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Machine Learning Is
Transforming Society

* Has not fundamentally changed combinatorial
optimization

e However, could it?



Optimization Augmented
with Machine Learning




Motivating Example
[Kraska et al. SIGMOD 2018]

* Array of nintegers A

* Over time queries arrive asking if g is in A

2 4/i 11 |16 | 22| 37 | 38|44 | 88 |89 |93 |94 | 95| 96 | 97 | 98
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Motivating Example

* Array of nintegers A

* Over time queries arrive asking if g is in A

O(log n) 2 4/i 11 |16 | 22| 37 | 38|44 | 88 |89 |93 |94 | 95| 96 | 97 | 98
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Motivating Example

e Train a predictor h(qg) to predict where g is in the array
e Estimates where the integer is based on prior queries
e Could be wrong, but hopefully not too far off

e Use doubling binary search from prediction




Motivating Example

o Analysis

« Let#n be the value of |h(qg) - OPT(qg)|, the error in the
prediction

« Runtime is O(log 7)
e Need to be careful about overhead of the prediction

« Can make this work in practice



_earning Augmentead
Algorithm

Run time binary search O(log n)

Run time prediction O(log 7)

Pertect predictions give constant lookup
Worst case same as the best classical algorithm

e Gracefully degrades to the worst case
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_earning Augmentead
Algorithms

e Punchline:

 Machine learning can be combined with
classical algorithms to obtain better results

e (GGives us new widely applicable models for
beyond worst-case analysis
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| earning Augmented
Algorithms

Distribution
over Typical
Instances

Training |
nstance
Sample Evaluate average
performa nce!

] Learning
earning Prediction Augmented
Algorithm Algorithm
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Learning Augmentead
Algorithms

What parameter
should be
predicted?

Distribution
over Typical
Instances
Training
Sample Algorithmically how

should we use the

prediction?

Learning Learning
: Prediction Augmented
Algorithm » AI%orithm
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Learning Augmentead
Algorithms

Can the S What parameter
parameter be Distribution should be
learned? over Typical predicted?

Instances

Training
Sample

Learning Learning
_ Prediction Augmented
Algorithm » AI% orithm

Algorithmically how
should we use the
prediction?
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Current Status




==L Desirable Analysis
Framework

» Existence: Predictions should allow the algorithm to go beyond worst-case
bounds

Good example: Location in the array

What to predict is often the main question

. . Algorithms are robust to minor changes in the problem input

Good example: Algorithm is robust to incorrect location in the array

Bad example: yes/no if an item is in the array
« Learnability: Predictions should be learnable if data is coming from a distribution

« Example: PAC-Learning
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Beyond Worst-Case
Analysis Frameworks

* Online algorithm design

« Competitive ratio parameterized by error in the
predictions

* Running time

* Worst case run time parameterized by error in the
predictions
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Online Restricted Assignment
Makespan Minimization

» Client Server Scheduling

» Processed in m machines in the restricted assignment setting (some results hold for unrelated
machines)

* Jobs arrive over time in the online-list model
- All arrive at time 0
- Jobs revealed one at a time

» Assign jobs to the machines to minimize makespan
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Restricted Assignment
Makespan Minimization

e M machines

e N jobs

* Online list: a job must be
immediately assigned before the
next job arrives

* N(j): feasible machines for job |
e p(]): size of job | (complexity

essentially the same if unit
sized)

e Minimize the maximum makespan

* Optimal makespanis T
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Online Competitive Analysis
Model

e C-competitive ALG(I) < e
OPT(I) —
» \Worst case relative performance on each input |

* Problem well understood:
* A Q(logm) lower bound on any online algorithm

» Greedy is a O(log m)competitive algorithm [Azar,
Naor, and Rom 1995]
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Beyond Worst Case via
Predictions

* Reasonable assumption:

* Access to last week’s job sequence

* \What should be predicted?

e How can it be used?
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EXxistence

e First show natural predictions that fall

* Next give a good parameter to predict
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What (not) to Predict?

* Number of jobs assigned to machines in the
optimal solution?

* Perhaps we can identify the contentious machines?

makespan 80

optimal solution 49

20
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What (not) to Predict?

