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e Graphs and Graphons viewed in: (W, dsup) is @ compact

metric space.

e Introduce any stochastic dynamics for n > 1, to get

{Ga(t) }r>1,620

Question: In the n — oo limit, does this provide a diffusion
on {ht}e>0 on (W, dsup) 7



Motivation: - modelling of real-world network

dynamics

e Applications:
e Model the evolution of social networks.
e Spread of pathogens in (dynamic) social contact
networks.
e Propagation of information in a dynamic network.
e Analysis: specific models, ODE, Agent-based models and
Simulation.
e Mathematical Treatment:
e Dynamic Percolation
e Dynamic Very Sparse Graph: mixing times of Random
walks

e Dense Networks it is in early stages.
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Dynamics of Dense Networks to Graphon Processes

e Easy to visualise and construct random dynamics of

graphs on n vertices for each fixed n,
e It is a challenge to get interesting n — oo limits.

e Crane 2016- first to attempt:

e established limiting dynamics of time-varying dense
networks using the Aldous-Hoover Theory.

e Their Projections onto the space of Graphons induce
processes of locally bounded variation.

e Exchangeability of Vertices ensures only jump processes

or deterministic flows.

e Cerny and Klimovsky(2018) have elaborated/explained

Crane's work.



Aldous-Hoover Theory of Infinite Exchangeable

Arrays

(Xjj)ij>1 is called exchangeable array if its distribution remains

the same under any finite permutation of its index labels.
Special case: infinite exchangeable random graph (ierg) is case

where Xj; € {0,1} and X = Xj; as.

Theorem (Aldous/Hoover, 70s/80s)
Let H be an ierg. Then 3f: [0,1]* — [0,1] such that
f(u,x,y) = f(u,y, x) and such that

Xi =1[U; < f(U, U, U))] Vi.Jj,

where the U, U;, Uy are all i.i.d. uniform on [0, 1].



Theorem (Diaconis and Janson (2007))

The class of iergs and the class of distributions on (W, dsub)
Is one-to-one.

If H is ierg and h is random element of W then
Ete(h) = P[F C H|p,..9] VF

uniquely determines h(= h'') from H and vice versa.



Crane’s theory (2016, AoP)

e Theory of Markov processes on exchangeable arrays,

aiming to understand graphon-valued processes.

Theorem (Crane (2016))

If H(t) is ierg-valued Markov process, then h"'(t) has bounded

variation.

e Hence, this way, we cannot obtain graphon-valued
diffusions, e.g. “graphon-valued Brownian motion”



However. ..

Pick your preferred diffusion Y(t) on [0, 1] and define

h(t) = Y(t), that is, constant graphon, the height of which
changes in time.

Connet

YCD i~y wep YIE)

e This is a perfectly fine Markov process with unbounded
variation.

e It seems the assumption that the ierg H(t)
(h(t) = h"(t))

be Markov is very strong.



Dynamics of Dense Networks to Graphon Processes

e Diffusions are not captured through the lens of the

Aldous-Hoover theory.

e Are there No diffusions on Graphons as n — oo

dynamics ?

e Technical difficulties:
e n — oo sub-graph counts have lot of averaging takes

place.

e Typical intuitive stochastic discrete dynamics will lead to

a deterministic flow on Graphon space.



Topology: Gy(:) as n — oo to h(-) 7

copies of F in G,

t(F, G,(t = - .
(F Go(1)) copies of F in complete graph K,
n— oo
/ dxy -+ - dxg H h(t)(x;, x;)
fo. 1 (1) €E(F)
= t(F, ht)
Proof:

e Averaging effect.
e concentration to the mean.

e Working with a generalised U-statistic.



Graphon and Graph: Stochastic Block model

e Graphon for Stochastic Block model A : [0,1]* — [0, 1]

5 | B

a |

A

e Dense Graph G(n, h) on {1,2,...,n}:

edge w.p. h(U;, U))
1 2 i J n

where Uy, Us, ... U, be i.i.d. Uniform [0, 1].



Dynamic Stochastic Block Model

Can we construct a sequence of evolving dense graphs to

achieve a scaling limit to :

Yl

where Y} is a diffusion ?



Dynamics of Networks

e Natural idea of discrete Dynamics:

e Each edge evolves independently.
e Random Time it remains active (i.e., present),

e Random Time it remains inactive (i.e., absent).

o Will results in Deterministic limiting Dynamics for Y}

e Something more needs to be done.



