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Introduction

The standard methods of causal inference tacitly assume no interference;
i.e., treatment on an individual unit cannot affect other units.

This assumes a simple, static world.

However, many interesting problems involve complex systems where units
interact in a dynamic way.

New methods and tools are still needed to address such problems. Many
applications:
e.g., policy making, marketplace algorithms, climate science, healthcare, etc.

Main thesis: There is probably no universal approach to causal inference in
complex systems. It depends on the context, scope, etc.

But the causal inference framework —especially potential outcomes— can
flexibly serve as a foundation.
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Example 1: Crime spillovers in Medellin, Colombia

Crime spillovers from nearby treated streets on control streets?
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treatment = increased policing; control = baseline policing.

What is a proper definition of a spillover effect? How to estimate it?
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Example 2: Treatment habituation / Learning

Online users tend to ignore website/service changes over time (e.g., learn
to avoid banners)

This setting is a special type of interference.

A unit “interferes with itself” over time (learning, habituation, etc.)

This can be a serious problem for causal inference. The treatment may

have an effect at t = 1 but the effect could attenuate drastically over time.

For example, Allcott and Rogers (2014) measured the effect of a mailing
campaign on household energy consumption.

While households reduced their energy consumption after receiving the
first email report, about half of their initial conservation actions were
abandoned within two months.
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Example 3: Causal effect of a new auction mechanism on
firm’s revenue

Yahoo! experimented in 2008 with increasing the reserve price in its ad
auctions.

The causal problem is especially challenging.

First, you never get to observe the entire marketplace assigned to one
treatment arm. Second, the system is dynamic and the treatment may have
long-term effects that are not accounted for.

Articles  Resources  Tech Talks (New!)

Search
Engine Watch

Industry SEO PPC Analytics Social Local Mobile Video Content Development More

-

Industry > Yahoo Q3 2008 Earnings: It Ain't Pretty

Yahoo Q3 2008 Earnings: It Ain't
Pretty
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Example 3: Illustration
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The causal comparison is between the entire marketplace being assigned to
treatment with the entire marketplace being assigned to control.

Both endpoints of inference are missing, and cannot be observed.
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Causal Inference

Suppose data {(Y;, Z;, X;)},i=1,...,N.

Here, Y = outcome, Z = treatment, X = covariates (features).

We want to understand the causal effect of Z on Y.

Some options:
@ *Model-based approach: Regress Y ~ Z + X.

Validate with IV, “parallel trends”, etc.

® *Design-based approach: Exploit known variation in Z (e.g., from an
experiment). The “potential outcomes” are fixed.
e.g., Randomized studies. Remains the gold standard of causal inference.

©® Causal graphs: Not today.
® DSGE-style / structural models: “Model-based approach on steroids”.

Still popular in macro policy making.
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Pitfalls of model-based approach

A model-based approach requires correct specification, and is open to
potential biases.

A more pernicious problem is how the method quantifies uncertainty.
Example: Suppose a completely randomized design (50% treated/control):

Unit (¢) Treatment (Z;) Outcome (Y;)

1 1 8
2 0 3+e€
3 0 3—c¢
4 1 8

Regress Y; ~ Z;. The estimate of “causal effect” is +5.

What is the standard error?
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Pitfalls of model-based approach

A model-based approach requires correct specification, and is open to
potential biases.

A more pernicious problem is how the method quantifies uncertainty.
Example: Suppose a completely randomized design (50% treated/control):

Unit (¢) Treatment (Z;) Outcome (Y;)

1 1 8
2 0 3+e€
3 0 3—c¢
4 1 8

Regress Y; ~ Z;. The estimate of “causal effect” is +5.

What is the standard error? O(e). (arbitrary level of certainty).

— Standard error estimation is conflated with model fit.
(here, the data fit a line very well).
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Design-based approach

A design-based approach exploits the actual variation in the experiment.

The idea is to predict outcomes under counterfactual treatment
assignments. Then compare with what was observed.

When possible, this is a more accurate way of quantifying uncertainty.
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Design-based approach

A design-based approach exploits the actual variation in the experiment.

The idea is to predict outcomes under counterfactual treatment
assignments. Then compare with what was observed.

When possible, this is a more accurate way of quantifying uncertainty.

To illustrate, suppose counterfactual assignment Z’ = (0,1, 1,0).

— According to our experiment design, this assignment is equally probable to the

observed one.

What would be the outcomes Y’ under Z’ ?

Unit (i) Treatment (Z;) Outcome (Y;)
1 0 ?

2 1 ?
3 1 ?
4 0 2
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Design-based approach

If the treatment does not affect outcomes, then Y’ would be equal to the
observed Y.
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Design-based approach

If the treatment does not affect outcomes, then Y’ would be equal to the
observed Y.

That is, the observed data would be as follows:

Unit (i) Treatment (Z;) Outcome (Y;)

1 0 3
2 1 3+e€
3 1 3—¢€
4 0 8

In this case, we would have calculated an effect of —5 instead of +5.

We can repeat this procedure for all 6 possible randomizations.

