(Sequential) Information Design

Data-Driven Decision Processes Bootcamp

Laura Doval

Columbia Business School

Two lectures on what essentially are two special cases of mechanism design:

- Lecture \#1: Information Design
- Lecture \#2: Mechanism Design with Limited Commitment

Hopefully by the end of Lecture \#2 that deep connections exist will be self-evident
For now, I will follow the (modern) Econ tradition of keeping them separate

Common Primitives:

- N agents, $i \in\{1, \ldots, N\}$,
- finite set of states of the world, Θ,
- common prior $\mu_{0} \in \Delta(\Theta)$,
- Set $A \equiv A_{0} \times A_{1} \times \ldots A_{N}$ of alternatives.
- Payoffs $u_{i}: \Theta \times A \mapsto \mathbb{R}$.

I will call the tuple $G \equiv\left\{N, \Theta, \mu_{0}, A,\left(u_{i}\right)_{i \in N}\right\}$ the base game.

Mechanism Design and Information Design

(Static) Mechanism Design:

- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

Mechanism Design and Information Design

(Static) Mechanism Design:

- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}

Mechanism Design and Information Design

(Static) Mechanism Design:

- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}
- We are given a mapping $\pi: \Theta \mapsto \Delta\left(A_{0}\right)$.

Mechanism Design and Information Design

(Static) Mechanism Design:

- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}
- We are given a mapping $\pi: \Theta \mapsto \Delta\left(A_{0}\right)$.
- Question: Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

Mechanism Design and Information Design

(Static) Mechanism Design:

- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}
- We are given a mapping $\pi: \Theta \mapsto \Delta\left(A_{0}\right)$.
- Question: Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

Example: Ad auction design

Mechanism Design and Information Design

(Static) Mechanism Design:

- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}
- We are given a mapping $\pi: \Theta \mapsto \Delta\left(A_{0}\right)$.
- Question: Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

Example: Ad auction design

- One ad slot: $A_{0} \subseteq(\{0,1\} \times \mathbb{R})^{N}$ and $(q, t) \in A_{0}$ if, and only if, $0 \leq \sum_{i=1}^{N} q_{i} \leq 1$.
(Static) Mechanism Design:
- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}
- We are given a mapping $\pi: \Theta \mapsto \Delta\left(A_{0}\right)$.
- Question: Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

Example: Ad auction design

- One ad slot: $A_{0} \subseteq(\{0,1\} \times \mathbb{R})^{N}$ and $(q, t) \in A_{0}$ if, and only if, $0 \leq \sum_{i=1}^{N} q_{i} \leq 1$.
- $\Theta=\Theta_{1} \times \ldots \Theta_{N} ; T_{i}=\Theta_{i}$ denotes agent i's value for the ad; $\psi(\cdot \mid \theta)=\delta_{\theta}$.
(Static) Mechanism Design:
- Agents have private information: T_{i} is the set of types of agent i and

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A_{0}
- We are given a mapping $\pi: \Theta \mapsto \Delta\left(A_{0}\right)$.
- Question: Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

Example: Ad auction design

- One ad slot: $A_{0} \subseteq(\{0,1\} \times \mathbb{R})^{N}$ and $(q, t) \in A_{0}$ if, and only if, $0 \leq \sum_{i=1}^{N} q_{i} \leq 1$.
- $\Theta=\Theta_{1} \times \ldots \Theta_{N} ; T_{i}=\Theta_{i}$ denotes agent i's value for the ad; $\psi(\cdot \mid \theta)=\delta_{\theta}$.
- π is the rule that assigns the slot to the advertiser w/highest θ_{i}.

Mechanism Design and Information Design

Information Design:

- Only agents are endowed with actions, $\left|A_{0}\right|=1$.

Mechanism Design and Information Design

Information Design:

- Only agents are endowed with actions, $\left|A_{0}\right|=1$.
- We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

Mechanism Design and Information Design

Information Design:

- Only agents are endowed with actions, $\left|A_{0}\right|=1$.
- We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.
- Question: Can I find an information structure, that is, a set of types T_{i} for each player and a mapping

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

Mechanism Design and Information Design

Information Design:

- Only agents are endowed with actions, $\left|A_{0}\right|=1$.
- We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.
- Question: Can I find an information structure, that is, a set of types T_{i} for each player and a mapping

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

Example: Say Google chooses the first-price auction

- $A_{i}=\mathbb{R}$ represents the bids of advertiser i
- Θ is the common value for the ad slot
- $u_{i}(a, \theta)=\left(\theta-a_{i}\right) \mathbb{1}\left[a_{i}=\max _{j} a_{j}\right]$
- π describes a possible distribution of bid profiles. (e.g., adversarial eqbm selection)

We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

MD: Given $\left\langle\left(T_{i}\right), \psi\right\rangle$, Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

ID: Given A_{1}, \ldots, A_{N}, Can we design $\left\langle\left(T_{i}\right), \psi\right\rangle$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

MD: Given $\left\langle\left(T_{i}\right), \psi\right\rangle$, Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times{ }_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

- The focus is on designing a game given an information structure

ID: Given A_{1}, \ldots, A_{N}, Can we design $\left\langle\left(T_{i}\right), \psi\right\rangle$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

- The focus is on designing an information structure given a (base) game G.

We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

MD: Given $\left\langle\left(T_{i}\right), \psi\right\rangle$, Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times{ }_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

- The focus is on designing a game given an information structure
- The focus is on finding a game that rationalizes π as an outcome.

