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List of Early African American PhDs

Year Name University Topic
1925 Elbert Frank Cox Cornell Differential Equ
1928 Dudley Weldon Woodard UPenn Topology
1933 William Schieffelin Claytor UPenn Topology
1934 Walter Richard Talbot Pitt Group Theory
1938 Reuben Roosevelt McDaniel Cornell Algebraic Number Theory
1938 Joseph Alphonso Pierce Michigan Statistics
1941 David Harold Blackwell Illinois Probability
1942 Jesse Ernest Wilkins Chicago Calculus of Variations
1943 M. Euphemia Lofton Haynes Catholic University of America Geometry
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Blackwell’s Favorite Papers

1. On a Class of Probability Spaces, Berkeley Symposium
on Mathematical Statistics and Probability, 1956.

2. On Optimal Systems, Annals of Mathematical
Statistics, 1954.

On multi-component attrition games, Naval Research
Logistics, 1954.

An Analog of the Minimax Theorem for Vector Payoff,
Pacific Journal of Mathematics, 1956.

3. Merging of Opinions with Increasing Information, Annals
of The Annals of Mathematical Statistics, 1962
(with Lester Dubins).
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Approachability

I {Xt} sequence of bounded vectors

I An =
∑

t≤n Xt

n

I An • Xn+1 ≤ 0

I ⇒ d(An, 0)→ 0
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Approachability

I {Xt} sequence of bounded vectors, T a convex set
(TARGET SET)

I An = n−1
∑

t≤n Xt

I ΠT (An) closest point on T to An

I [An − ΠT (An)] • [Xn+1 − ΠT (An)] ≤ 0

I ⇒ d(An,T )→ 0
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Approachability

I {Xt} sequence of bounded vectors, T a convex set
(TARGET SET)

I An =
∑

t≤n Xt

n

I ΠT (An) closest point on T to An

I E{[An − ΠT (An)] • [Xn+1 − ΠT (An)]|An} ≤ 0

I ⇒ d(An,T )→ 0 almost surely
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Approachability

I Row (R) and Column (C) repeatedly meet to play a
m × n matrix game.

I If R chooses i and C chooses j , the outcome is a vector
vij in some compact space.

I Strategy chosen by R in round t is it

I Strategy chosen by C in round t is jt

I An =
∑n

t=1 vit jt/n.

I Target set T (convex)
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Approachability

GOAL:

R must force (APPROACHABILITY) d(An,T )→ 0 almost
surely as n→∞.

A convex set T is approachable if and only if every tangent
hyperplane of T is approachable.
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Extensions

Finite action apace Compact action space
Euclidean norm Other norms
Simple Average Weighted Average

Finite Dimensions Infinite Dimensions
Convex target set Closed target set

Randomization Deterministic
Full observability Partial Observability

Discrete Time Continuous Time
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No Regret

Repeatedly predict the next element of an infinite sequence of
0’s and 1’s.

Measure the fraction, Fn, of INCORRECT guesses after n
rounds.

I Hn = fraction of 1’s

I 1− Hn = fraction of 0’s

I Fn ≤ min{Hn, 1− Hn}+ εn

I εn → 0 almost surely
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No Regret

I L0
t ∈ {0, 1} error at time t if predict 0

I L1
t ∈ {0, 1} error at time t if predict 1

I Outcome from predicting 0 at time t is (L0
t − L1

t , 0)

I Outcome from predicting 1 at time t is (0, L1
t − L0

t )
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No Regret

Let wt be probability of predicting 0 at time t

An = (
∑n

t=1 wt [L0
t−L1

t ]

n
,
∑n

t=1(1−wt)[L1
t−L0

t ]

n
)

Target Set = Non-positive Orthant
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No Regret

From Approachability:

∑n
t=1(1− wt)[L1

t − L0
t ]

n
≤ εn

⇒
∑n

t=1(1− wt)[L1
t − L0

t ]

n
+

∑n
t=1 L

0
t

n
≤

∑n
t=1 L

0
t

n
+ εn

∑n
t=1[wtL

0
t + (1− wt)L

1
t ]

n
≤

∑n
t=1 L

0
t

n
+ εn = Hn + εn

Similarly∑n
t=1[wtL

0
t + (1− wt)L

1
t ]

n
≤

∑n
t=1 L

1
t

n
+ εn = 1− Hn + εn
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No External Regret

Li(n) = loss from using action i in period n (bounded).

