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Mechanism Design recall

(Static) Mechanism Design:

- Agents have private information: Ti is the set of types of agent i and

ψ : Θ 7→ ∆(T1 × · · · × TN )

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A0.

- We are given a mapping π : Θ 7→ ∆(A0).

- Question: Can we design actions for each player A1, . . . , AN and an outcome function

f : ×Ni=1Ai 7→ ∆(A0) such that π is the equilibrium outcome of the game defined by 〈G,ψ, f〉?

Example: Google ad auction design

- A0 ⊆ ({0, 1} × R)N and (q, t) ∈ A0 if, and only if, 0 ≤
∑N
i=1 qi ≤ 1.

- Θ = Θ1 × . . .ΘN ; Ti = Θi denotes advertiser i’s value for the slot; ψ(·|θ) = δθ.

- π is the rule that assigns the good to the advertiser w/ highest θi.



Mechanism Design rewriting

(Static) Mechanism Design: (in more standard textbook notation)

- Agents have private information: Θ = ×Ni=1Θi and agent i knows θi. That is,

ψ : Θ 7→ ∆(Θ1 × · · · ×ΘN )

is such that ψ(·|θ) = δθ.

- Payoffs only depend on A0.

- We are given a mapping π : Θ 7→ ∆(A0).

- Question: Can we design actions for each player M1, . . . ,MN and an outcome function

f : ×Ni=1M i 7→ ∆(A0) such that π is the equilibrium outcome of the game defined by 〈G,ψ, f〉?

Example: Google ad auction design

- A0 ⊆ ({0, 1} × R)N and (q, t) ∈ A0 if, and only if, 0 ≤
∑N
i=1 qi ≤ 1.

- Θ = Θ1 × . . .ΘN ; Ti = Θi denotes advertiser i’s value for the slot; ψ(·|θ) = δθ.

- π is the rule that assigns the good to the advertiser w/ highest θi.



Mechanism Design question

Given π : Θ 7→ ∆(A0),

MD question: Can we design actions for each player M1, . . . ,MN and an outcome function

f : ×Ni=1M i 7→ ∆(A0) such that π is the equilibrium outcome of the game defined by 〈G,ψ, f〉?

- The focus is on designing a game given an information structure

- The first order concern is that the information is in the hands of selfish players

- and the information is needed to know what is the “correct” outcome.

- We need to be able to consider all possible games

- Mechanism design provides us with a language to do this via the revelation principle.
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Revelation principle: first-pass mechanism design

Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game

implements π:

1. Actions Mi = Θi

2. When players take actions θ′ = (θ′1, . . . , θ
′
N ), the outcome is f(θ) = π(·|θ′).

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully

report their types.

M A

Θ

f̃(m)

r(θ) f̃(r(θ)) ≡ π(·|θ)

indirect mechanism

Θ A

Θ

f̃ ◦ r ≡ π

id

direct mechanism
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Revelation principle: first-pass commentary

The learning problem becomes trivial:

- Abstract from the (maybe decentralized) learning process that ends up with the

information that is ultimately an input in the designer’s objective/rule

- Without loss, the owners of the information reveal it

- Because it is in their best interest to do so!

- they are compensated via rents and/or the allocation is distorted

The RP does not mean that all mechanisms are truthful

- Many real world mechanisms are not truthful (e.g., first price auctions)

- not clear that truthful mechanisms are better (e.g., second price auctions) (c.f., Li, 2017,

Akbarpour & Li, 2020)
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Revelation principle: first pass commentary

So why the obsession with the revelation principle?

- Truthful mechanisms are a good first cut abstraction,

- It is a recipe for constructing algorithms that implement allocations,

- It transforms an equilibrium problem into a constrained optimization problem.

- From the design perspective, if I cannot find a truthful mechanism that implements my

desired rule then no mechanism does.