ID: Given A_{1}, \ldots, A_{N}, Can we design $\left\langle\left(T_{i}\right), \psi\right\rangle$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

- The focus is on designing an information structure given a (base) game G.

We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

MD: Given $\left\langle\left(T_{i}\right), \psi\right\rangle$, Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times{ }_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

- The focus is on designing a game given an information structure
- The focus is on finding a game that rationalizes π as an outcome.

ID: Given A_{1}, \ldots, A_{N}, Can we design $\left\langle\left(T_{i}\right), \psi\right\rangle$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

- The focus is on designing an information structure given a (base) game G.
- The focus is on finding an information structure that rationalizes π as an outcome.

We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

MD: Given $\left\langle\left(T_{i}\right), \psi\right\rangle$, Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times{ }_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

- Mechanism design gives us a language to represent all games in a concise manner

ID: Given A_{1}, \ldots, A_{N}, Can we design $\left\langle\left(T_{i}\right), \psi\right\rangle$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi\rangle$?

- Information design gives us a language to represent all information structures in a concise manner

We are given a mapping $\pi: \Theta \mapsto \Delta(A)$.

MD: Given $\left\langle\left(T_{i}\right), \psi\right\rangle$, Can we design actions for each player A_{1}, \ldots, A_{N} and an outcome function $f: \times_{i=1}^{N} A_{i} \mapsto \Delta\left(A_{0}\right)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f\rangle$?

Each lecture will be about these representations:

- Information Structures (Lecture \#1)
- Games (mechanisms) (Lecture \#2)
game defined by $\langle G, \psi\rangle$?
- Information design gives us a language to represent all information structures in a concise manner

Information Design

Suppose we know the base game G, that is:

- Players: N players, $i \in\{1, \ldots, N\}$
- Actions: A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- Payoffs: $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$,

Suppose we know the base game G, that is:

- Players: N players, $i \in\{1, \ldots, N\}$
- Actions: A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- Payoffs: $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$,
but we do not know:

Suppose we know the base game G, that is:

- Players: N players, $i \in\{1, \ldots, N\}$
- Actions: A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- Payoffs: $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$,
but we do not know:
- Information structure: what the players know about their state of the world

Suppose we know the base game G, that is:

- Players: N players, $i \in\{1, \ldots, N\}$
- Actions: A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- Payoffs: $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$,
but we do not know:
- Information structure: what the players know about their state of the world
- Extensive form - information players' have about others' moves

Suppose we know the base game G, that is:

- Players: N players, $i \in\{1, \ldots, N\}$
- Actions: A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- Payoffs: $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$,
but we do not know:
- Information structure: what the players know about their state of the world
- Extensive form - information players' have about others' moves

What are all the possible equilibrium outcomes?

Selling a good to a buyer w/unknown demand

A seller wants to sell one unit of a good to a buyer,

- A seller wants to sell one unit of a good to a buyer,
- It is common knowledge that the buyer's valuation for the good $v \in[\underline{v}, \bar{v}]$ is drawn from a distribution μ_{0},
- A seller wants to sell one unit of a good to a buyer,
- It is common knowledge that the buyer's valuation for the good $v \in[\underline{v}, \bar{v}]$ is drawn from a distribution μ_{0},
- Before observing the price, (an adversarial) nature can disclose information to the buyer about her value.
- A seller wants to sell one unit of a good to a buyer,
- It is common knowledge that the buyer's valuation for the good $v \in[\underline{v}, \bar{v}]$ is drawn from a distribution μ_{0},
- Before observing the price, (an adversarial) nature can disclose information to the buyer about her value.
- Each choice of information structure defines a game between the buyer and the seller.
- A seller wants to sell one unit of a good to a buyer,
- It is common knowledge that the buyer's valuation for the good $v \in[\underline{v}, \bar{v}]$ is drawn from a distribution μ_{0},
- Before observing the price, (an adversarial) nature can disclose information to the buyer about her value.
- Each choice of information structure defines a game between the buyer and the seller.
- If the seller knows the buyer is fully informed, then the (unique) equilibrium outcome is for the seller to choose

$$
p \in \arg \max _{v}\left(1-\mu_{0}(v)\right) v
$$

and the buyer accepts if and only if $p \leq v$.

- A seller wants to sell one unit of a good to a buyer,
- It is common knowledge that the buyer's valuation for the good $v \in[\underline{v}, \bar{v}]$ is drawn from a distribution μ_{0},
- Before observing the price, (an adversarial) nature can disclose information to the buyer about her value.
- Each choice of information structure defines a game between the buyer and the seller.
- If the seller knows the buyer is fully informed, then the (unique) equilibrium outcome is for the seller to choose

$$
p \in \arg \max _{v}\left(1-\mu_{0}(v)\right) v
$$

and the buyer accepts if and only if $p \leq v$.

- Alternatively, if the seller knows the buyer does not know v, then $p=\mathbb{E}[v]$ is the unique outcome.
- A seller wants to sell one unit of a good to a buyer,
- It is common knowledge that the buyer's valuation for the good $v \in[\underline{v}, \bar{v}]$ is drawn from a distribution μ_{0},
- Before observing the price, (an adversarial) nature can disclose information to the buyer about her value.
- Each choice of information structure defines a game between the buyer and the seller.
- If the seller knows the buyer is fully informed, then the (unique) equilibrium outcome is for the seller to choose

$$
p \in \arg \max _{v}\left(1-\mu_{0}(v)\right) v
$$

and the buyer accepts if and only if $p \leq v$.

