Machine learning for algorithm design

Ellen Vitercik

Stanford University

An important property of algorithms used in practice is **broad applicability**

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems

Slow runtime, poor solutions quality, ...

Example: Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX PARAM NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP_Limits_Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX PARAM TRELIM 160

CPX PARAM RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX PARAM ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX PARAM SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX PARAM STRONGITLIM 154 CPX PARAM SUBALG 99 CPX PARAM SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX PARAM THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM_OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM_Sifting_Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM Tune Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCQCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX PARAM COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX PARAM DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Example: Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

Goal: Line up pairs of strings **Applications:** Biology, natural language processing, etc.

vitterchik		

Did you mean: vitercik

Input: Two sequences S and S' Output: Alignment of S and S'

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing: (# matches) - $\rho_1 \cdot$ (# mismatches) - $\rho_2 \cdot$ (# indels) - $\rho_3 \cdot$ (# gaps)

> S = A C T GS' = G T C A

Can sometimes access ground-truth, reference alignment

E.g., in computational biology: Bahr et al., Nucleic Acids Res.'01; Raghava et al., BMC Bioinformatics '03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04

Requires extensive manual alignments ...rather just run parameterized algorithm

How to tune algorithm's parameters? "There is **considerable disagreement** among molecular biologists about the **correct choice**" [Gusfield et al. '94]

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with poorly-tuned parameters

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA Alignment by algorithm with well-tuned parameters

Example: Clustering

Diverse applications, including:

Network analysis

Example: Clustering

Many different algorithms

How to **select** the best algorithm for the application at hand?

Data we could use in the process of

• Algorithm selection Given a variety of algorithms, which to use?

Algorithm configuration

How to tune the algorithm's parameters?

Algorithm design

Routing problems a shipping company solves

Clustering problems a biology lab solves

Scheduling problems an airline solves

Existing research

Constraint satisfaction

[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAI'01; ...]

Integer & linear programming

[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, CP '03; ...]

Economics (mechanism design)

[Likhodedov, Sandholm, AAAI '04, '05; ...]

Computational biology

[Majoros, Salzberg, Bioinformatics'04; ...]

Applied research

 $\overline{\mathbf{\cdot \cdot}}$

ğ

Existing research

Automated algorithm configuration and selection

[Gupta, Roughgarden, ITCS'16; Balcan, Nagarajan, **Vitercik**, White, COLT'17; Balcan, Cambridge University Press '20; ...]

Algorithms with predictions

[Lykouris, Vassilvitskii, ICML'18; Mitzenmacher, NeurIPS'18; ...]

Applied research

Theory research

Outline

1. Introduction

2. Algorithm configuration

- 3. Algorithms with predictions
- 4. Learning to prune
- 5. Conclusion and future directions

Gupta, Roughgarden, ITCS'16 Balcan, DeBlasio, Dick, Kingsford, Sandholm, **Vitercik**, STOC'21 Book chapter by Balcan, '20

Automated configuration procedure

- 1. Fix parameterized algorithm/mechanism
- 2. Receive set of "typical" inputs sampled from unknown ${\cal D}$

3. Return parameter setting $\widehat{\pmb{\rho}}$ with good avg performance

Runtime, solution quality, etc.

Key question: How to find $\hat{\rho}$ with good avg performance?

Hutter et al. [JAIR'09, LION'11], Ansótegui et al. [CP'09], Kleinberg et al. [NeurIPS'19, IJCAI'17], Weisz et al. [ICML'19, NeurIPS'19]; Balcan, Sandholm, ♥ [AAAI'20], ...

Automated configuration procedure

Focus of this section: Will $\hat{\rho}$ have good future performance? More formally: Is the expected performance of $\hat{\rho}$ also high?

Results overview

Key question (focus of section): Good performance on **average** over **training set** implies good **future** performance?

Answer this question for any parameterized algorithm where: Performance is **piecewise-structured** function of parameters

Piecewise constant, linear, quadratic, ...