B A

Θ

f̃(b)

r(θ) f̃(r(θ)) ≡ π(·|θ)

indirect mechanism

Θ A

Θ

f̃ ◦ r ≡ π

id

direct mechanism



Mechanism design in the wild commentary

- Sponsored search auctions

- display advertising

- FCC spectrum auctions

- Kidney exchange

- Healthcare systems

- Recommendation systems

- Routing on the Internet

- Resource allocation in the cloud

- Platform design for a sharing economy

- Energy and electricity markets

- Bitcoin

- Participatory democracy

- Crowdsourcing



Dynamic Mechanism Design moving forward

• Even closer to a data-driven decision process:

- Repeated interactions

- Persistent and/or evolving types

• (new) burgeoning area of dynamic mechanism design in Econ, CS, and OR

- internet auctions, government procurement, durable goods, regulation

• The designer learns information that is relevant for today but also subsequent periods

- e.g., the optimal reserve price for today may not be optimal tomorrow

• what the designer learns today, they can use tomorrow: ratchet effect

- e.g., forward-looking bidders understand that bids today determine reserve prices tomorrow⇒
additional incentive to shave bids above and beyond the strategic and dynamic interaction
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Dynamic Mechanism Design commitment

Dynamic Mechanism Design

• If the designer has full commitment to the mechanism/algorithm, this is not an issue

• The revelation principle holds in dynamic environments (Myerson 1986):

- Wlog, the designer asks the players to report their (new) private information,

- Wlog, we focus on truthful equilibria* of this game.

• What changes are the determinants of the agents’ rents: they account for today’s private

information and the impact of today’s information in future decisions

• Sometimes these rents are large enough that optimal mechanisms do not use the information
learned

- e.g., sale of a durable good
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Dynamic Mechanism Design commitment

Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods

- Buyer’s valuation for the good is private information θ ∼ F1

- Revenue-maximizing mechanism is to set the same price p each period, where

p ∈ arg max
p̂

p̂ (1− F1(p̂)) .

p?

θ < pnonoθ > p

Period 1

p?�p?θ < p p2 < p?

Period 2
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Dynamic Mechanism Design commitment

Oftentimes, optimal mechanisms are not sequentially rational:

- i.e., if we gave the designer the possibility to revise the decision rule given the new learned

information, they would have an incentive to do so.

There are many examples with these features

- dynamic (ad) auctions (e.g., Google) (c.f., Kanoria & Nazerzadeh, 2014; Papadimitrou et al, 2014; Balseiro et

al, 2022)

- repeated sales (e.g., Lobel & Paes Leme, 2017; Devanur et al, 2019; Immorlica et al, 2017)

- procurement (e.g., Gur et al, 2022)

Desiderata: a theory of mechanism design that does not rely so strongly on the assumption that the

designer has full commitment



Commitment{ classification

Instead, we would like to assume that the designer does not have full commitment

The first issue is that the complement of commitment is way too big:

• Short-term mechanisms that can be revised in each period (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont

& Tirole, 1986, Hart & Tirole, 1988,. . . )

• Full-term mechanisms w/ 2-sided renegotiation (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)

• Full-term mechanisms w/ 1-sided renegotiation (e.g., Baron & Besanko, 1987)

• Long, but not full, term contract w/ renegotiation (e.g., Rey & Salanie, 1990)

• Cannot commit even to today’s mechanism (e.g., Adams & Schwarz 2007, Vartianen 2013, Akbarpour & Li

2020)

Papers in CS & OR that study dynamic lack of commitment focus on this case as well:

Papadimitrou et al, 2014; Lobel & Paes Leme, 2017; Devanur et al, 2019; Immorlica et al, 2017;

Balseiro et al, 2022;Gur et al, 2022
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Commitment to short-term mechanisms limited commitment

Setting:

• Uninformed designer interacts with privately & persistently informed agent over time
• Designer can offer short-term mechanisms
• Designer can commit to today’s mechanism, but not to the continuation ones.