- Alternatively, if the seller knows the buyer does not know v, then $p=\mathbb{E}[v]$ is the unique outcome.
- Question: What prices are consistent with equilibrium under some information structure?
- An auctioneer can sell to one of N buyers
- An auctioneer can sell to one of N buyers
- The auctioneer is deciding between multiple auction formats
[Bergemann, Brooks, \& Morris (many), Du, 2018; Brooks and Du, 2020,2022]
- An auctioneer can sell to one of N buyers
- The auctioneer is deciding between multiple auction formats
- It is common knowledge that values are common and the bidders' value is $v \sim \mu_{0}$
- An auctioneer can sell to one of N buyers
- The auctioneer is deciding between multiple auction formats
- It is common knowledge that values are common and the bidders' value is $v \sim \mu_{0}$
- The auctioneer, however, does not know if the bidders will receive further information before playing the auction.
- An auctioneer can sell to one of N buyers
- The auctioneer is deciding between multiple auction formats
- It is common knowledge that values are common and the bidders' value is $v \sim \mu_{0}$
- The auctioneer, however, does not know if the bidders will receive further information before playing the auction.
- Each auction format and each information structure determine a game
- An auctioneer can sell to one of N buyers
- The auctioneer is deciding between multiple auction formats
- It is common knowledge that values are common and the bidders' value is $v \sim \mu_{0}$
- The auctioneer, however, does not know if the bidders will receive further information before playing the auction.
- Each auction format and each information structure determine a game
- The auctioneer may want to choose an auction format that performs well across different information structures.
[Bergemann, Brooks, \& Morris (many), Du, 2018; Brooks and Du, 2020,2022]
- An auctioneer can sell to one of N buyers
- The auctioneer is deciding between multiple auction formats
- It is common knowledge that values are common and the bidders' value is $v \sim \mu_{0}$
- The auctioneer, however, does not know if the bidders will receive further information before playing the auction.
- Each auction format and each information structure determine a game
- The auctioneer may want to choose an auction format that performs well across different information structures.

Note that as the auctioneer moves the mechanism, the adversary can pick a different information structure.

Design perspective: e.g.,

1. Platforms and Crowdsourcing (Bimpikis et al., 2020; Gur et al., 2019; Papanastasiou et al, 2018; Yang et al, 2019)
2. Social and Economic Networks (Candogan and Drakopoulos, 2020; Candogan, 2019)
3. Revenue Management (Drakopoulos et al., 2018; Kücülgul et al., 2019; Lingebrink \& lyer, 2018)
4. Firm competition (Banerjee et. al, 2022)
5. Queues (Lingebrink \& lyer, 2019; Che \& Tercieux, 2020)
6. Team formation (Banerjee \& Hssaine, 2018)

Structure of the problem: e.g.,

1. Dughmi, 2017; Dughmi \& Xu, 2016-7
2. Ariely \& Babichenko, 2016; Arieli et al., 2020

Single-agent

Single-agent

Suppose there is one player, i.e., $N=1$
Then, the question about the extensive form is mute.

Suppose there is one player, i.e., $N=1$

- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- Suppose there is one player, i.e., $N=1$
- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, $A=\{C, N C\}$
- Suppose there is one player, i.e., $N=1$
- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, $A=\{C, N C\}$
- The value of the public good, $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$
- Suppose there is one player, i.e., $N=1$
- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, $A=\{C, N C\}$
- The value of the public good, $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$
- The cost of the public good is $\theta_{L}<c<\theta_{H}$.
- Suppose there is one player, i.e., $N=1$
- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, $A=\{C, N C\}$
- The value of the public good, $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$
- The cost of the public good is $\theta_{L}<c<\theta_{H}$.
- Payoffs

$$
u(a, \theta)=(\theta-c) \mathbb{1}[a=C] .
$$

- Suppose there is one player, i.e., $N=1$
- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, $A=\{C, N C\}$
- The value of the public good, $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$
- The cost of the public good is $\theta_{L}<c<\theta_{H}$.
- Payoffs

$$
u(a, \theta)=(\theta-c) \mathbb{1}[a=C]
$$

- $\mu_{0} \equiv \mu_{0}\left(\theta=\theta_{H}\right)$
- Suppose there is one player, i.e., $N=1$
- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, $A=\{C, N C\}$
- The value of the public good, $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$
- The cost of the public good is $\theta_{L}<c<\theta_{H}$.
- Payoffs

$$
u(a, \theta)=(\theta-c) \mathbb{1}[a=C]
$$

- $\mu_{0} \equiv \mu_{0}\left(\theta=\theta_{H}\right)$
- Assume $\mu_{0} \theta_{H}+\left(1-\mu_{0}\right) \theta_{L}<c$, i.e., at the prior it is not optimal to contribute.

Question: What distributions $\pi \in \Delta(\Theta \times\{C, N C\})$ are consistent with the player optimizing given an information structure?

Question: What distributions $\pi \in \Delta(\Theta \times\{C, N C\})$ are consistent with the player optimizing given an information structure?

What is an information structure?

- A set of signals $s \in S$
- A mapping $\hat{\pi}: \Theta \mapsto \Delta(S)$.

Question: What distributions $\pi \in \Delta(\Theta \times\{C, N C\})$ are consistent with the player optimizing given an information structure?

What is an information structure?

- A set of signals $s \in S$
- A mapping $\hat{\pi}: \Theta \mapsto \Delta(S)$.