Results overview

Performance is **piecewise-structured** function of parameters

Piecewise constant, linear, quadratic, ...

Algorithmic performance on fixed input

Distance between **algorithm's output** given *S*,*S'* and **ground-truth** alignment is p-wise constant

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Piecewise structure

Piecewise structure unifies **seemingly disparate** problems:

Integer programming

Balcan, Dick, Sandholm, V, ICML'18 Balcan, Nagarajan, V, White, COLT'17

Clustering

Balcan, Nagarajan, V, White, COLT'17 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, **V**, STOC'21

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, **V**, EC'18

Online configuration [Gupta, Roughgarden, ITCS'16, Cohen-Addad and Kanade, AISTATS'17] Exploited piecewise-Lipschitz structure to provide regret bounds [Balcan, Dick, V, FOCS'18; Balcan, Dick, Pegden, UAI'20; Balcan, Dick, Sharma, AISTATS'20]

Piecewise structure

Piecewise structure unifies **seemingly disparate** problems:

Integer programming

Balcan, Dick, Sandholm, V, ICML'18 Balcan, Nagarajan, V, White, COLT'17

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, ♥, STOC'21

Clustering

Balcan, Nagarajan, V, White, COLT'17 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, **V**, EC'18

Ties to a long line of research on machine learning for **revenue maximization** Likhodedov, Sandholm, AAAI'04, '05; Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Devanur, Huang, Psomas, STOC'16; ...

Primary challenge: Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance

For well-understood functions in machine learning theory: **Simple** connection between function parameters and value

Outline: Algorithm configuration

1. Overview

2. Model and problem formulation

- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
 - e. Online algorithm configuration

Model

 \mathbb{R}^d : Set of all parameters \mathcal{X} : Set of all inputs

 \mathbb{R}^3 : Set of alignment algorithm parameters \mathcal{X} : Set of sequence pairs

$$S = A C T G$$
$$S' = G T C A$$

One sequence pair
$$x = (S, S') \in \mathcal{X}$$

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Algorithmic performance

 $u_{\rho}(x) =$ utility of algorithm parameterized by $\rho \in \mathbb{R}^{d}$ on input xE.g., runtime, solution quality, distance to ground truth, ...

Algorithmic performance

 $u_{\rho}(x) = \text{distance between algorithm's output and ground-truth}$

$$S = A C T G$$
$$S' = G T C A$$
$$A - - C T G$$
$$- G T C A -$$

One sequence pair
$$x = (S, S') \in \mathcal{X}$$

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Model

Standard assumption: Unknown distribution \mathcal{D} over inputs Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Generalization bounds

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Empirical average utility

Generalization bounds

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Expected utility

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21
Generalization bounds

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Good **average empirical** utility **>** Good **expected** utility

Outline: Algorithm configuration

- 1. Overview
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
 - e. Online algorithm configuration

Sequence alignment algorithms

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing: (# matches) - $\rho_1 \cdot$ (# mismatches) - $\rho_2 \cdot$ (# indels) - $\rho_3 \cdot$ (# gaps)

S = A C T GS' = G T C A

Sequence alignment algorithms

Lemma:

For any pair S, S', there's a small partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Sequence alignment algorithms

Lemma:

For any pair S, S', there's a small partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters

Distance between algorithm's output and ground-truth alignment

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Outline: Algorithm configuration

- 1. Overview
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - **b.** Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
 - e. Online algorithm configuration

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d}\}$ "Primal" function class

Typically, prove guarantees by bounding **complexity** of ${\mathcal U}$

VC dimension, pseudo-dimension, Rademacher complexity, ...