Moran Model to Wright Fisher

e Moran Model:
e Consider n individuals, each carrying Type 0 or Type 1.

e At rate 1, randomly draws an individual from the
population (possibly itself) and adopts its type.

e Let X"(s) be the number of individuals of type 0 at
time s.

Y"(s) = £X"(ns) converges weakly to Y(s)

e Wright-Fisher:

Y(s) = Y(0) + /0 VY)Y (W) dW(u)

with W being standard Brownian motion.



Gn(s): discrete dynamics based on types

e At s >0, i andj are connected by an edge with
probability 1 if they are of the same type and remain
disconnected if their types are different.

e For any connected graph F on k vertices, the sub-graph

density of F in G"(s) is

B # of copies of F in G,(s)
t(F, Gn(s)) == # of copies of F in the complete graph

o X5+ (1= X"(s))"




Gn(s): discrete dynamics as n — oo

X"(s)* + (n — X"(s))*
(F. o) = X (1= X00E)
Liemk ﬂrq()haﬂ — Xn(s) k+ 1— Xn(s) “
n n
1

© = h[§)

1lo converges weakly as n — oo
\/5

—Y(s) + (1 Y(s)* = (R, hiw)



Graphon-Diffusion: h(s) : [0,1]* — [0, 1]

Y(s)

For any connected graph F on k vertices, the sub-graph
density of F in h(s) is

t(F,h(s)) = Y(s)"+ (1 — Y(s))*



Gn(s) converges weakly in Graphon space to h(s)

o tr(G,(s)) converge weakly to te(h(s))

e te(h(s)) is adapted to the filtration generated by Y(s),
and is a Markov process.

5 B

Y(s)

e Using the modulus of continuity of tg(h) and conclude in
the sub-graph distance h is diffusive.



Result 1: [Set up] Convergence on Graphon Space

Weak Convergence: G,(-) = h(-) or h,(-) = h(+)

e Convergence of t(F, G,(s)) sub-graph density
have hidden dependencies and are Generalised

U-statistics.

e Establish tightness criteria in Graphon space
based on t(F, G,(s)) for finite graphs F.

e Obtain Process Convergence in

sub-graph metric on Graphon space.



Proof Of Concept

The following are equivalent:
o R & hasn— oo in D([0, 0), W).
e Foralld > 1 and all graphs F1,...,F4y € F,

(try (B, - e (B) & (try (B), - e, (B)) (0 — o0),

where weak convergence takes place in D([0, o), [0, 1]9).

o For every graph F € F, the sequence (tg(h")),>1 is tight. Moreover, for all d > 1, all time
points 0 < 53 < --- < sy < co where h is continuous almost surely, and all
graphs Fy, ..., Fy € F,

Jim  Eltry ((s1)) % -+ % te, (F"(sa))] = Eltey (B(s2)) % - x tr, (F(sq))]-



Result 2: Multi-type Moran Model m = 3-types

e Multi-type Moran model to Multi-dimensional
Wright-Fisher

e Connection Probability also changing dynamically.

5(s)| 7(s) | B(s)




Result 3: Fleming-Viot Model (m = o)

M-Multi-dimensional Wright-Fisher converges to
Fleming-Viot model on [0,1]-Continuum Type Space.

hM _Graphon induced by Wright-Fisher diffusion.

Show h™ converge weakly to h

h-Graphon which is measurable function of Fleming-viot.

A rich class of nontrivial diffusions in the space of graphons

well beyond the stochastic block model framework.



Work in Progress : G,(t)

| |

e [n]- Vertices: Individual is either Type 0 or Type 1.

Dynamics:

e Edges: Turn on and off based on rates that depend on

vertex type.

e Vertices: Voter model on existing Network.
Scaling :

e Total number of edge flips are of same order as Total

number of type changes (per unit time)

e \ertex changes same rate as its degree changes by 1. 6



Work in Progress : Generator

s — |

5 vectex flipy | L o

afe)
=1 37 op(G)F(1i(6)) ~ £(G)
1<i<n

+p D sg0+ € (G)(se1 — sa.0) + ij(G)(sc0 — S40)
1<i<j<n ~\_
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Proof Techniques among Friends

Need coloured subgraph densities theory.

Work out the n-th Level Generator of the coloured
subgraph densities. chavactiy
/’ Process
)+ -
\ rocess Fo

Lyapunov function to make it 4+ ¥=0 2  rush into
m ¢qifold

Anf(te(h)) = n(

Convergence to a graphon valued stochastic process in
Meyer-Zheng Topology.



Grand Claims among Friends

e Complete description of all Subgraph densities of an

interacting system.
e No moment closure and no mean field approximation.

e A rich class of models— very exciting.