Examples:

1. Regulation (c.f., Laffont & Tirole, 1988)

2. Procurement

3. Political Economy; e.g., taxation and social insurance,

4. Ad auctions, online shopping

Few papers analyze optimal mechanisms under limited commitment:

• Optimal mechanisms w/ finite horizon, e.g.,

- Kumar (1985), Laffont & Tirole (1988), Bester and Strausz (2000,2001,2007), Hart & Tirole (1988), Skreta

(2006,2015), Bisin & Rampini (2006), Deb & Said (2015), Fiocco & Strausz (2015), Beccutti & Möller (2018)

• Infinite Horizon under restrictions, e.g.,
- Acharya & Ortner (2017), Gerardi & Maestri (2018)

- iid private information: e.g., Sleet and Yeltekin (2006, 2008), Farhi, Sleet, Yeltekin, and Werning (2012),

Golosov and Iovino (2021)
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Commitment to short-term mechanisms limited commitment

The second issue is that the revelation principle no longer holds under limited commitment:

The lack of commitment in repeated adverse-selection situations leads to substantial difficulties for

contract theory.

Laffont & Tirole, 1993

• Substantial setback in terms of what we know about optimal policies under limited commitment.

Revelation principle for mechanism design with limited commitment

We characterize a class of mechanisms and strategies that are enough to implement any outcome

distribution that can be implemented under limited commitment.
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Mechanisms definition

M

sends

message

mechanism

ϕ(·|m)

S ×A

Mechanisms (Myerson ’82, Forges ’85)

Without loss of generality,

• M is a set of input messages,

• S is a set of output messages,

• ϕ assigns to each input message a joint distribution over output messages and allocations
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Mechanisms commitment

M

sends

message

mechanism

ϕ(·|m)

S ×A

Revelation Principle under commitment

Without loss of generality,

• Communication is direct, i.e., M = Θ.

• Communication is observable: M and S have the same cardinality and ϕ is invertible.

• Equilibrium communication is truthful.
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What we know: Bester & Strausz (2001,2007) limited commitment

M

sends

message

mechanism

ϕ(·|m)

S ×A

Limited Commitment 1: Bester & Strausz (ECMA, 2001)

Assume:

• Communication is observable: M and S have the same cardinality and ϕ is invertible,

• No randomization in the allocation, i.e., each output message is attached to one allocation.

Then, if the principal earns his highest payoff consistent with the agent’s payoff, wlog

• Communication is direct, i.e., M = Θ,

However, /////////////Equilibrium///////////////////communication///is///////////truthful. (c.f., Papadimitrou et al, 2014)
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What we know: Bester & Strausz (2001,2007) limited commitment
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Limited Commitment 2: Bester & Strausz (JET, 2007)

Assume:

• ///////////////////Communication//is///////////////observable://///M/////and///S//////have/////the///////same/////////////cardinality/////and///ϕ///is/////////////invertible,

• No randomization in the allocation, i.e., each output message is attached to one allocation.

Then, without loss of generality

• Communication is direct, i.e., M = Θ,

• Equilibrium communication is truthful.
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Revelation Principle for Limited Commitment

Without loss of generality,

• Communication is direct, i.e., M = Θ.

•

• Equilibrium communication is truthful

• Equilibrium output messages coincide with principal’s equilibrium beliefs

• Equilibrium mechanisms separate the design of the information from the design of the allocation

Θ ∆(Θ)×A
ϕ

= Θ ∆(Θ) A
β α

Direct-Blackwell mechanisms
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Restoring the revelation principle: Allocations and information key insight

In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution

(mechanism design)

2. and (at the very least) the type-by-type distribution of beliefs

(information design)

• Instead of designing a mechanism for a given information structure

• Direct Blackwell mechanisms jointly design the mechanism and the information

θ
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elicit θ cannot control the t+ 1 mechcan control t+ 1 info
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Revelation Principle for Limited Commitment

Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

• Communication is direct, i.e., M = Θ.