∃ randomized rule that incurs loss R(n) in period n such that∑t
n=1 R(n)

t
≤ min

i
{
∑t

n=1 Li(n)

t
}+ εt

εt → 0 almost surely as t →∞.
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Internal Regret

Look back at all times played strategy i .

What if, on all those occasions we had played strategy j
instead.

If we would be better off by doing this, then we suffer
(internal) regret.

Goal: play so as to avoid internal regret.
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Internal Regret

1. wi(t) = probability of playing i at time t.

2. Expected loss upto time T is

T∑
t=1

∑
k

wk(t)Lk(t).

3. If, whenever action i was played we play j instead, payoff
is

T∑
i=1

∑
i

wi(t)Li(t) +
T∑
t=1

wi(t)(Lj(t)− Li(t)).
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Internal Regret

Internal regret at time T is

RT =
mini ,j [

∑T
t=1 wi(t)(Lj(t)− Li(t))]−

T
.

Goal is to choose {w(t)}’s using history so that

RT → 0.
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Calibration

Each period you announce the probability p that the next term
in a infinite 0-1 sequence will be a 1.

Announce different p’s in different periods.

How should one measure accuracy of forecast?
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Calibration

Compare average of the p’s and average of the 1s.

outcome 0 1 0 1 0
p 0.5 0.5 0.5 0.5 0.5
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Calibration

Break sequence up into two subsequences.

One corresponding to even periods and the other to odd
periods.

On each subsequence look at average of the p’s and average
of the 1s.

outcome 0 0 1 1 0 0 1 1 0
p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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Calibration

In general would like to break up into different subsequences.

A checking rule is an algorithm that builds a subsequence
period by period.

The decision to include a period can depend on the history of
outcomes and forecasts to date.

To PASS a checking rule means that on the relevant
subsequence the average of your p’s is close to the average of
the 1s.
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Calibration

Naive Calibration: Restricted family of checking rules
associated with forecasts made.

ρt(p) = proportion of 1’s in all periods upto t that forecast
was p.

For all p announced sufficiently frequently

|ρt(p)− p| → 0.
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Calibration

1. Given a checking rule is there a forecasting algorithm that
will pass it (for all possible realizations)?

2. Given a finite collection of checking rules is there a
forecasting procedure that will pass ALL of them?

3. Countable collection?

4. ALL Checking rules?

Rakesh Vohra (Penn) 23



Calibration

Highlights importance of how one measures accuracy of a
prior/probability forecast.

Backward Guarantee: From some point in future, looking
BACK, forecast close to realized outcome e.g. calibration

Forward Guarantee: From some point in future, looking
FORWARD, forecast close to realized outcome e.g. merging.
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Testing

I S = {0, 1} = state space.

I Sn = all n length 0-1 sequences.

I S∗ = all infinite 0-1 sequences.

I s = (s1, s2, . . . , sn) ∈ Sn an n-sequence of outcomes.

I si = state realized in period i .

I Element of [0, 1] is called a forecast of the event ‘1’.

I A forecast made at period r refers to outcomes that will
be observed in period r + 1.

I ∆∗ the set of probability distributions over [0, 1].
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Testing

I A forecasting algorithm is a function

f :
n−1⋃
r=0

(S r+1 × [0, 1]r )→ ∆∗

I A (finite) test is a function T : Sn × [0, 1]n → {0, 1}.
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Testing

Denote unknown process that generates s by µ.

Test T is said to pass the truth with probability 1− ε if for all
s ∈ Sn

Pr
µ

({T (s,P(s)) = 1}) ≥ 1− ε.

Type I error (rejecting the null when it is true) is small.
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Testing

T can be ignorantly passed by f with probability 1− ε if for
every s ∈ Sn,

Pr
f

({T (s, f (s)) = 1}) ≥ 1− ε.

Every finite test T that passes the truth whp can be ignorantly
passed by some forecasting algorithm.
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