Primal & dual classes

 $\begin{aligned} u_{\rho}(x) &= \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x \\ \mathcal{U} &= \left\{ u_{\rho} \colon \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d} \right\} \quad \text{"Primal" function class} \end{aligned}$

Typically, prove guarantees by bounding **complexity** of \mathcal{U}

Challenge: *U* is gnarly

E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot or visualize functions u_{ρ}
- No obvious notions of Lipschitz continuity or smoothness to rely on

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d}\}$ "Primal" function class

$$u_x^*(\rho) = ext{utility}$$
 as function of parameters
 $u_x^*(\rho) = u_{
ho}(x)$
 $\mathcal{U}^* = \{u_x^* \colon \mathbb{R}^d \to \mathbb{R} \mid x \in \mathcal{X}\}$ "Dual" function class

- Dual functions have simple, Euclidean domain
- Often have ample structure can use to bound complexity of ${\mathcal U}$

Piecewise-structured functions

Dual functions u_x^* : $\mathbb{R}^d \to \mathbb{R}$ are piecewise-structured

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedy algorithm configuration

Computational biology algorithm configuration

Voting mechanism configuration

Outline: Algorithm configuration

- 1. Overview
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
 - e. Online algorithm configuration

Intrinsic complexity

"Intrinsic complexity" of function class \mathcal{G}

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
 - VC dimension
 - Pseudo-dimension

Generalization to future inputs

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Proof sketch

Theorem: |Avg utility – expected utility $= \tilde{O}\left(H_{\sqrt{\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VC}(\mathcal{F}^*) \ln k}{N}}\right)$

Proof sketch: Fix any set $S \subseteq \mathcal{X}$ of inputs

- Count regions induced by the |S|k boundaries
 - Depends not on $VC(\mathcal{F})$, but rather $VC(\mathcal{F}^*)$
- In each region, $\{u_x^*: x \in S\}$ are simultaneously structured
 - Count # parameters in region w/ "significantly different" performance
 - Use $Pdim(\mathcal{G}^*)$
- Aggregate bounds over all regions to get: $Pdim(U) = O(Pdim(G^*) + VC(\mathcal{F}^*) \ln k)$

Outline: Algorithm configuration

- 1. Overview
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
 - e. Online algorithm configuration

Piecewise constant dual functions

Lemma:

Utility is piecewise constant function of parameters

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Sequence alignment guarantees

Theorem: Training set of size $\tilde{O}\left(\frac{\log(\text{seq. length})}{\epsilon^2}\right)$ implies WHP $\forall \rho$, **avg** utility over training set – **exp** utility $| \leq \epsilon$

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Outline: Algorithm configuration

- 1. Overview
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
 - e. Online algorithm configuration

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Gupta, Roughgarden, ITCS'16; Cohen-Addad, Kanade, AISTATS'17; Balcan, Dick, Vitercik, FOCS'18; Balcan, Dick, Pegden, UAI'20; ...

Outline

- 1. Introduction
- 2. Algorithm configuration

3. Algorithms with predictions

- 4. Learning to prune
- 5. Conclusion and future directions

Book chapter by Mitzenmacher, Vassilvitskii, '20 Purohit, Svitkina, Kumar, NeurIPS'18

Algorithms with predictions

Assume you have some **predictions** about your problem, e.g.:

Probability any given element is in a huge database
Kraska et al., SIGMOD'18; Mitzenmacher, NeurIPS'18
In caching, the next time you'll see an element
Lykouris, Vassilvitskii, ICML'18

Main question:

How to use predictions to improve algorithmic performance?

Outline

- 1. Introduction
- 2. Algorithm configuration
- 3. Algorithms with predictions
 - a. Searching a sorted array
 - b. Ski rental problem
 - c. Design principals and additional research
- 4. Learning to prune
- 5. Conclusion and future directions

- q = 0• h(q) = 2
- Goal: Given query q & sorted array A, find q's index (if q in A)
- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger
 - Do binary search on interval $(h(q) + 2^{i-1}, h(q) + 2^i)$
 - If q < A[h(q)], symmetric

- q = 8
- q = 0• h(q) = 2
- Goal: Given query q & sorted array A, find q's index (if q in A)
- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger
 - Do binary search on interval $(h(q) + 2^{i-1}, h(q) + 2^i)$
 - If q < A[h(q)], symmetric

