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Key Question

• Graphs and Graphons viewed in: (fW , dsub) is a compact
metric space.

• Introduce any stochastic dynamics for n � 1, to get
{Gn(t)}n�1,t�0

Question: In the n ! 1 limit, does this provide a diffusion
on {ht}t�0 on (fW , dsub) ?



Motivation: - modelling of real-world network
dynamics

• Applications:
• Model the evolution of social networks.
• Spread of pathogens in (dynamic) social contact

networks.
• Propagation of information in a dynamic network.
• Analysis: specific models, ODE, Agent-based models and

Simulation.
• Mathematical Treatment:

• Dynamic Percolation
• Dynamic Very Sparse Graph: mixing times of Random

walks
• Dense Networks it is in early stages.



Ferguson et . al - Epidemic - IISc . Bangalore city
spread simulation
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Dynamics of Dense Networks to Graphon Processes

• Easy to visualise and construct random dynamics of
graphs on n vertices for each fixed n,

• It is a challenge to get interesting n ! 1 limits.

• Crane 2016- first to attempt:
• established limiting dynamics of time-varying dense

networks using the Aldous-Hoover Theory.
• Their Projections onto the space of Graphons induce

processes of locally bounded variation.
• Exchangeability of Vertices ensures only jump processes

or deterministic flows.

• Černý and Klimovsky(2018) have elaborated/explained
Crane’s work.



Aldous-Hoover Theory of Infinite Exchangeable
Arrays

(Xij)i ,j�1 is called exchangeable array if its distribution remains
the same under any finite permutation of its index labels.

Special case: infinite exchangeable random graph (ierg) is case
where Xij 2 {0, 1} and Xij = Xji a.s.

Theorem (Aldous/Hoover, 70s/80s)

Let H be an ierg. Then 9f : [0, 1]3 ! [0, 1] such that
f (u, x , y) = f (u, y , x) and such that

Xij = I[Uij  f (U ,Ui ,Uj)] 8i , j ,

where the U , Ui , Uij are all i.i.d. uniform on [0, 1].



Theorem (Diaconis and Janson (2007))

The class of iergs and the class of distributions on (fW , dsub)

is one-to-one.

If H is ierg and h is random element of fW , then

EtF (h) = P[F ⇢ H |{1,...,k}] 8F

uniquely determines h(⌘ h
H) from H and vice versa.



Crane’s theory (2016, AoP)

• Theory of Markov processes on exchangeable arrays,
aiming to understand graphon-valued processes.

Theorem (Crane (2016))

If H(t) is ierg-valued Markov process, then h
H(t) has bounded

variation.

• Hence, this way, we cannot obtain graphon-valued
diffusions, e.g. “graphon-valued Brownian motion”



However...

Pick your preferred diffusion Y (t) on [0, 1] and define
h(t) ⌘ Y (t), that is, constant graphon, the height of which
changes in time.

• This is a perfectly fine Markov process with unbounded
variation.

• It seems the assumption that the ierg H(t)

(h(t) ⌘ h
H(t))

be Markov is very strong.
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Dynamics of Dense Networks to Graphon Processes

• Diffusions are not captured through the lens of the
Aldous-Hoover theory.

• Are there No diffusions on Graphons as n ! 1
dynamics ?

• Technical difficulties:
• n ! 1 sub-graph counts have lot of averaging takes

place.

• Typical intuitive stochastic discrete dynamics will lead to
a deterministic flow on Graphon space.



Topology: Gn(·) as n ! 1 to h(·) ?

t(F ,Gn(t)) =
copies of F in Gn

copies of F in complete graph Kn

n ! 1 Z

[0,1]k
dx1 · · · dxk

Y

(i ,j)2E(F )

h(t)(xi , xj)

=: t(F , ht)

Proof:
• Averaging effect.
• concentration to the mean.
• Working with a generalised U-statistic.



Graphon and Graph: Stochastic Block model

• Graphon for Stochastic Block model h : [0, 1]2 ! [0, 1]

↵
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• Dense Graph G (n, h) on {1, 2, . . . , n}:⌫
r r r r r
1 i

. . .. . . . . .
edge w.p. h(Ui ,Uj)

n2 j

where U1,U2, . . .Un be i.i.d. Uniform [0, 1].



Dynamic Stochastic Block Model

Can we construct a sequence of evolving dense graphs to
achieve a scaling limit to :

↵
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Y
1

t

where Y
1

t
is a diffusion ?



Dynamics of Networks

• Natural idea of discrete Dynamics:

• Each edge evolves independently.
• Random Time it remains active (i.e., present),
• Random Time it remains inactive (i.e., absent).

• Will results in Deterministic limiting Dynamics for Y 1

t

• Something more needs to be done.



Moran Model to Wright Fisher

• Moran Model:
• Consider n individuals, each carrying Type 0 or Type 1.

• At rate 1, randomly draws an individual from the
population (possibly itself) and adopts its type.

• Let X n(s) be the number of individuals of type 0 at
time s.

Y
n(s) = 1

n
X

n(ns) converges weakly to Y (s)

• Wright-Fisher:

Y (s) = Y (0) +
Z

s

0

p
Y (u)(1 � Y (u)) dW (u)

with W being standard Brownian motion.