• Output messages are beliefs, i.e., S = ∆(Θ)

• Equilibrium communication is truthful

• Equilibrium output messages coincide with principal’s equilibrium beliefs

• Equilibrium mechanisms are Direct Blackwell mechanisms

Θ ∆(Θ)×A
ϕ = Θ ∆(Θ) A

β α

• Like the standard revelation principle, it reduces the agent’s behavior and its impact on the
principal’s beliefs to a series of constraints the mechanism must satisfy:

- Truthtelling + participation + Bayes’ plausibility constraint (designer’s sequential rationality)
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• New applications facilitated by the generality of the framework

- no restrictions on the cardinality of Θ, on the length of the interaction + extension to Markov settings

- Optimality of posted prices in infinite horizon-binary type durable goods model

- Optimality of coarse product lines (menus) when purchase history leads to price discrimination

• Today: Revisit the sale of a durable good w/ a continuum of types and finite horizon
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Two final remarks

Two other reasons to care about MDLC in the context of DDDP and AGT:

1. Simplicity

2. Learning



Simple mechanisms limited commitment

• Limiting the principal’s commitment was also an attempt to justify simple mechanisms,

• . . . the idea being that it would force the principal to condition his mechanism on less variables

(e.g., non-clairvoyant mechanisms, Balseiro et al, 2022)

• It turns out that the optimal mechanism is not necessarily “simpler”

- e.g., posted prices may no longer be optimal to sell durable goods in finite horizon settings,



Learning mechanisms limited commitment

• Platforms use learning algorithms to optimize on prices/reserve prices based on historical data

(c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert,& Wei, 2022)

• Not the same as having limited commitment

- e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs

• And yet, these algorithms will do “the best” with the information collected so far according to

some objective function

• This may lead to strategic overfitting: forward looking agents will have additional incentives to

strategize

• The representation we obtain is very relevant

- the algorithm takes the role of the “sequentially rational principal”.

• Our result provides a way of representing these Bayesian algorithms and the outcomes that can

arise from the strategic interaction with a forward looking agent.

• The analyst is forced to jointly describe the way information is stored and how it is used to

determine the allocation.
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Sale of a durable good: binary types and two periods



Sale of a durable good primitives

- A seller and a buyer interact over two periods.

- The seller owns one unit of a durable good and assigns value 0 to it.

- The buyer has private information indexed by θ ∈ Θ ≡ {θL, θH} and µ0 = Pr(θ = θH)

- An allocation is a pair (q, x) ∈ {0, 1} × R,

- q indicates whether the good is sold (q = 1) or not (q = 0), and

- x is a payment from the buyer to the seller.

- If the good is sold in the first period, the game ends.

- If the final allocation is {(qt, xt)}t∈{1,2}, buyer and seller’s payoffs are

U(·, θ) =

2∑
t=1

δt−1 (qtθ − xt) and W (·, θ) =

2∑
t=1

δt−1xt

where δ ∈ (0, 1) is a common discount factor.
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Sale of a durable good timing

Timing: At the beginning of each period t ∈ {1, 2}

seller

buyer

offers

mechanism

buyer

accepts

participates

allocation

t+ 1

end

no trade

trade

(q, x) = (0, 0)

rejects

t+ 1
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Sale of a durable good period 2

• Final period: seller has full commitment. (Standard) Revelation principle applies.

• Let µ2 denote the seller’s belief that θ = θH .

• The optimal mechanism is as follows:

0 µ2µ ≡ θL
θH

sell at θL

sell at θH

sell at θL ' sell at θH

• Why µ? Whenever the seller sells to both types, he leaves rents µ2∆θ to θH .