8

Example:

3

6

- *q* = 8
- h(q) = 2
- **Goal:** Given query q & sorted array A, find q's index (if q in A)

15

23

27

32

35

39

- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger
 - Do binary search on interval $(h(q) + 2^{i-1}, h(q) + 2^i)$
 - If q < A[h(q)], symmetric

- q = 8
- h(q) = 2
- Goal: Given query q & sorted array A, find q's index (if q in A)
- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger
 - Do binary search on interval $(h(q) + 2^{i-1}, h(q) + 2^i)$
 - If q < A[h(q)], symmetric

Analysis:

- Let t(q) be index of q in A or of smallest element larger than q
- Runtime is $O(\log|t(q) h(q)|)$:

Prediction error

- Finding larger/smaller element takes $O(\log|t(q) h(q)|)$ steps
- Binary search takes $O(\log|t(q) h(q)|)$ steps
- Better predictions lead to better runtime
- Runtime **never worse than worst-case** $O(\log|A|)$

Outline

- 1. Introduction
- 2. Algorithm configuration
- 3. Algorithms with predictions
 - a. Searching a sorted array
 - **b.** Ski rental problem
 - c. Design principals and additional research
- 4. Learning to prune
- 5. Conclusion and future directions

Problem: Skier will ski for unknown number of days

- Can either **rent each day** for \$1/day or **buy** for \$*b*
- E.g., if ski for 5 days and then buy, total price is 5 + b

If ski x days, **optimal clairvoyant** strategy pays $OPT = min\{x, b\}$

Breakeven strategy: Rent for b - 1 days, then buy • $CR = \frac{ALG}{OPT} = \frac{x \mathbf{1}_{\{x < b\}} + (b - 1 + b) \mathbf{1}_{\{x \ge b\}}}{\min\{x, b\}} < 2$ (best deterministic) • Randomized alg. $CR = \frac{e}{e-1}$ [Karlin et al., Algorithmica '94]

Prediction y of number of skiing days, error $\eta = |x - y|$

Baseline: Buy at beginning if y > b, else rent all days

Theorem: ALG \leq OPT + η If y small but $x \gg b$, CR can be unbounded

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in (0,1)$): If $y \ge b$, buy on start of day $\lceil \lambda b \rceil$; else buy on start of day $\left\lceil \frac{b}{\lambda} \right\rceil$

Don't jump the gun...

...but don't wait too long

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$

- If predictor is perfect ($\eta = 0$), **CR is small** ($\leq 1 + \lambda$)
- No matter how big η is, setting $\lambda = 1$ recovers baseline CR = 2

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$ **Proof sketch:** If $y \ge b$, buys on start of day $[\lambda b]$ $\frac{ALG}{OPT} = \begin{cases} \frac{x}{x} & \text{if } x < [\lambda b] \\ \frac{[\lambda b] - 1 + b}{x} & \text{if } [\lambda b] \le x \le b \\ \frac{[\lambda b] - 1 + b}{b} & \text{if } [\lambda b] \le x \le b \end{cases}$ Worst when $x = [\lambda b]$ and $CR = \frac{b + [\lambda b] - 1}{[\lambda b]} \le \frac{1 + \lambda}{\lambda}$; similarly for y < b

Outline

- 1. Introduction
- 2. Algorithm configuration
- 3. Algorithms with predictions
 - a. Searching a sorted array
 - b. Ski rental problem
 - c. Design principals and additional research
- 4. Learning to prune
- 5. Conclusion and future directions

Design principals

Consistency:

- Predictions are perfect \Rightarrow recover offline optimal
- Algorithm is α -consistent if $CR \rightarrow \alpha$ as error $\eta \rightarrow 0$

Robustness:

- Predictions are terrible \Rightarrow no worse than worst-case
- Algorithm is β -consistent if $CR \leq \beta$ for all η
- E.g., ski rental: $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$

$$(1 + \lambda)$$
-consistent, $\left(\frac{1+\lambda}{\lambda}\right)$ -robust

Bounds are tight [Gollapudi, Panigrahi, ICML'19; Angelopoulos et al., ITCS'20]

Design principals

E.g., ski rental:
$$CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$$

 $(1+\lambda)$ -consistent, $\left(\frac{1+\lambda}{\lambda}\right)$ -robust

Also give **randomized algorithm**:

 $\left(\frac{\lambda}{1-\exp(-\lambda)}\right)$ -consistent, $\left(\frac{1}{1-\exp(-(\lambda-1/b))}\right)$ -robust Bounds are **tight** [Wei, Zhang, NeurlPS'20]

Just scratched the surface

Online advertising

Mahdian, Nazerzadeh, Saberi, EC'07; Devanur, Hayes, EC'09; Medina, Vassilvitskii, NeurIPS'17; ...

Caching

Lykouris, Vassilvitskii, ICML'18; Rohatgi, SODA'19; Wei, APPROX-RANDOM'20; ...

Frequency estimation

Hsu, Indyk, Katabi, Vakilian, ICLR'19; ...

Learning low-rank approximations

Indyk, Vakilian, Yuan, NeurIPS'19; ...

Scheduling

Mitzenmacher, ITCS'20; Moseley, Vassilvitskii, Lattanzi, Lavastida, SODA'20; ...

Matching

Antoniadis, Gouleakis, Kleer, Kolev, NeurIPS'20; ...

Queuing

Mitzenmacher, ACDA'21; ...

Covering problems

Bamas, Maggiori, Svensson, NeurlPS'20; ...

algorithms-with-predictions.github.io

Outline

- 1. Introduction
- 2. Algorithm configuration
- 3. Algorithms with predictions

4. Learning to prune

5. Conclusion and future directions

Alabi, Kalai, Ligett, Musco, Tzamos, **Vitercik**, COLT'19

Lincoln, Vermont

Burlington, Vermont

Traffic varies daily, but only a few different routes we'd take

Dijkstra's algorithm wastes time searching muddy dirt roads

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT'19

Goal

Quickly solve sequences of similar problems Exploiting common structures

Speeding up repeated computations

Often, large swaths of search space **never** contain solutions... Learn to ignore them!

Only handful of LP constraints ever bind

Large portions of DNA strings never contain patterns of interest

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT'19

Model

Function $f: X \rightarrow Y$ maps problem instances x to solutions y

Learning algorithm receives sequence $x_1, ..., x_T \in X$ E.g., each $x_i \in \mathbb{R}^{|E|}$ equals edge weights for fixed road network

Model

Goal: Correctly compute f on most rounds, minimize runtime Worst-case algorithm would compute and return $f(x_i)$ for each x_i

Assume access to other functions mapping $X \rightarrow Y$

- Faster to compute
- Defined by subsets (prunings) S of universe $\mathcal U$
 - Universe \mathcal{U} represents entire search space
 - Denote corresponding function $f_S: X \to Y$
 - $f_{\mathcal{U}} = f$

Example:

 \mathcal{U} = all edges in fixed graph S = subset of edges

Model

Goal: Correctly compute f on most rounds, minimize runtime Worst-case algorithm would compute and return $f(x_i)$ for each x_i

Assume access to other functions mapping $X \rightarrow Y$

- Faster to compute
- Defined by subsets (prunings) S of universe $\mathcal U$
 - Universe \mathcal{U} represents entire search space
 - Denote corresponding function $f_S: X \to Y$
 - $f_{\mathcal{U}} = f$

Assume exists set $S^*(x) \subseteq \mathcal{U}$ where $f_S(x) = f(x)$ iff $S^*(x) \subseteq S$