Gn(s): discrete dynamics based on types

• At s � 0, i and j are connected by an edge with
probability 1 if they are of the same type and remain
disconnected if their types are different.

• For any connected graph F on k vertices, the sub-graph
density of F in G

n(s) is

t(F ,Gn(s)) :=
# of copies of F in Gn(s)

# of copies of F in the complete graph

=
X

n(s)k + (n � X
n(s))k

nk

N



Gn(s): discrete dynamics as n ! 1

t(F ,Gn(s)) :=
X

n(s)k + (n � X
n(s))k

nk

=

✓
X

n(s)

n

◆k

+

✓
1 � X

n(s)

n

◆k

converges weakly as n ! 1

= Y (s)k + (1 � Y (s))k

Limit Graphon

0 1

1. 0
≤ hcs)
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Graphon-Diffusion: h(s) : [0, 1]2 ! [0, 1]

1

10

0

Y (s)

For any connected graph F on k vertices, the sub-graph
density of F in h(s) is

t(F , h(s)) = Y (s)k + (1 � Y (s))k



Gn(s) converges weakly in Graphon space to h(s)

• tF (Gn(s)) converge weakly to tF (h(s))

• tF (h(s)) is adapted to the filtration generated by Y (s),
and is a Markov process.

↵
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�

Y (s)

• Using the modulus of continuity of tF (h) and conclude in
the sub-graph distance h is diffusive.



Result 1: [Set up] Convergence on Graphon Space

Weak Convergence: Gn(·) =) h(·) or hn(·) =) h(·)

• Convergence of t(F ,Gn(s)) sub-graph density
have hidden dependencies and are Generalised
U-statistics.

• Establish tightness criteria in Graphon space
based on t(F ,Gn(s)) for finite graphs F .

• Obtain Process Convergence in
sub-graph metric on Graphon space.



Proof Of Concept

Theorem

The following are equivalent:

• h̃
n , h̃ as n ! 1 in D([0,1), fW).

• For all d � 1 and all graphs F1, . . . , Fd 2 F ,

(tF1 (h̃
n), . . . , tF

d
(h̃n)) , (tF1 (h̃), . . . , tFd (h̃)) (n ! 1),

where weak convergence takes place in D([0,1), [0, 1]d ).

• For every graph F 2 F , the sequence (tF (h̃
n))n�1 is tight. Moreover, for all d � 1, all time

points 0  s1 < · · · < sd < 1 where h̃ is continuous almost surely, and all
graphs F1, . . . , Fd 2 F ,

lim
n!1

E [tF1 (h̃
n(s1)) ⇥ · · · ⇥ tF

d
(h̃n(sd ))] = E [tF1 (h̃(s1)) ⇥ · · · ⇥ tF

d
(h̃(sd ))].



Result 2: Multi-type Moran Model m = 3-types

• Multi-type Moran model to Multi-dimensional
Wright-Fisher

• Connection Probability also changing dynamically.

↵(s)

�(s)

�(s)

⌘(s)

�(s)

⇠(s)�(s)

�(s)

⌘(s)

Y
1(s) Y

2(s)



Result 3: Fleming-Viot Model (m = 1)

• M-Multi-dimensional Wright-Fisher converges to
Fleming-Viot model on [0,1]-Continuum Type Space.

• h
M -Graphon induced by Wright-Fisher diffusion.

• Show h
M converge weakly to h

• h-Graphon which is measurable function of Fleming-viot.

A rich class of nontrivial diffusions in the space of graphons
well beyond the stochastic block model framework.



Work in Progress : Gn(t)

Dynamics:

• [n]– Vertices: Individual is either Type 0 or Type 1.

• Edges: Turn on and off based on rates that depend on
vertex type.

• Vertices: Voter model on existing Network.

Scaling :

• Total number of edge flips are of same order as Total
number of type changes (per unit time)

• Vertex changes same rate as its degree changes by ±1.

• - I

• - o

◦

ago



Work in Progress : Generator

Anf (G )

= ⌘
X

1in

opi (G )f (v-fli (G ))� f (G )

+ ⇢
X

1i<jn

sd ,0 + ei ,j(G )(sd ,1 � sd ,0) + ci ,j(G )(sc,0 � sd ,0)

ei ,j(G )ci ,j(G )(sc,1 � sc,0 + sd ,0 � sd ,1)⇥ f (e-fli ,j(G ))� f (G ).

Vertex flip,
• - l

o - O

-



Fraction of 0s in the population (t )

34/38



edge density (t + t + t ),
concordant edge density (t + t ),

discordant edge density (t ))
35/38



Proof Techniques among Friends

• Need coloured subgraph densities theory.

• Work out the n-th Level Generator of the coloured
subgraph densities.

• An
f (tF (h)) = n ( ) + ...

• Lyapunov function to make it rush into

• Convergence to a graphon valued stochastic process in
Meyer-Zheng Topology.

>

characterize
process

nice term]
> process to

go to 0 &

manifold



Grand Claims among Friends

• Complete description of all Subgraph densities of an
interacting system.

• No moment closure and no mean field approximation.

• A rich class of models– very exciting.



Thank You !


