
Machine learning for 
algorithm design

Ellen Vitercik
Stanford University



An important property of algorithms used in practice is
broad applicability

…but they can have unsatisfactory default performance
Slow runtime, poor solutions quality, …

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Example: Integer programming (IP)



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Example: Integer programming (IP)

Best configuration for routing problems
likely not suited for scheduling

What’s the best configuration for the application at hand?



Example: Sequence alignment

Goal: Line up pairs of strings
Applications: Biology, natural language processing, etc.

vitterchik

Did you mean: vitercik



Example: Sequence alignment

Input: Two sequences 𝑆 and 𝑆′ Output: Alignment of 𝑆 and 𝑆′

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆 = A C T G
𝑆′ = G T C A



Example: Sequence alignment

Standard algorithm with parameters 𝜌!, 𝜌", 𝜌# ≥ 0:
Return alignment maximizing:

(# matches)− 𝜌! ) (# mismatches) − 𝜌" ) (# indels) − 𝜌# ) (# gaps)

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆 = A C T G
𝑆′ = G T C A



Example: Sequence alignment
Can sometimes access ground-truth, reference alignment
E.g., in computational biology: Bahr et al., Nucleic Acids Res.’01; Raghava et al., BMC 
Bioinformatics ‘03; Edgar, Nucleic Acids Res.’04; Walle et al., Bioinformatics’04

Requires extensive manual alignments
…rather just run parameterized algorithm

How to tune algorithm’s parameters?
“There is considerable disagreement
among molecular biologists about the
correct choice” [Gusfield et al. ’94]

A – - C T G
- G T C A -



Example: Sequence alignment
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences



Example: Sequence alignment
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters



Example: Sequence alignment
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters



Example: Clustering

Diverse applications, including:

Ecology Biology Network analysis



Example: Clustering

Many different algorithms
K-means Ward Agglomerative BirchMean shift

How to select the best algorithm for the application at hand?



Data we could use in the process of

In practice, we have data about 
the application domain

Algorithm design

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune the algorithm’s parameters?



In practice, we have data about 
the application domain

Routing problems a shipping company solves



Clustering problems a biology lab solves

In practice, we have data about 
the application domain



Scheduling problems an airline solves

In practice, we have data about 
the application domain



Existing research

Applied 
research

2000 2022

Constraint satisfaction
[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAI’01; …]

Integer & linear programming
[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, CP ’03; …]

Economics (mechanism design)
[Likhodedov, Sandholm, AAAI ‘04, ’05; …]

Computational biology
[Majoros, Salzberg, Bioinformatics’04; …]



Existing research

2000 2022

Applied 
research

Theory 
research

Automated algorithm configuration and selection
[Gupta, Roughgarden, ITCS’16; Balcan, Nagarajan, Vitercik, White, COLT’17; 
Balcan, Cambridge University Press ’20; …]

Algorithms with predictions
[Lykouris, Vassilvitskii, ICML’18; Mitzenmacher, NeurIPS’18; …]



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions
4. Learning to prune
5. Conclusion and future directions

Gupta, Roughgarden, ITCS’16
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Book chapter by Balcan, ’20



Automated configuration procedure
1. Fix parameterized algorithm/mechanism
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting +𝝆 with good avg performance

Key question: How to find +𝝆 with good avg performance?
Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], Kleinberg et al. [NeurIPS’19, IJCAI’17], 
Weisz et al. [ICML’19, NeurIPS’19]; Balcan, Sandholm, V [AAAI’20], …

Runtime, solution quality, etc.

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#



Automated configuration procedure
1. Fix parameterized algorithm/mechanism
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting +𝝆 with good avg performance

Focus of this section: Will +𝝆 have good future performance?
More formally: Is the expected performance of +𝝆 also high?

Seen Unseen ?
Sequence 𝑆
Sequence 𝑆′

Unknown alignment 𝐴

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Gupta, Roughgarden, ITCS’16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Results overview

Key question (focus of section):
Good performance on average over training set implies good

future performance?

Answer this question for any parameterized algorithm where:
Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, …

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Results overview

𝜌!

𝜌#

Algorithmic 
performance 
on fixed input

Piecewise constant Piecewise …Piecewise linear

Performance is piecewise-structured function of parameters
Piecewise constant, linear, quadratic, …

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Distance between algorithm’s output given 𝑆, 𝑆$
and ground-truth alignment is p-wise constant

Example: Sequence alignment

𝜌!