Timing:

- Nature draws $\theta \sim \mu_{0}$ and $s \sim \hat{\pi}(\cdot \mid \theta)$
- The player observes s (but not θ) (knows μ_{0} and $\hat{\pi}$)
- The player decides whether to contribute

Single-agent

Observing $s \in S$, the player updates her belief

$$
\mu_{s}(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(s \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(s \mid \theta^{\prime}\right)}
$$

Single-agent

- Observing $s \in S$, the player updates her belief

$$
\mu_{s}(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(s \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(s \mid \theta^{\prime}\right)}
$$

- and then chooses

$$
a_{\tilde{\pi}}^{*}\left(\mu_{s}\right) \in \arg \max _{\tilde{a} \in A} \sum_{\theta \in \Theta} \mu_{s}(\theta) u(\tilde{a}, \theta),
$$

where

$$
a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\left\{\begin{array}{lr}
=C & \text { if } \mu>\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
=N C & \text { if } \mu<\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
\in\{C, N C\} & \text { otherwise }
\end{array}\right.
$$

- Observing $s \in S$, the player updates her belief

$$
\mu_{s}(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(s \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(s \mid \theta^{\prime}\right)}
$$

- and then chooses

$$
a_{\tilde{\pi}}^{*}\left(\mu_{s}\right) \in \arg \max _{\tilde{a} \in A} \sum_{\theta \in \Theta} \mu_{s}(\theta) u(\tilde{a}, \theta),
$$

where

$$
a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\left\{\begin{array}{lr}
=C & \text { if } \mu>\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
=N C & \text { if } \mu<\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
\in\{C, N C\} & \text { otherwise }
\end{array}\right.
$$

- Then, we can define the probability that action a is taken at θ under $\hat{\pi}$ as

$$
\operatorname{Pr}_{\hat{\pi}}(a \mid \theta)=\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right]
$$

- Observing $s \in S$, the player updates her belief

$$
\mu_{s}(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(s \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(s \mid \theta^{\prime}\right)}
$$

- and then chooses

$$
a_{\tilde{\pi}}^{*}\left(\mu_{s}\right) \in \arg \max _{\tilde{a} \in A} \sum_{\theta \in \Theta} \mu_{s}(\theta) u(\tilde{a}, \theta),
$$

where

$$
a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\left\{\begin{array}{lr}
=C & \text { if } \mu>\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
=N C & \text { if } \mu<\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
\in\{C, N C\} & \text { otherwise }
\end{array}\right.
$$

- Then, we can define the probability that action a is taken at θ under $\hat{\pi}$ as

$$
\operatorname{Pr}_{\hat{\pi}}(a \mid \theta)=\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right]
$$

- Using the prior μ_{0} we can construct:

$$
\tilde{\pi}(a, \theta \mid \hat{\pi})=\mu_{0}(\theta) \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)
$$

Definition

$\pi \in \Delta(\Theta \times A)$ is consistent with some information structure if there exists $\langle S, \hat{\pi}\rangle$ such that for all $\theta \in \Theta$ and $a \in A$,

$$
\pi(a, \theta)=\tilde{\pi}(a, \theta \mid \hat{\pi})
$$

Definition

$\pi \in \Delta(\Theta \times A)$ is consistent with some information structure if there exists $\langle S, \hat{\pi}\rangle$ such that for all $\theta \in \Theta$ and $a \in A$,

$$
\pi(a, \theta)=\tilde{\pi}(a, \theta \mid \hat{\pi})
$$

Goal

Characterize the set

$$
\Pi\left(\mu_{0}\right)=\{\pi \in \Delta(\Theta \times A):(\exists\langle S, \hat{\pi}\rangle) \pi \equiv \tilde{\pi}(\cdot \mid \hat{\pi})\}
$$

Single-agent

Suppose we have $\pi=\tilde{\pi}(\cdot \mid \hat{\pi})$:

$$
\begin{aligned}
\operatorname{Pr}_{\hat{\pi}}(a \mid \theta) & =\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right] \\
\tilde{\pi}(a, \theta \mid \hat{\pi}) & =\mu_{0}(\theta) \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)
\end{aligned}
$$

Suppose we have $\pi=\tilde{\pi}(\cdot \mid \hat{\pi})$:

$$
\begin{aligned}
\operatorname{Pr}_{\hat{\pi}}(a \mid \theta) & =\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right] \\
\tilde{\pi}(a, \theta \mid \hat{\pi}) & =\mu_{0}(\theta) \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)
\end{aligned}
$$

Two implications of this construction:

Suppose we have $\pi=\tilde{\pi}(\cdot \mid \hat{\pi})$:

$$
\begin{aligned}
& \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)=\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right] \\
& \tilde{\pi}(a, \theta \mid \hat{\pi})=\mu_{0}(\theta) \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)
\end{aligned}
$$

Two implications of this construction:

- "Martingale" property:

$$
\sum_{a \in A} \pi(a, \theta)=\mu_{0}(\theta)
$$

Suppose we have $\pi=\tilde{\pi}(\cdot \mid \hat{\pi})$:

$$
\begin{aligned}
\operatorname{Pr}_{\hat{\pi}}(a \mid \theta) & =\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right] \\
\tilde{\pi}(a, \theta \mid \hat{\pi}) & =\mu_{0}(\theta) \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)
\end{aligned}
$$

Two implications of this construction:

- "Martingale" property:

$$
\sum_{a \in A} \pi(a, \theta)=\mu_{0}(\theta)
$$

- Obedience: for all $a \in A$ such that $\sum_{\theta \in \Theta} \pi(a, \theta)>0$

$$
\sum_{\theta \in \Theta} \pi(a, \theta)\left[u(a, \theta)-u\left(a^{\prime}, \theta\right)\right] \geq 0\left(\forall a^{\prime} \in A\right)
$$

