately.

Tight sample bounds for a range of latent variable models.

E.g. Require Ω̃(k) samples for k-Gaussian mixtures in low-noise
regime.



Main Result: Local Convergence

Initialization: ‖a1 − a(0)‖ ≤ ǫ0, and ǫ0 < const.

Noise: T̂ := T + E, and ‖E‖ ≤ 1/polylog(d).

Error: ǫT := ‖E‖ + Õ
(√

k
d

)

Theorem (Local Convergence)

After O(log(1/ǫT )) steps of alternating rank-1 updates,

‖a1 − a(t)‖ = O(ǫT ).

Linear convergence: up to approximation error.

Guarantees for overcomplete tensors: k = o(d1.5) and for pth-order
tensors k = o(dp/2).

Requires good initialization. What about global convergence?



Global Convergence k = O(d)

SVD Initialization

Find the top singular vector of T (I, I, θ) for θ ∼ N (0, I).

Use them for initialization. L trials.

Conditions for global convergence

Number of initializations: L ≥ kΩ(k/d)2 , Tensor Rank: k = O(d)

No. of Iterations: N = Θ(log(1/ǫT )). Recall ǫT : approx. error.
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Global Convergence k = O(d)

SVD Initialization

Find the top singular vector of T (I, I, θ) for θ ∼ N (0, I).

Use them for initialization. L trials.

Conditions for global convergence

Number of initializations: L ≥ kΩ(k/d)2 , Tensor Rank: k = O(d)

No. of Iterations: N = Θ(log(1/ǫT )). Recall ǫT : approx. error.

Latest Improvement (Assuming Gaussian aj’s)

Improved initialization requirements for convergence.

|〈x(0), aj〉| ≥ dβ
√
k

d
.

Initialize with samples with noise variance dσ2 s.t. σ = o

(√
d√
k

)
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Conclusion

Guaranteed Learning of Latent Variable Models

Efficient sample and computational complexities

Better performance compared to EM, Variational
Bayes etc.

 

 

In practice

Scalable and embarrassingly parallel: handle large datasets.

Efficient performance: perplexity or ground truth validation.

Software Code

Topic modeling
https://github.com/FurongHuang/TopicModeling

Community detection
https://github.com/FurongHuang/Fast-Detection-of-Overlappi

Youtube videos and slides from ML summer school
http://newport.eecs.uci.edu/anandkumar/MLSS.html

https://github.com/FurongHuang/TopicModeling
https://github.com/FurongHuang/Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-Methods.git
http://newport.eecs.uci.edu/anandkumar/MLSS.html
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