Observing an effect of +5, although extreme, has a 1/6 > 16% chance of
happening.

No significance. (cf. linear model).
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General Idea: Fisher’s Randomization Test

Design D(z) € [0, 1] = probability distribution of treatment.

Let Y;(0), Y;(1) be the “potential outcomes” of unit ¢ under control and
treatment, respectively.
This is known as a stability assumption (“SUTVA”).

Suppose the treatment has no effect on the outcomes:
Hy :Y;(0) = Yi(1).

How to test?

@ Choose test statistic, t(z,y); e.g., diff in means, or OLS using X as control.
@® Build the randomization distribution: Fr = {t(z',Y) : 2/ ~ D}.
® pval =1 — Fr(t(Z,Y)).
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An assessment of FRT

Major benefits:

@ The test is exact in finite samples. No asymptotics.
@ Not necessary to have correct Y-model specification.

@ The test is robust. Same answer under transformations of Y.
(cf. regression/ML on log Y may yield completely different results than on Y)

Some disadvantages:

@ Can only test “strong” hypotheses.
(Currently, a lot of research activity in this area).

@ Cannot generalize to population.
(Personal opinion: this is a feature, not a bug.)
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Complex Systems — Interference

A crucial assumption in causal inference (model- or design-based) has been
SUTVA: For every unit i, there are only two potential outcomes Y;(0), Y;(1)
under treatment or control, i.e.,

v — Y;(0) when Z; =0
T Y;(1) when Z; = 1.

However, in many problems there is treatment interference. (spillovers, peer
effects, contagion, dynamics etc.)

Under interference, a unit is exposed to “something more” than Z;.

It is exposed to a sum effect from the entire population treatment, Z.

Think of a vaccine trial. A control unit (unvaccinated) is “protected” by
treated units (vaccinated) in proximity.

Some more examples earlier.
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Example 1 - Hypotheses for spillovers

Under interference, every unit is exposed to “something more” than Z;.

A popular convention is to call this treatment exposure, f;(Z) € F.

Although not necessary, it is useful to think that the outcomes are the same
between any two z,z" as long as f(z) = f().
effective treatment (Manski, 2009), exclusion restriction, etc.

Examples of treatment exposure:
® fi(z) = z. Standard setting. No interference.
® fi(z) = 2i + 72 chousehold, Zi- Clustered design.
o fi(z) =z + ’szec.ty zj/|city,|. Saturation design.
(2) =

@ fi(z (2i5 Zhousehold; )- Multivalued exposure.
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Wait, could | just fit a regression?

Indeed, a popular approach is to fit:
Yi=a+BZ +v fi(Z) +6'X; + .
——
EXPDSUI’Q
@ As before, model specification is crucial.

@ fi(Z) may have a complex correlation structure with other covariates,
and possibly an underlying network.

@ Cannot accurately quantify uncertainty, in general.
(cf. simple linear example in the introduction)

@ Asymptotics on 4 may well be intractable.

Finally, it is not uncommon to use a model with Y's on the “left and right”
of the regression. This is almost never a good idea. (Angrist, 2019)
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Example 1 - Hypotheses for spillovers

In many settings, we want to test whether the exposures in a set Fg are
equivalent.

This may be expressed as:
Hy :Yi(z) = Yi(Z) forall i,z, 7 st fi(z), fi(Z) € Fo.

(Manski, 2009), (Aronow, 2012), (T. and Kao, 2013), (Bowers et al., 2013), (Athey et
al., 2019), Basse et al, 2019), (Puelz et al, 2021).

When Fy = F then the problem reduces to the classical FRT.

If Fo C F we run into problems. (the null is “weak”)

I will illustrate with the Medellin example. (Collazos et al, 2019).
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Illustration from Medellin

Crime spillovers from nearby treated streets on control streets?
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Here, Fo = {“control-spillovers”, “pure-control”} where
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FRT problems under interference

Suppose we resample z’ in the FRT as shown below:
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The exposure of 7 is not in Fo. Thus, Y;(z') cannot be imputed under Hy.
Main insight of recent literature: We have to condition on a subset of

units/assignments where imputation is possible —“focal units” in (Athey et al,
2019).
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Conditioning the FRT for spillovers

Puelz et al. (2021) developed a general method to construct such valid
conditioning for FRTs under spillovers.

Connect every pair (i, z) iff f;(z) € Fo = null exposure graph.

Units Assignments

@ The NE graph encodes the problem structure.

@ The density of the graph reveals the “support”
for testing Ho. (is I easy or hard to test?)

00000000
© N o Oh wWN

@ An edge in NE is equivalent to imputability.
Any FRT for spillovers needs to condition on a
biclique of the graph.
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FRT for spillovers

This leads to the following modifications of the classical FRT.

e To test Hy : “Are exposures in Fo equivalent?”
@ Calculate NE graph. This is uniquely determined by the Hy being
tested.
@® Calculate a “biclique decomposition” of NE.
Let C be the one that contains the realized assignment, Z, and
U = units in C; (focal units)
D = D(z|C) = design conditional on assignments of biclique.
® Choose test statistic, t(z,y) using only units in U.
© Build randomization distribution: Fr = {t(z,Y) : 2/ ~ D}.
@ pval =1 — Fr(t(Z,Y)).