𝜌#

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Piecewise structure

Piecewise structure unifies seemingly disparate problems:

Online configuration [Gupta, Roughgarden, ITCS’16, Cohen-Addad and Kanade, AISTATS’17]
Exploited piecewise-Lipschitz structure to provide regret bounds
[Balcan, Dick, V, FOCS’18; Balcan, Dick, Pegden, UAI’20; Balcan, Dick, Sharma, AISTATS’20]

Integer programming
Balcan, Dick, Sandholm, V, ICML’18
Balcan, Nagarajan, V, White, COLT’17

Clustering
Balcan, Nagarajan, V, White, COLT’17
Balcan, Dick, White, NeurIPS’18
Balcan, Dick, Lang, ICLR’20

Greedy algorithms
Gupta, Roughgarden, ITCS’16

Computational biology
Balcan, DeBlasio, Dick, Kingsford, 
Sandholm, V, STOC’21

Mechanism configuration
Balcan, Sandholm, V, EC’18

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Piecewise structure

Piecewise structure unifies seemingly disparate problems:

Ties to a long line of research on machine learning for revenue maximization
Likhodedov, Sandholm, AAAI'04, ’05; Balcan, Blum, Hartline, Mansour, FOCS’05; Elkind, SODA’07; 
Cole, Roughgarden, STOC’14; Mohri, Medina, ICML’14; Devanur, Huang, Psomas, STOC’16; …

Integer programming
Balcan, Dick, Sandholm, V, ICML’18
Balcan, Nagarajan, V, White, COLT’17

Clustering
Balcan, Nagarajan, V, White, COLT’17
Balcan, Dick, White, NeurIPS’18
Balcan, Dick, Lang, ICLR’20

Greedy algorithms
Gupta, Roughgarden, ITCS’16

Computational biology
Balcan, DeBlasio, Dick, Kingsford, 
Sandholm, V, STOC’21

Mechanism configuration
Balcan, Sandholm, V, EC’18

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Primary challenge:
Algorithmic performance is a volatile function of parameters

Complex connection between parameters and performance

For well-understood functions in machine learning theory:
Simple connection between function parameters and value

Performanc
e

𝜌

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Outline: Algorithm configuration

1. Overview
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally 
c. Main theorem
d. Application: Sequence alignment
e. Online algorithm configuration



ℝ%: Set of all parameters
𝒳: Set of all inputs

Model

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Example: Sequence alignment

ℝ#: Set of alignment algorithm parameters
𝒳: Set of sequence pairs

One sequence pair 𝑥 = 𝑆, 𝑆$ ∈ 𝒳

𝑆 = A C T G
𝑆′ = G T C A

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
E.g., runtime, solution quality, distance to ground truth, …

Algorithmic performance

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Algorithmic performance

𝑢𝝆 𝑥 = distance between algorithm’s output and ground-truth

One sequence pair 𝑥 = 𝑆, 𝑆$ ∈ 𝒳

𝑆 = A C T G
𝑆′ = G T C A

A – - C T G
- G T C A -

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Model

Standard assumption: Unknown distribution 𝒟 over inputs
Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥( − 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ??
Empirical average utility

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥( − 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ??
Expected utility

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥( − 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ??

Good average empirical utility Good expected utility

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Outline: Algorithm configuration

1. Overview
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally 
c. Main theorem
d. Application: Sequence alignment
e. Online algorithm configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Sequence alignment algorithms

Standard algorithm with parameters 𝜌!, 𝜌", 𝜌# ≥ 0:
Return alignment maximizing:

(# matches)− 𝜌! ) (# mismatches) − 𝜌" ) (# indels) − 𝜌# ) (# gaps)

𝑆 = A C T G
𝑆′ = G T C A

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆$, there’s a small partition of ℝ# s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – - C T G
- G T C A -

𝜌!

𝜌#

𝑆 = A C T G
𝑆′ = G T C A

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04



Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆$, there’s a small partition of ℝ# s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – C T G
G T C A -

A – - C T G
- G T C A -

𝜌!

𝜌#

𝑆 = A C T G
𝑆′ = G T C A

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04



Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Piecewise-constant utility function

Corollary:
Utility is piecewise constant function of parameters

𝑢 $,$! 𝝆

𝜌!