Suppose we have $\pi=\tilde{\pi}(\cdot \mid \hat{\pi})$:

$$
\begin{aligned}
\operatorname{Pr}_{\hat{\pi}}(a \mid \theta) & =\sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\right] \\
\tilde{\pi}(a, \theta \mid \hat{\pi}) & =\mu_{0}(\theta) \operatorname{Pr}_{\hat{\pi}}(a \mid \theta)
\end{aligned}
$$

Obedience:

$$
\begin{aligned}
& \sum_{\theta \in \Theta} \pi(a, \theta) u(a, \theta)=\sum_{\theta \in \Theta} \mu_{0}(\theta) \sum_{s \in S} \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a^{*}\left(\mu_{s}\right)\right] \\
& =\sum_{s \in S} \frac{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(s \mid \theta^{\prime}\right)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(s \mid \theta^{\prime}\right)} \sum_{\theta \in \Theta} \mu_{0}(\theta) \hat{\pi}(s \mid \theta) \mathbb{1}\left[a=a^{*}\left(\mu_{s}\right)\right] u(a, \theta) \\
& =\sum_{s \in S} \operatorname{Pr}_{\hat{\pi}}(s) \sum_{\theta \in \Theta} \frac{\mu_{0}(\theta) \hat{\pi}(s \mid \theta)}{\operatorname{Pr}_{\hat{\pi}}(s)} \mathbb{1}\left[a=a^{*}\left(\mu_{s}\right)\right] u(a, \theta)=\sum_{s \in S} \operatorname{Pr}_{\hat{\pi}}(s) \sum_{\theta \in \Theta} \mu_{s}(\theta) u(a, \theta) \mathbb{1}\left[a=a^{*}\left(\mu_{s}\right)\right] \\
& \geq \sum_{s \in S} \operatorname{Pr}_{\hat{\pi}}(s) \sum_{\theta \in \Theta} \mu_{s}(\theta) \mathbb{1}\left[a=a^{*}\left(\mu_{s}\right)\right] u\left(a^{\prime}, \theta\right)
\end{aligned}
$$

Theorem (Myerson, 1982; Kamenica and Gentzkow, 2011)
$\pi \in \Pi\left(\mu_{0}\right)$ if and only if

$$
\begin{align*}
\sum_{a \in A} \pi(a, \theta) & =\mu_{0}(\theta) \tag{M}\\
\left(\forall a^{\prime} \in A\right) \sum_{\theta \in \Theta} \pi(a, \theta)\left[u(a, \theta)-u\left(a^{\prime}, \theta\right)\right] & \geq 0 \tag{O}
\end{align*}
$$

Theorem (Myerson, 1982; Kamenica and Gentzkow, 2011)
$\pi \in \Pi\left(\mu_{0}\right)$ if and only if

$$
\begin{align*}
\sum_{a \in A} \pi(a, \theta) & =\mu_{0}(\theta) \tag{M}\\
\left(\forall a^{\prime} \in A\right) \sum_{\theta \in \Theta} \pi(a, \theta)\left[u(a, \theta)-u\left(a^{\prime}, \theta\right)\right] & \geq 0 \tag{O}
\end{align*}
$$

What is the information structure that rationalizes such π ?

Theorem (Myerson, 1982; Kamenica and Gentzkow, 2011)
$\pi \in \Pi\left(\mu_{0}\right)$ if and only if

$$
\begin{align*}
\sum_{a \in A} \pi(a, \theta) & =\mu_{0}(\theta) \tag{M}\\
\left(\forall a^{\prime} \in A\right) \sum_{\theta \in \Theta} \pi(a, \theta)\left[u(a, \theta)-u\left(a^{\prime}, \theta\right)\right] & \geq 0 \tag{O}
\end{align*}
$$

What is the information structure that rationalizes such π ? $S=A$ and

Theorem (Myerson, 1982; Kamenica and Gentzkow, 2011)
$\pi \in \Pi\left(\mu_{0}\right)$ if and only if

$$
\begin{align*}
\sum_{a \in A} \pi(a, \theta) & =\mu_{0}(\theta) \tag{M}\\
\left(\forall a^{\prime} \in A\right) \sum_{\theta \in \Theta} \pi(a, \theta)\left[u(a, \theta)-u\left(a^{\prime}, \theta\right)\right] & \geq 0 \tag{0}
\end{align*}
$$

What is the information structure that rationalizes such $\pi ? S=A$ and

$$
\hat{\pi}(a \mid \theta)=\frac{\pi(a, \theta)}{\sum_{a^{\prime} \in A} \pi\left(a^{\prime}, \theta\right)}=\frac{\pi(a, \theta)}{\mu_{0}(\theta)} .
$$

Theorem (Myerson, 1982; Kamenica and Gentzkow, 2011)
$\pi \in \Pi\left(\mu_{0}\right)$ if and only if

$$
\begin{align*}
\sum_{a \in A} \pi(a, \theta) & =\mu_{0}(\theta) \tag{M}\\
\left(\forall a^{\prime} \in A\right) \sum_{\theta \in \Theta} \pi(a, \theta)\left[u(a, \theta)-u\left(a^{\prime}, \theta\right)\right] & \geq 0 \tag{0}
\end{align*}
$$

What is the information structure that rationalizes such $\pi ? S=A$ and

$$
\hat{\pi}(a \mid \theta)=\frac{\pi(a, \theta)}{\sum_{a^{\prime} \in A} \pi\left(a^{\prime}, \theta\right)}=\frac{\pi(a, \theta)}{\mu_{0}(\theta)} .
$$

The martingale property implies $\hat{\pi}(\cdot \mid \theta) \in \Delta(A)$.