This inherits all the nice properties of classical FRTs in testing for spillovers.
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Medellin application

e treated units
e “pure-control” units e _

“control-spillovers” unt
o focal units

I//

Only units in the outskirts and the ci
center are pertinent to testing Ho.

The picture reveals a complex conditioning structure for this particular Ho.

A regression approach uses all data, even from units not pertinent to Ho.

Its validity crucially relies on correct specification.
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Spin-off 1: Diagnostic

This gives us an idea to “warn” the user when Hj is hard to test.
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Spin-off 1: Diagnostic
This gives us an idea to “warn” the user when Hj is hard to test.

Example: “Effects of a large-scale social media advertising campaign on holiday
travel and COVID-19 infections: a cluster randomized controlled trial” (Breza et al,

2021)
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Spin-off 2: Improving the experimental design

We could use the NE graph to optimize the experimental design for a given
null hypothesis, Ho.
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Spin-off 2: Improving the experimental design

We could use the NE graph to optimize the experimental design for a given
null hypothesis, Ho.

Example: Suppose a design space=(po, p1) € [0, 1]® where po=treatment prob. in city-center,

and p1 = treatment prob. in outskirts.

Left: Power calculated under a simulated model for Y over the design space. (darker=higher

power).

Right: Average clique sizes in NE graph over the design space.
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Example 2: Experiments for long-term effects under
learning/habituation

ACTR (experimentation) (extrapolation) ACTR (experimentation) (extrapolation)
oty + + + |
i A + i i
implicit + explicit
: } 3
I 1 1 I H I 1 1 i
T T T T T T T T T T
0 1 2 3 T ™ 0 1 2 3 T T
Extrapolation is: Extrapolation is:
- easy to perform - harder to perform
- easy to justify - much harder to justify

An online service aiming to improve CTR needs to carefully design an
experiment to extrapolate for long-term effects.

For example, (Honhold et al, 2015) proposed designs to estimate “ad
blindness” at Google.
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Using potential outcomes

Potential outcomes can serve as a foundation again.

They have a temporal component here.

Let Y;:(Z;) denote the outcome of unit ¢ at time ¢ under assignment
Zi = (Zun, ..., Zir), a sequence of treatment fromt =1tot =T.

Potential outcome
of unit i at time t th(Z)
(e.g. CTR)

Assumption 1 (no-interference)

Y(2)=Y,Z)=Y,(Il 1T W

Assumption 2 (non-anticipating outcomes)

Y(Z)=Y(Z,) eo Y3(Z)=Ys(M 1)
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Design space

In this setting, a unit is to be exposed to a sequence of treatments.

This will help us define and estimate habituation effects.

o [

—
= I
—
€30

Here, 1 = active treatment at all time points; 0 = control at every t¢.

er = “pulse treatment” at ¢. Itis e, = (0,...,1,...,0), i.e., “1” only at ¢.
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Using potential outcomes

The following decomposition is the target of inference:

NZ zt — Y et Z[Yn €t —Yit )]

That is, A = habituation effect, and §; = instantaneous treatment effect.

We would like to design an experiment to estimate {(\s, 6¢) } ey .

The “loss function” is simply L(6) = 3=, (Ao — Ae)? + (8e,0 — 6:)*.

Here, 6 are the experimental parameters, and the “hats” are sample
estimators of A, ;.
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Minimax Design

Theorem (Basse et. al., 2022)

If Y is permutation invariant, then the minimax design is a completely
randomized design assigning units to various treatment arms as follows:

N = O(N/VT)
No = O(N/VT)
N., =O(N/T), t=2,...,T. 1)

This result shows that the minimax design needs to be imbalanced in the
presence of temporal effects.

For instance, Z; = 0 still gives information about Y; (e;) for any ¢’ < ¢
because of the no anticipation assumption.
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Example (T" = 30, N = 10000)

Optimality gap: May range from O(1) to O(T') depending on the actual

outcome model.

Balanced
CRD

322

322

322

322

322

<<

Minimax optimal
(also CRD!)

1040

1040

273

273

273
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Concluding remarks

Causal inference in complex systems is under-developed.

Standard practice does not account for interference, or treatment dynamics,
habituation, etc.

But it should!

The methods in this talk aim to address the complexities of some real-world
problems.

But these methods are but a tiny sample of what is possible, and have
important limitations.

More challenges ahead: Marketplace dynamics, game theory etc.
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Thank you!

Basse, Ding, Toulis, “Minimax designs for causal effects in temporal
experiments with treatment habituation” (Biometrika, 2022)

Puelz, Basse, Feller, Toulis “A graph-theoretic approach to randomization
tests of causal effects under interference” , JRSS-B, 2021)

Basse, Feller, Toulis, “Randomization tests of causal effects under
interference” (Biometrika, 2019)

Toulis and Parkes, “Long-term causal effects via behavioral game theory”
(NIPS, 2016)
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