𝜌#

Distance between algorithm’s output and ground-truth alignment



Outline: Algorithm configuration

1. Overview
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally 
c. Main theorem
d. Application: Sequence alignment
e. Online algorithm configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

Challenge: 𝒰 is gnarly

E.g., in integer programming:
• Each domain element is an IP
• Unclear how to plot or visualize functions 𝑢𝝆
• No obvious notions of Lipschitzness or smoothness to rely on

VC dimension, pseudo-dimension, Rademacher complexity, …

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

Challenge: 𝒰 is gnarly

E.g., in sequence alignment:
• Each domain element is a pair of sequences
• Unclear how to plot or visualize functions 𝑢𝝆
• No obvious notions of Lipschitz continuity or smoothness to rely on

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ% “Primal” function class

𝑢*∗ 𝝆 = utility as function of parameters
𝑢*∗ 𝝆 = 𝑢𝝆 𝑥
𝒰∗ = 𝑢*∗ : ℝ% → ℝ 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Dual functions 𝑢*∗ : ℝ% → ℝ are piecewise-structured

Piecewise-structured functions

Clustering
algorithm 

configuration

Integer 
programming 

algorithm 
configuration

Selling 
mechanism 

configuration

Greedy 
algorithm 

configuration

Computational 
biology 

algorithm 
configuration

Voting 
mechanism 

configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Outline: Algorithm configuration

1. Overview
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally 
c. Main theorem
d. Application: Sequence alignment
e. Online algorithm configuration



Intrinsic complexity

“Intrinsic complexity” of function class 𝒢
• Measures how well functions in 𝒢 fit complex patterns
• Specific ways to quantify “intrinsic complexity”:

• VC dimension
• Pseudo-dimension

More complex Less complex

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Generalization to future inputs 

With high probability, for all 𝝆:
|Avg utility on training set – expected utility|

= >𝑂 𝐻 ./01 𝒢∗ 345 ℱ∗ 78 9
'

𝑓 ∈ ℱ

𝑔 ∈ 𝒢

𝜌!

𝜌#

𝑢&∗(𝝆)

Revenue, runtime, 
solution quality, …

Upper bound 
on utility

Training 
set size

# boundary 
functions

Intrinsic complexities 
of ℱ∗ and 𝒢∗

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Proof sketch

Theorem: |Avg utility – expected utility| = $𝑂 𝐻 /012 𝒢∗ 345 ℱ∗ 67 8
9

Proof sketch: Fix any set 𝑆 ⊆ 𝒳 of inputs
• Count regions induced by the |𝑆|𝑘 boundaries
• Depends not on VC(ℱ), but rather VC(ℱ∗)

• In each region, 𝑢*∗ : 𝑥 ∈ 𝑆 are simultaneously structured
• Count # parameters in region w/ “significantly different” performance
• Use Pdim(𝒢∗)

• Aggregate bounds over all regions to get:
Pdim 𝒰 = 𝑂 Pdim 𝒢∗ + VC ℱ∗ ln 𝑘 𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢&∗ 𝝆

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Outline: Algorithm configuration

1. Overview
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally 
c. Main theorem
d. Application: Sequence alignment
e. Online algorithm configuration



Piecewise constant dual functions

Lemma:
Utility is piecewise constant function of parameters

𝜌!

𝜌#

𝑢($,$!)
∗ 𝝆

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Sequence alignment guarantees

Theorem: Training set of size >𝑂 7:;(=>?. 7>8;AB)
D"

implies WHP ∀𝝆,
|avg utility over training set – exp utility|≤ 𝜖

𝜌!

𝜌#

𝑢($,$!)
∗ 𝝆

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Outline: Algorithm configuration

1. Overview
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally 
c. Main theorem
d. Application: Sequence alignment
e. Online algorithm configuration



Day 1: 𝝆! Day 2: 𝝆# Day 3: 𝝆*

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight
• Impossible in the worst case
• Under what conditions is online configuration possible?