Suppose we have a third party whose payoff depends on the state of the world and the agent's action

- Suppose we have a third party whose payoff depends on the state of the world and the agent's action
- Given π that satisfies (M) and (O), the payoff of the third party is

$$
\tilde{v}(\pi) \equiv \sum_{a, \theta} \pi(a, \theta) v(a, \theta)
$$

- Suppose we have a third party whose payoff depends on the state of the world and the agent's action
- Given π that satisfies (M) and (O), the payoff of the third party is

$$
\tilde{v}(\pi) \equiv \sum_{a, \theta} \pi(a, \theta) v(a, \theta)
$$

- If the third party is a designer, then it is natural to think of

$$
\max \left\{\tilde{v}(\pi): \pi \in \Pi\left(\mu_{0}\right)\right\}
$$

- Suppose we have a third party whose payoff depends on the state of the world and the agent's action
- Given π that satisfies (M) and (O), the payoff of the third party is

$$
\tilde{v}(\pi) \equiv \sum_{a, \theta} \pi(a, \theta) v(a, \theta)
$$

- If the third party is a designer, then it is natural to think of

$$
\max \left\{\tilde{v}(\pi): \pi \in \Pi\left(\mu_{0}\right)\right\}
$$

- Alternatively, the third party may be concerned with adversarial selection:

$$
\min \left\{\tilde{v}(\pi): \pi \in \Pi\left(\mu_{0}\right)\right\}
$$

- Suppose we have a third party whose payoff depends on the state of the world and the agent's action
- Given π that satisfies (M) and (O), the payoff of the third party is

$$
\tilde{v}(\pi) \equiv \sum_{a, \theta} \pi(a, \theta) v(a, \theta)
$$

- If the third party is a designer, then it is natural to think of

$$
\max \left\{\tilde{v}(\pi): \pi \in \Pi\left(\mu_{0}\right)\right\}
$$

- Alternatively, the third party may be concerned with adversarial selection:

$$
\min \left\{\tilde{v}(\pi): \pi \in \Pi\left(\mu_{0}\right)\right\}
$$

- Both are linear programs.

Contribution game

To characterize the set $\Pi\left(\mu_{0}\right)$ in the contribution example,

- the martingale property implies that it is enough to characterize the pair $\left\{\pi\left(C \mid \theta_{H}\right), \pi\left(C \mid \theta_{L}\right)\right\}$
- Obedience implies that

$$
\mu_{0} \pi\left(C \mid \theta_{H}\right) \theta_{H}+\left(1-\mu_{0}\right) \pi\left(C \mid \theta_{L}\right) \theta_{L} \geq c
$$

Contribution game

To characterize the set $\Pi\left(\mu_{0}\right)$ in the contribution example,

- the martingale property implies that it is enough to characterize the pair $\left\{\pi\left(C \mid \theta_{H}\right), \pi\left(C \mid \theta_{L}\right)\right\}$
- Obedience implies that

An alternative approach to the single-agent question is the belief approach:

- Recall that $s \rightarrow \mu_{s} \rightarrow a^{*}\left(\mu_{s}\right):$

$$
a_{\tilde{\pi}}^{*}\left(\mu_{s}\right) \in \arg \max _{\tilde{a} \in A} \sum_{\theta \in \Theta} \mu_{s}(\theta) u(\tilde{a}, \theta),
$$

where

$$
a_{\hat{\pi}}^{*}\left(\mu_{s}\right)\left\{\begin{array}{lr}
=C & \text { if } \mu>\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
=N C & \text { if } \mu<\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}} \\
\in\{C, N C\} & \text { otherwise }
\end{array}\right.
$$

- The only part that can depend on $\hat{\pi}$ is what happens at the threshold belief, $\frac{c-\theta_{L}}{\theta_{H}-\theta_{L}}$.
- Except for that, we can replace the signals $s \in S$ for the beliefs they induce μ_{s}

Theorem (Kamenica \& Gentzkow, 2011)

Fix a selection $a^{*}\left(\mu_{s}\right)$ of the player's best-response correspondence. The following are equivalent:

1. There is a literal signal structure $\langle\Delta(\Theta), \hat{\pi}\rangle$ that induces $\pi \in \Delta(\Theta \times A)$ and satisfies:

$$
\mu(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(\mu \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(\mu \mid \theta^{\prime}\right)}
$$

2. There is an obedient signal structure $\langle A, \hat{\pi}\rangle$ that induces $\pi \in \Delta(\Theta \times A)$.

Theorem (Kamenica \& Gentzkow, 2011)

Fix a selection $a^{*}\left(\mu_{s}\right)$ of the player's best-response correspondence. The following are equivalent:

1. There is a literal signal structure $\langle\Delta(\Theta), \hat{\pi}\rangle$ that induces $\pi \in \Delta(\Theta \times A)$ and satisfies:

$$
\mu(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(\mu \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(\mu \mid \theta^{\prime}\right)}
$$

2. There is an obedient signal structure $\langle A, \hat{\pi}\rangle$ that induces $\pi \in \Delta(\Theta \times A)$.

In the single agent case, we can either

- recommend the agent what action to take,
- tell the agent what belief they should have.