* Load of the machines in the optimal solution”

e Perhaps we can identity the contentious

machines”? No
new instance
padded with

0 dummy jobs

optimal solution 49
loads the

20 same

0

Machine 1  Machine2 Machine3 Machine 4
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What (not) to Predict?

 Predict dual variables

* Known to be useful for matching in the random order
model [Devanur and Hayes, Vee et al.]

 Read a portion of the input
 Compute the duals

* Prove a primal assignment can be (approximately)
constructed from the duals online

e Use duals to make assignments on remaining input
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What (not) to Predict?

* Predict dual variables for makespan scheduling
e Can derive primal based on dual
e Sensitive to small error (e.g. changing a variable

by a factor of 1+1/poly(n) has the potential to
drastically change the schedule)
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What to Predict?

* |dea: capture contentiousness of a machine

* Seems like the most important quantity besides
types of jobs
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Prediction:
Machine Weights

» Predict a weight for each machine
« Single number (compact)
e Lower weight means more restrictive machine
« Higher weight less restrictive
e Framework:
« Predict machine weights
« Using to construct fractional assignments online
 Round to an integral solution online
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Fractional Assignments via
Weights

* Each machine | has a weight w;

* Job |is assigned to machine i fractionally as
follows:




EXxistence

Theorem (existence of weights): Let T be optimal max load. For any € > 0O,
there exists machine weights such that the resulting fractional max load is at
most (1+¢€)T.

Theorem (rounding assignments) [Li, Xian ICML 2021]: There exists an
online algorithm that takes as input fractional assignments and outputs integer
assignments for which the maximum load is bounded by O((loglog(m))T’),
where T’ is maximum fractional load of the input. The algorithm is randomized
and succeeds with probability at least 1- 1/ mc

Theorem (tightness of rounding): Any randomized online rounding algorithm
has worst case load at least Q (7" log log m)

Large makespan case: [fractional makespan larger than log(m)]

« Randomized rounding gives gives a (1+¢€)T" where T’ is maximum fractional
load of the input with probability at least 1- 1 / mc.
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Results on Robustnhess

 Theorem: Given predictions of the machine weights
with maximum relative error 77 > 1, there exists an

online algorithm yielding fractional assignments for
which the fractional max load is bounded by

O(T min{log(n), log(m)}).

. Corollary: There exists an O(min{(loglog(m))log(n),

log m}) competitive algorithm for restricted assignment
In the online algorithms with learning setting
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|_earnability

« Unknown distribution model &
* |nstance drawn from unknown distribution
* Best prediction y* := argmax Ez.p[ALG(Z,y)]

 How many samples s to compute vy giving the
following performance with high probability

EIND[ALG(I, g)] Z (1 — E)EIND[ALG(I, y*)]
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|_earnability

e Similar to
 PAC learning
e Data-driven algorithm design
e Alternative: competitive analysis
e Show a small number of samples needed for

the following performance with good
probabillity

ErplALG(Z, )] > (1 — )Erp|OPT(T)]
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L earnabillity

« Theorem: Let & be a product distribution such
that E¢_o,[OPT(S)] > Q(log m). There exists an

algorithm that constructs nearly optimal weights
using a polynomial number of samples in m.
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Summary for Restricted
Assignment

e EXxistence

« Weights

« Near optimal with perfect predictions
 Bounded by the best worst case performance
e Learnability

 Low sample complexity
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Predictions for Online
Algorithms

» Lots of success for online algorithm design
« Matching

e Caching

« Ski-rental

« Scheduling

e Online learning

e Heavy hitters

- What about the original question of speeding up algorithms
offline?
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Warm-Start

 Many problems are solved repeatedly on ‘similar’ instances

e e.g. scheduling yesterday versus today

e \We solve from scratch




Pittalls

* Feasibility: The warm start may not be feasible
e Optimization: The warm start may not be useful

* [ earnablility: The starting solution may not be
learnable
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Weighted Bipartite Matching

« Input a bipartite graph G = (L U R, E) with edge

Costs ¢; ;

* Qutput the minimum cost perfect matching
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EXistence
What to Predict?