Gupta, Roughgarden, ITCS’16; Cohen-Addad, Kanade, AISTATS’17; Balcan, Dick, Vitercik, FOCS’18; Balcan, Dick, Pegden, UAI’20; …



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions
4. Learning to prune
5. Conclusion and future directions

Book chapter by Mitzenmacher, Vassilvitskii, ’20
Purohit, Svitkina, Kumar, NeurIPS’18



Assume you have some predictions about your problem, e.g.:
Probability any given element is in a huge database

Kraska et al., SIGMOD’18; Mitzenmacher, NeurIPS’18
In caching, the next time you’ll see an element

Lykouris, Vassilvitskii, ICML’18

Main question:
How to use predictions to improve algorithmic performance?

Algorithms with predictions



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions

a. Searching a sorted array
b. Ski rental problem
c. Design principals and additional research

4. Learning to prune
5. Conclusion and future directions



Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞 = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2; for 𝑖 > 1 until find something larger

• Do binary search on interval ℎ 𝑞 + 2!"#, ℎ 𝑞 + 2!

• If 𝑞 < 𝐴 ℎ 𝑞 , symmetric

1 3 6 7 8 15 23 27 32 35 39

Example:
• 𝑞 = 8
• ℎ 𝑞 = 2

Book chapter by Mitzenmacher, Vassilvitskii, ’20



Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞 = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2; for 𝑖 > 1 until find something larger

• Do binary search on interval ℎ 𝑞 + 2!"#, ℎ 𝑞 + 2!

• If 𝑞 < 𝐴 ℎ 𝑞 , symmetric

1 3 6 7 8 15 23 27 32 35 39

Example:
• 𝑞 = 8
• ℎ 𝑞 = 2

Book chapter by Mitzenmacher, Vassilvitskii, ’20



Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞 = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2; for 𝑖 > 1 until find something larger

• Do binary search on interval ℎ 𝑞 + 2!"#, ℎ 𝑞 + 2!

• If 𝑞 < 𝐴 ℎ 𝑞 , symmetric

Example:
• 𝑞 = 8
• ℎ 𝑞 = 2

1 3 6 7 8 15 23 27 32 35 39

Book chapter by Mitzenmacher, Vassilvitskii, ’20



Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞 = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2; for 𝑖 > 1 until find something larger

• Do binary search on interval ℎ 𝑞 + 2!"#, ℎ 𝑞 + 2!

• If 𝑞 < 𝐴 ℎ 𝑞 , symmetric

Example:
• 𝑞 = 8
• ℎ 𝑞 = 2

Binary search

1 3 6 7 8 15 23 27 32 35 39

Book chapter by Mitzenmacher, Vassilvitskii, ’20



Example: Searching in a sorted array

Analysis:
• Let 𝑡(𝑞) be index of 𝑞 in 𝐴 or of smallest element larger than 𝑞
• Runtime is O log 𝑡 𝑞 − ℎ 𝑞 :

• Finding larger/smaller element takes 𝑂 log 𝑡 𝑞 − ℎ 𝑞 steps
• Binary search takes 𝑂 log 𝑡 𝑞 − ℎ 𝑞 steps

• Better predictions lead to better runtime
• Runtime never worse than worst-case 𝑂 log 𝐴

Prediction error

1 3 6 7 8 15 23 27 32 35 39

Book chapter by Mitzenmacher, Vassilvitskii, ’20



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions

a. Searching a sorted array
b. Ski rental problem
c. Design principals and additional research

4. Learning to prune
5. Conclusion and future directions



Example: Ski rental problem
Problem: Skier will ski for unknown number of days
• Can either rent each day for $1/day or buy for $𝑏
• E.g., if ski for 5 days and then buy, total price is 5 + 𝑏

If ski 𝑥 days, optimal clairvoyant strategy pays OPT = min 𝑥, 𝑏

Breakeven strategy: Rent for 𝑏 − 1 days, then buy
• CR = @AB

C/D =
E𝟏 "#$ 3 GHI3G 𝟏 "%$

217 E,G < 2 (best deterministic)
• Randomized alg. CR = K

KHI [Karlin et al., Algorithmica ‘94] 



Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Baseline: Buy at beginning if 𝑦 > 𝑏, else rent all days

Theorem: ALG ≤ OPT + 𝜂
If 𝑦 small but 𝑥 ≫ 𝑏, CR can be unbounded

Purohit, Svitkina, Kumar, NeurIPS’18



Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ (0,1)):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day J

K

Theorem: Algorithm has CR ≤ min !3K
K
, 1 + 𝜆 + L

!MK N.O
• If predictor is perfect 𝜂 = 0 , CR is small ≤ 1 + 𝜆
• No matter how big 𝜂 is, setting 𝜆 = 1 recovers baseline CR = 2