Theorem (Kamenica \& Gentzkow, 2011)

Fix a selection $a^{*}\left(\mu_{s}\right)$ of the player's best-response correspondence. The following are equivalent:

1. There is a literal signal structure $\langle\Delta(\Theta), \hat{\pi}\rangle$ that induces $\pi \in \Delta(\Theta \times A)$ and satisfies:

$$
\mu(\theta)=\frac{\mu_{0}(\theta) \hat{\pi}(\mu \mid \theta)}{\sum_{\theta^{\prime} \in \Theta} \mu_{0}\left(\theta^{\prime}\right) \hat{\pi}\left(\mu \mid \theta^{\prime}\right)}
$$

2. There is an obedient signal structure $\langle A, \hat{\pi}\rangle$ that induces $\pi \in \Delta(\Theta \times A)$.

In the single agent case, we can either

- recommend the agent what action to take,
- tell the agent what belief they should have.

Each approach has its downsides:

- Belief-approach requires knowing how agent breaks ties
- Action approach can be complicated if the action space is complicated (Lecture \#2)

A literal signal structure is a Blackwell-experiment and it induces a distribution over beliefs

$$
\tau(\mu)=\sum_{\theta \in \Theta} \mu_{0}(\theta) \hat{\pi}(\mu \mid \theta)
$$

So we can alternatively work with $\tau \in \Delta(\Delta(\Theta))$ if we know which ones are feasible:

A literal signal structure is a Blackwell-experiment and it induces a distribution over beliefs

$$
\tau(\mu)=\sum_{\theta \in \Theta} \mu_{0}(\theta) \hat{\pi}(\mu \mid \theta)
$$

So we can alternatively work with $\tau \in \Delta(\Delta(\Theta))$ if we know which ones are feasible:

Theorem (Blackwell, 1951; Aumann \& Maschler, 1965; Kamenica \& Gentzkow, 2011)

$\tau \in \Delta(\Delta(\Theta))$ is consistent with a signal structure and prior μ_{0} if and only if

$$
(\forall \theta \in \Theta) \sum_{\mu \in \Delta(\Theta)} \tau(\mu) \mu(\theta)=\mu_{0}(\theta)
$$

Back to many players

Base game

Ingredients:

- N players, $i \in\{1, \ldots, N\}$
- A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$

Questions

1. Suppose players take their actions simultaneously. What is the set of distributions over action profiles

$$
\pi \in \Delta(\Theta \times A)
$$

that is consistent with equilibrium under some information structure?
2. Same question, but we know neither the information structure nor the extensive form.

Base game

Ingredients:

- N players, $i \in\{1, \ldots, N\}$
- A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$

Questions

1. Suppose players take their actions simultaneously. What is the set of distributions over action profiles

$$
\pi \in \Delta(\Theta \times A)
$$

that is consistent with equilibrium under some information structure?
2. Same question, but we know neither the information structure nor the extensive form.

An information structure is a tuple $\left\{T_{1}, \ldots, T_{N}\right\}$ of type spaces and a mapping

$$
\psi: \Theta \mapsto \Delta\left(T_{1} \times \cdots \times T_{N}\right)
$$

- Each player knows $\left\langle T_{1}, \ldots, T_{N}, \psi\right\rangle$
- Each player observes t_{i} (but not t_{-i} or θ) before taking their action.
- After observing t_{i}, player i also needs a conjecture of how players choose their actions on the basis of information.
- Assume players play Bayes' Nash equilibrium.

Definition

A strategy profile $\left(\sigma_{i}\right)_{i=1}^{N}, \sigma_{i}: T_{i} \mapsto \Delta\left(A_{i}\right)$ is a Bayes' Nash equilibrium of the base game G under $\langle T, \psi\rangle$, if for all $i \in\{1, \ldots, N\}, t_{i} \in T_{i}, a_{i} \in A_{i}$, and $a_{i}^{\prime} \in A_{i}$, the following holds:

$$
\sum_{\theta \in \Theta} \mu_{0}(\theta) \sum_{t_{-i} \in T_{-i}} \psi\left(t_{i}, t_{-i} \mid \theta\right) \sum_{a_{-i} \in A_{-i}} \prod_{j \neq i} \sigma_{j}\left(a_{j} \mid t_{j}\right)\left[u_{i}\left(a_{i}, a_{-i}, \theta\right)-u_{i}\left(a_{i}^{\prime}, a_{-i}, \theta\right)\right] \geq 0
$$

Note that from here we can again construct a joint probability $\pi \in \Delta(\Theta \times A)$. Namely,

$$
\begin{aligned}
\operatorname{Pr}_{\psi}(a \mid \theta) & =\sum_{t \in T} \psi(t \mid \theta) \prod_{i=1}^{N} \sigma_{i}\left(a_{i} \mid t_{i}\right) \\
\pi(a, \theta) & =\mu_{0}(\theta) \operatorname{Pr}_{\psi}(a \mid \theta)
\end{aligned}
$$

Question: Which $\pi \in \Delta(\Theta \times A)$ are consistent with BNE under some information structure in base game G ? Call the set of such $\pi, \Pi^{*}\left(G, \mu_{0}\right)$.