- "Minimally pruned set"
- E.g., the shortest path

Algorithm

- 1. Initialize pruned set $\bar{S}_1 \leftarrow \emptyset$
- 2. For each round $j \in \{1, ..., T\}$:
 - a. Receive problem instance x_j
 - b. With probability $1/\sqrt{j}$, explore:
 - i. Output $f(x_j)$
 - ii. Compute minimally pruned set $S^*(x_j)$
 - iii. Update pruned set: $\bar{S}_{j+1} \leftarrow \bar{S}_j \cup S^*(x_j)$
 - c. Otherwise (with probability $1 1/\sqrt{j}$), exploit:
 - i. Output $f_{\bar{S}_j}(x_j)$
 - ii. Don't update pruned set: $\bar{S}_{j+1} \leftarrow \bar{S}_j$

. .

Recap: At round *j*, algorithm outputs $f_{S_i}(x_j)$.

Goal 1: Minimize $|S_j|$

 S_i depends on $x_{1:i}$.

Guarantees

In our applications, time it takes to compute $f_{S_i}(x_j)$ grows with $|S_j|$

Theorem: Let
$$S^* = \bigcup_{j=1}^T S^*(x_j)$$

Then $\mathbb{E}\left[\frac{1}{T}\sum_{j=1}^T |S_j|\right] \le |S^*| + \frac{|\mathcal{U}| - |S^*|}{\sqrt{T}}$

Recap: At round *j*, algorithm outputs $f_{S_j}(x_j)$. S_i depends on $x_{1:i}$.

Goal 2: Minimize # of mistakes Rounds where $f_{S_j}(x_j) \neq f(x_j)$

Guarantees

Theorem: $\mathbb{E}[\# \text{ of mistakes}] \leq \frac{|S^*|}{\sqrt{T}}$, where $S^* = \bigcup_{j=1}^T S^*(x_j)$

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT'19

Goal: Reach right star from left star

Grey nodes: Nodes A* explores over 30 rounds

Black nodes: Nodes in the pruned subgraph

Fraction of mistakes: 0.06 over 5000 runs of the algorithm, 30 rounds each

Outline

- 1. Introduction
- 2. Algorithm configuration
- 3. Algorithms with predictions
- 4. Learning to prune
- 5. Conclusion and future directions

Conclusions

Automated configuration

Applied research dating back several decades

Horvitz et al., UAI'01; Leyton-Brown et al., CP '03; Likhodedov, Sandholm, AAAI '04, '05; ...

Learning-theoretic guarantees

Gupta, Roughgarden, ITCS'16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, ♥, STOC'21;...

Algorithms with predictions

Lykouris, Vassilvitskii, ICML'18; Mitzenmacher, NeurIPS'18; Purohit et al., NeurIPS'18; Hsu, Indyk, Katabi, Vakilian, ICLR'19; ...

Alabi, Kalai, Ligett, Musco, Tzamos, V, COLT'19

Many open directions with the potential for:

 \star Deep theoretical analysis

★ Significant practical impact

Applied research

Theory research

2000

2022

What about when you don't have enough data to learn?

E.g., a shipping company starting out with just one routing IP Could CPLEX still use ML to optimize performance?

Could similar problems provide guidance? What does it mean for, say, IPs to be "similar enough"?

E.g., Dai et al. [NeurIPS'17] write that their RL alg discovered: "New and interesting" greedy strategies for MAXCUT and MVC "which **intuitively make sense** but have **not been analyzed** before," thus could be a "good **assistive tool** for discovering new algorithms."

E.g., Dai et al. [NeurIPS'17] write that their RL alg discovered: "New and interesting" greedy strategies for MAXCUT and MVC "which **intuitively make sense** but have **not been analyzed** before," thus could be a "good **assistive tool** for discovering new algorithms."

Similar to how DALL-E will (ideally) serve as an assistive tool for artists

"extremely muscular teapot"

Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS'17; Agrawal et al., ICML'20; ...

Eventually, solve problems **no one's ever been able to solve**

Can theory provide guidance about how/when algs generalize?

Machine learning for algorithm design

Ellen Vitercik

Stanford University