Don’t jump the gun… …but don’t wait too long

Purohit, Svitkina, Kumar, NeurIPS’18



Example: Ski rental problem

Theorem: Algorithm has CR ≤ min 𝟏3𝝀
𝝀
, 1 + 𝜆 + L

!MK N.O

Proof sketch: If 𝑦 ≥ 𝑏, buys on start of day 𝜆𝑏

ALG
OPT

=

𝑥
𝑥

if 𝑥 < 𝜆𝑏

𝜆𝑏 − 1 + 𝑏
𝑥

if 𝜆𝑏 ≤ 𝑥 ≤ 𝑏

𝜆𝑏 − 1 + 𝑏
𝑏

if 𝑥 ≥ 𝑏

Worst when 𝑥 = 𝜆𝑏 and CR = G3 LG HI
LG

≤ I3L
L

; similarly for 𝑦 < 𝑏

Purohit, Svitkina, Kumar, NeurIPS’18



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions

a. Searching a sorted array
b. Ski rental problem
c. Design principals and additional research

4. Learning to prune
5. Conclusion and future directions



Design principals

Consistency:
• Predictions are perfect ⇒ recover offline optimal
• Algorithm is 𝛼-consistent if CR → 𝛼 as error 𝜂 → 0

Robustness:
• Predictions are terrible ⇒ no worse than worst-case
• Algorithm is 𝛽-consistent if CR ≤ 𝛽 for all 𝜂

E.g., ski rental: CR ≤ min !3K
K
, 1 + 𝜆 + L

!MK N.O

1 + 𝜆 -consistent, I3L
L

-robust
Bounds are tight [Gollapudi, Panigrahi, ICML’19; Angelopoulos et al., ITCS’20]

E.g., ski rental: CR ≤ min !3K
K
, 1 + 𝜆 + L

!MK N.O

1 + 𝜆 -consistent, I3L
L -robust

Lykouris, Vassilvitskii, ICML’18



Design principals

E.g., ski rental: CR ≤ min !3K
K
, 1 + 𝜆 + L

!MK N.O

1 + 𝜆 -consistent, I3L
L -robust

Also give randomized algorithm:
L

IHMNO HL -consistent, I
IHMNO H LH P& $

-robust

Bounds are tight [Wei, Zhang, NeurIPS’20]

E.g., ski rental: CR ≤ min !3K
K
, 1 + 𝜆 + L

!MK N.O

1 + 𝜆 -consistent, I3L
L -robust



Just scratched the surface

algorithms-with-predictions.github.io

Online advertising
Mahdian, Nazerzadeh, Saberi, EC’07; 
Devanur, Hayes, EC’09; Medina, 
Vassilvitskii, NeurIPS’17; …

Caching
Lykouris, Vassilvitskii, ICML’18; Rohatgi, 
SODA’19; Wei, APPROX-RANDOM’20; …

Frequency estimation
Hsu, Indyk, Katabi, Vakilian, ICLR’19; …

Learning low-rank approximations
Indyk, Vakilian, Yuan, NeurIPS’19; …

Scheduling
Mitzenmacher, ITCS’20; Moseley, 
Vassilvitskii, Lattanzi, Lavastida, SODA’20; …

Matching
Antoniadis, Gouleakis, Kleer, Kolev, 
NeurIPS’20; …

Queuing
Mitzenmacher, ACDA’21; …

Covering problems
Bamas, Maggiori, Svensson, NeurIPS’20; …



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions
4. Learning to prune
5. Conclusion and future directions

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Lincoln, Vermont Burlington, Vermont



Traffic varies daily, but only a few different routes we’d take

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19

Dijkstra’s algorithm wastes time searching muddy dirt roads



Goal

Quickly solve sequences of similar problems
Exploiting common structures



Speeding up repeated computations

Often, large swaths of search space never contain solutions…
Learn to ignore them!