Definition

$\pi \in \Delta(\Theta \times A)$ is obedient if for all $i \in\{1, \ldots, N\}$, all $a_{i} \in A_{i}$ and all $a_{i}^{\prime} \in A_{i}$,

$$
\sum_{\theta \in \Theta} \sum_{a_{-i} \in A_{-i}} \pi\left(a_{i}, a_{-i}, \theta\right)\left[u\left(a_{i}, a_{-i}, \theta\right)-u\left(a_{i}^{\prime}, a_{-i}, \theta\right)\right] \geq 0
$$

Definition

$\pi \in \Delta(\Theta \times A)$ is obedient if for all $i \in\{1, \ldots, N\}$, all $a_{i} \in A_{i}$ and all $a_{i}^{\prime} \in A_{i}$,

$$
\sum_{\theta \in \Theta} \sum_{a-i \in A_{-i}} \pi\left(a_{i}, a_{-i}, \theta\right)\left[u\left(a_{i}, a_{-i}, \theta\right)-u\left(a_{i}^{\prime}, a_{-i}, \theta\right)\right] \geq 0
$$

Definition (Bergemann and Morris, 2016)

$\pi \in \Delta(\Theta \times A)$ is a Bayes' correlated equilibrium if

1. π is obedient,
2. π satisfies the martingale property at μ_{0}.

Let $\operatorname{BCE}\left(G, \mu_{0}\right)$ denote the set of Bayes' correlated equilibrium.

Definition

$\pi \in \Delta(\Theta \times A)$ is obedient if for all $i \in\{1, \ldots, N\}$, all $a_{i} \in A_{i}$ and all $a_{i}^{\prime} \in A_{i}$,

$$
\sum_{\theta \in \Theta} \sum_{a-i \in A_{-i}} \pi\left(a_{i}, a_{-i}, \theta\right)\left[u\left(a_{i}, a_{-i}, \theta\right)-u\left(a_{i}^{\prime}, a_{-i}, \theta\right)\right] \geq 0
$$

Definition (Bergemann and Morris, 2016)

$\pi \in \Delta(\Theta \times A)$ is a Bayes' correlated equilibrium if

1. π is obedient,
2. π satisfies the martingale property at μ_{0}.

Let $\operatorname{BCE}\left(G, \mu_{0}\right)$ denote the set of Bayes' correlated equilibrium.
When $|\Theta|=1$, this is correlated equilibrium.

Theorem (Bergemann and Morris, 2016)

An outcome distribution $\pi \in \Delta(\Theta \times A)$ is consistent with equilibrium in G under some information structure $\langle T, \psi\rangle$ if and only if it is a Bayes' correlated equilibrium.

That is,

$$
\Pi^{*}\left(G, \mu_{0}\right)=\operatorname{BCE}\left(G, \mu_{0}\right) .
$$

- Again, the information structure is the one that recommends the player what action to do and nothing else.

Sequential Information Design

Ingredients:

- N players, $i \in\{1, \ldots, N\}$
- A_{i} : player i 's actions; A : action profiles,
- Θ, finite set of states of the world,
- $u_{i}: A \times \Theta \mapsto \mathbb{R}$: player i 's payoffs,
- (common) prior $\mu_{0} \in \Delta_{+}(\Theta)$

Question: What is the set of distributions over action profiles

$$
\pi \in \Delta(\Theta \times A)
$$

that is consistent with equilibrium under some information structure and extensive form?

	P_{3}		
			C_{3}
P_{2}	D_{3}		
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)

Prisoner's dilemma: $\Delta>g>b>0$

P_{2}	P_{3}		
		C_{3}	D_{3}
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)
Prisoner's dilemma: $\Delta>g>b>0$			

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.

P_{2}	P_{3}		
		C_{3}	D_{3}
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first

$$
\begin{aligned}
& P_{3} \\
& C_{3} \quad D_{3} \\
& P_{2} \quad C_{2} \quad(g, g) \quad(0, \Delta) \\
& \text { Prisoner's dilemma: } \Delta>g>b>0
\end{aligned}
$$

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first
- Approach the first mover and announce

Prisoner's dilemma

$$
\begin{aligned}
& P_{3} \\
& C_{3} \quad D_{3} \\
& P_{2} \quad C_{2} \quad(g, g) \quad(0, \Delta) \\
& \text { Prisoner's dilemma: } \Delta>g>b>0
\end{aligned}
$$

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first
- Approach the first mover and announce
- If he plays C, then the recommendation to the second player is C

P_{2}	P_{3}		
		C_{3}	D_{3}
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first
- Approach the first mover and announce
- If he plays C, then the recommendation to the second player is C
- If he plays D, then the recommendation to the second player is D

P_{2}	P_{3}		
		C_{3}	D_{3}
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first
- Approach the first mover and announce
- If he plays C, then the recommendation to the second player is C
- If he plays D, then the recommendation to the second player is D

P_{2}	P_{3}		
		C_{3}	D_{3}
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first
- Approach the first mover and announce
- If he plays C, then the recommendation to the second player is C
- If he plays D, then the recommendation to the second player is D
- Note that if a player hears a recommendation of D, it is dominant to play D - they know they are moving second and the other played D

P_{2}	P_{3}		
		C_{3}	D_{3}
	C_{2}	(g, g)	$(0, \Delta)$
	D_{2}	$(\Delta, 0)$	(b, b)

- If $g>\frac{1}{2} \Delta+\frac{1}{2} b$, there is an extensive form in which (C, C) is the equilibrium outcome.
- Flip a coin who moves first
- Approach the first mover and announce
- If he plays C, then the recommendation to the second player is C
- If he plays D, then the recommendation to the second player is D
- Note that if a player hears a recommendation of D, it is dominant to play D - they know they are moving second and the other played D
- If they get told C,

$$
g \geq \frac{1}{2} \Delta+\frac{1}{2} b
$$