θL = µ2(θH −∆θ) + (1− µ2)θL = µ2θH + (1− µ2)(θL −
µ2

1− µ2
∆θ)

= µ2θH + (1− µ2)θ̂L(µ2)

When µ2 = µ, then θ̂L(µ2) = 0.
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Sale of a durable good period 2

Wrapping up:

R2(µ2) =

{
θL if µ2 ≤ µ̄
µ2θH if µ2 > µ̄

=

{
µ2θH + (1− µ2)θ̂L(µ2) if µ2 ≤ µ̄

µ2θH if µ2 > µ̄

θL

µ̄

µ2

R2(·)

µ2θH

Seller’s payoff in period 2



Sale of a durable good period 1

• Recall µ1 is the prior probability that θ = θH .

• A mechanism is a tuple

Buyer

M S ×A

sends a message

ϕ(·|m)

Seller

• M is the set of input messages

• S is the set of output messages

• ϕ : M 7→ ∆(S×A)

(finite support)– without loss with finitely many types

t = 2
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Input messages period 1

Some simplifications:

• M1 =?

θ

m1

s1, a1

s2, a2

s3, a3

m2

s1, a1

s2, a2

s3, a3

pθ

1− pθ

ϕ1(s1, a1|m1)

ϕ1(s3, a3|m1)

ϕ1(s1, a2|m2)

ϕ1(s3, a3|m2)

θ

s1, a1

s2, a2

s3, a3

uvxyz

pθϕ1(s2, a2|m1) + (1− pθ)ϕ1(s2, a3|m2)
θ

1

• Bester and Strausz (JET, 2007)
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Output messages period 1

S1 =?

θ

s1, a1

s2, a2

s3, a3

ϕ1(s1, a1|θ)

ϕ1(s3, a3|θ)

µ, a1

, p2(µ)

µ, a2

, p2(µ)

µ′, a3

, p2(µ′)

θ

µ

µ′

Prϕ(µ|θ)

Prϕ(µ′|θ)

a1

a2

a3

Prϕ(a1|θ, µ)

Prϕ(a2|θ, µ)

Prϕ(a3|θ, µ′)

- Prϕ(µ|θ) = ϕ1(µ, a1|θ) + ϕ1(µ, a2|θ)

- Prϕ(a1|θ, µ) = ϕ1(µ, a1|θ)/Prϕ(µ|θ)
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Output messages period 1

S1 = ∆(Θ)
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Separating information and allocation design period 1

θ

µ, a1

µ, a2

µ′, a3

ϕ1(s1, a1|θ)

ϕ1(s3, a3|θ)

µ, a1, p2(µ)

µ, a2, p2(µ)

µ′, a3, p2(µ′)

θ

µ

µ′

Prϕ(µ|θ)

Prϕ(µ′|θ)

a1

a2

Prϕ(a1|�θ, µ)

Prϕ(a2|�θ, µ)

a3
Prϕ(a3|�θ, µ′)

- Prϕ(µ|θ) = ϕ1(µ, a1|θ) + ϕ1(µ, a2|θ)

- Prϕ(a1|θ, µ) = ϕ1(µ, a1|θ)/Prϕ(µ|θ)



Separating information and allocation design period 1

θ

µ, a1

µ, a2

µ′, a3

ϕ1(s1, a1|θ)

ϕ1(s3, a3|θ)

µ, a1, p2(µ)

µ, a2, p2(µ)

µ′, a3, p2(µ′)

θ

µ

µ′

β(µ|θ)

β(µ′|θ)

a1

a2

α(a1|µ)

α(a2|µ)

a3
α(a3|µ′)

- Prϕ(µ|θ) = ϕ1(µ, a1|θ) + ϕ1(µ, a2|θ)

- Prϕ(a1|θ, µ) = ϕ1(µ, a1|θ)/Prϕ(µ|θ)



Separating information and allocation design period 1

θ

µ, a1

µ, a2

µ′, a3

ϕ1(s1, a1|θ)

ϕ1(s3, a3|θ)

µ, a1, p2(µ)

µ, a2, p2(µ)

µ′, a3, p2(µ′)

θ

µ

µ′

β(µ|θ)

β(µ′|θ)

a1

a2

α(a1|µ)

α(a2|µ)

a3
α(a3|µ′)

- Separate the design of the information from that of the allocation

- β is the mechanism’s disclosure rule and α is the mechanism’s allocation rule.