* |dea 1: Edges in optimal solution

e Brittle

e |dea 2: LP duality
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EXxistence

Primal Dual
min Z CeTE max Z Yi
ee eV
subject to: Z Te =1 VieV subject to: y; + y; < ¢y v(i,j) € E
eeN (i)
Te > 0 Ve e &

e Dual:
e Assigns prices to vertices
 Complementary slackness
e Edges in the matching have tight dual constraints
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EXxistence

Primal Dual
min Z CeTE max Z Yi
ee eV
subject to: Z Te =1 VieV subject to: y; + y; < ¢y v(i,j) € E
eeN (i)
Te > 0 Ve e &

e Hungarian algorithm (popular in practice)
e Start with dual values at O
« Compute max cardinality matching on tight edges

* |f not done, find a set violating Hall's theorem. Update duals
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EXxistence

Primal Dual
min Z CeTE max Z Yi
ee eV
subject to: Z Te =1 VieV subject to: y; + y; < ¢y v(i,j) € E
eeN (i)
Te > 0 Ve e &

e Hungarian algorithm (popular in practice)
* Predict dual values
« Compute max cardinality matching on tight edges

* |f not done, find a set violating Hall's theorem. Update duals
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" Main |dea

— Predict the dual values, i.e. predict ¥;

— “Warm start” Hungarian algorithm from predicted duals.

Feasibility issue:

— Hungarian algorithm slowly increases duals. Always has a feasible solution
— But, predicted dual may be infeasible

— Have an edge s.t.: §; + U5 > ¢ij

Approach:
— Minimally reduce predicted duals to attain feasibility
— Must do it quickly (since speed is of the essence)
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Making Duals Feasible

* Write LP for the feasibility problem:
minZéi

subject to: &; +d; > (9; + U5 — cij) ™ V(i,j) € E

Algorithm (greedy):
— Pick any vertex i. Set its 0; value to the minimum that satisfies all of the constraints
— Remove i from the graph and repeat.
— Theorem: Resulting solution is a 2-approximation for the LP, runs in linear time!
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Overall approach:
— Obtain (learn) duals: 41, ..., Un

— Given a new matching instance, G = (V, E) find feasible duals ¥, - - -

— Run Hungarian method starting with v, ..., 4.,

Theorem: The overall running time is: O(||g — y*||1) - mv/n
— Strictly better when the error is small
— Can prove that it's no worse than vanilla Hungarian algorithm

45
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Does it Work"?

Experiment 1(a):
— Start with a bipartite graph with a planted min cost perfect matching

— Generate new instances by adding random noise of increasing magnitude to
the edge weights

Type Model Iteration Count vs. Noise Variance

Method
—— Hungarian
Learned Duals

lteration Count
w B
o o

N
o

-
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Noise Variance / Mean Weight

— When noise is low, learning approach dominates.
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Does it Work"?

Experiment 1(b):
— Start with a bipartite graph with a planted min cost perfect matching

— Generate new instances by adding random noise of increasing magnitude to
the edge weights

2

Type Model Running Time vs. Noise Variance

Method
—— Hungarian
o7 Learned Duals

N
o

o

Running Time (seconds)
N

w

Noise Variance / Mean Weight

— When noise gets high, nothing to be learned, so converge to Hungarian
method. 47



Does it Work"?

Experiment 2:

— Perfect matching problems derived from geometric datasets

Clustering-Based Instances, kK = 500

Method
mmm Hungarian
1000 | m== |earned Duals

800

600

Iteration Count

400

200

Shuttle Skin Blog Feedback Covertype KDD
Dataset

— Learned gains can be substantial (10x in some cases)
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Does it Work"?

Experiment 3:

— How many samples do you need to learn?

Covertype - Online Setting

Method
600 —— Hungarian
Learned Duals
550
4
C
S
§ 500
C
R
)
©
3450
400
350

01 2 3 4 5 6 7 8 91011121314 151617 18 19
Instance Number

— Many fewer than the theory predicts
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Future Work

* Learnability

* Are unlearnable predictions more useful than learnable predictions

* How useful is this new paradigm empirically and theoretically

- Rich area: Online algorithms to cope with uncertainty, running time off-line, other
applications?

https://algorithms-with-predictions.qgithub.io/
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Thank you!

Questions?