One last simplification period 1

Quasilinearity + separation between allocation and information:

- No need to randomize on transfers: x(µ2) is the (expected) payment when output message is µ2

- q(µ2) is the probability of selling the good when output message is µ2



Seller optimal outcome constrained optimization

max
mechanisms

Revenue

where M1 = Θ, S1 = ∆(Θ), ϕ = β ⊗ α subject to

• Participation

• Truthtelling

• Consistency between beliefs and output messages.

Thus, the seller’s optimal outcome solves:



Seller optimal outcome constrained optimization

R1(µ1) ≡ max
β,q,x

∑
µ2∈∆(Θ)

(∑
θ∈Θ

µ1(θ)β(µ2|θ)

)
[x(µ2) + (1− q(µ2))δR2(µ2)],

subject to for all θ ∈ {θL, θH}:

Participationθ:
∑

µ2∈∆(Θ)

β(µ2|θ)(θq(µ2)− x(µ2) + (1− q(µ2))δu∗(µ2, θ)) ≥ 0

Truthtellingθ,θ′ :
∑

µ2∈∆(Θ)

(β(µ2|θ)− β(µ2|θ′))(θq(µ2)− x(µ2) + (1− q(µ2))δu∗(µ2, θ)) ≥ 0

Consistencyµ2 : µ2(θH)[
∑
θ

µ1(θ)β(µ2|θ)] = µ1(θH)β(µ2|θH)

Thus, the seller’s optimal outcome solves:



Seller optimal outcome constrained optimization

R1(µ1) ≡ max
β,q,x

∑
µ2∈∆(Θ)

(∑
θ∈Θ

µ1(θ)β(µ2|θ)

)

[x(µ2) + (1− q(µ2))δR2(µ2)]

,

subject to for all θ ∈ {θL, θH}:
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Sale of a durable good: t = 1

δR2(µ2;µ1) =

{
δ(µ2θH + (1− µ2)θ̂L(µ1)) if µ2 < µ̄

δµ2θH if µ2 > µ̄

δθ̂L(µ1)

µ̄
µ2

δR2(·;µ1)

δµ2θH

µ1 ≤ µ̄

δθ̂L(µ1)

µ̄
µ2

δR2(·;µ1)

δµ2θH

µ̄ < µ1
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Seller optimal outcome pictures
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µ2θH + (1− µ2)θ̂L(µ1)

max{µ2θH + (1− µ2)θ̂L(µ1), δR2(µ2;µ1)}

µ1

The “Bayesian persuasion” feel is

a consequence of S ' ∆(Θ)

⇒ Constrained Information Design
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Seller optimal outcome pictures

• Seller splits µ1 between µ2 = µ̄ and µ2 = 1

• He sells when µ2 = 1 (q(1) = 1) and delays when µ2 = µ̄ (q(µ̄) = 0)

• Posted price of θH in both periods.
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Sale of a durable good takeaway

Economic trade-off: tailor the allocation to the agent’s report vs. learning about the agent’s type.

• No such trade-off when there is commitment: acquired information can always be “forgotten.”

• The seller slows down learning:

- Similar to Kanoria & Nazerzadeh, 2014; Abernethy et al., 2019; Haghtalab, Lykouris, Nietert,& Wei,

2022



Open questions



Open questions food for thought

This is a problem that had been open in Economics for 30 years. There’s much to do!

1. Most glaring: multiple agents (the existing counterexamples do not survive with our mechanisms)

- How to aggregate the information from the multiple agents? (e.g., Halpern & Teague, 2006)

2. More practical: How to implement direct-Blackwell mechanisms?

- Multiple (infinite?) rounds of indirect observable communication?

- Cryptographic commitments? (e.g., Ferreira & Weinberg, 2020)