Only handful of LP constraints ever bind

Large portions of DNA strings never contain patterns of interest

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Model

Function 𝑓: 𝑋 → 𝑌 maps problem instances 𝑥 to solutions 𝑦

Learning algorithm receives sequence 𝑥!, … , 𝑥R ∈ 𝑋
E.g., each 𝑥; ∈ ℝ|R| equals edge weights for fixed road network

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Model
Goal: Correctly compute 𝑓 on most rounds, minimize runtime

Worst-case algorithm would compute and return 𝑓 𝑥; for each 𝑥;
Assume access to other functions mapping 𝑋 → 𝑌
• Faster to compute
• Defined by subsets (prunings) 𝑆 of universe 𝒰

• Universe 𝒰 represents entire search space
• Denote corresponding function 𝑓$: 𝑋 → 𝑌
• 𝑓𝒰 = 𝑓

Example:
𝒰 = all edges in fixed graph
𝑆 = subset of edges

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Model
Goal: Correctly compute 𝑓 on most rounds, minimize runtime

Worst-case algorithm would compute and return 𝑓 𝑥; for each 𝑥;
Assume access to other functions mapping 𝑋 → 𝑌
• Faster to compute
• Defined by subsets (prunings) 𝑆 of universe 𝒰

• Universe 𝒰 represents entire search space
• Denote corresponding function 𝑓$: 𝑋 → 𝑌
• 𝑓𝒰 = 𝑓

Assume exists set 𝑆∗(𝑥) ⊆ 𝒰 where 𝑓Z 𝑥 = 𝑓(𝑥) iff 𝑆∗(𝑥) ⊆ 𝑆
• “Minimally pruned set”
• E.g., the shortest path

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Algorithm

1. Initialize pruned set ̅𝑆! ← ∅
2. For each round 𝑗 ∈ {1, … , 𝑇}:

a. Receive problem instance 𝑥S
b. With probability 1/ 𝑗, explore:

i. Output 𝑓 𝑥&
ii. Compute minimally pruned set 𝑆∗ 𝑥&
iii. Update pruned set: ̅𝑆&(# ← ̅𝑆& ∪ 𝑆∗ 𝑥&

c. Otherwise (with probability 1 − 1/ 𝑗), exploit:
i. Output 𝑓$̅! 𝑥&
ii. Don’t update pruned set: ̅𝑆&(# ← ̅𝑆&

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Guarantees

Recap: At round 𝑗, algorithm outputs 𝑓Z# 𝑥 .
𝑆S depends on 𝑥I:S.

Goal 1: Minimize 𝑆
In our applications, time it takes to compute 𝑓U' 𝑥S grows with 𝑆S

Theorem: Let 𝑆∗ = ⋃`)!
R 𝑆∗ 𝑥

Then 𝔼 !
R
∑`)!R 𝑆 ≤ 𝑆∗ + 𝒰 M Z∗

√R

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Guarantees

Recap: At round 𝑗, algorithm outputs 𝑓Z# 𝑥 .
𝑆S depends on 𝑥I:S.

Goal 2: Minimize # of mistakes
Rounds where 𝑓U' 𝑥S ≠ 𝑓 𝑥S

Theorem: 𝔼[# of mistakes] ≤ Z∗

√R
, where 𝑆∗ = ⋃`)!

R 𝑆∗ 𝑥

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Goal: Reach right star from left star
Grey nodes: Nodes A* explores over 30 rounds
Black nodes: Nodes in the pruned subgraph
Fraction of mistakes: 0.06 over 5000 runs of the algorithm, 30 rounds each

Alabi, Kalai, Ligett, Musco, Tzamos, Vitercik, COLT’19



Outline

1. Introduction
2. Algorithm configuration
3. Algorithms with predictions
4. Learning to prune
5. Conclusion and future directions



Conclusions
Automated configuration

Applied research dating back several decades
Horvitz et al., UAI’01; Leyton-Brown et al., CP ’03; Likhodedov, Sandholm, AAAI 
‘04, ’05; …

Learning-theoretic guarantees
Gupta, Roughgarden, ITCS’16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, V, 
STOC’21;…

Algorithms with predictions
Lykouris, Vassilvitskii, ICML’18; Mitzenmacher, NeurIPS’18; Purohit et al., NeurIPS’18; 
Hsu, Indyk, Katabi, Vakilian, ICLR’19; …

Learning to prune
Alabi, Kalai, Ligett, Musco, Tzamos, V, COLT’19



Many open directions with the potential for:

Deep theoretical analysis

Significant practical impact

Applied 
research

Theory 
research

Future directions

2000 2022



Future directions

What about when you don’t have enough data to learn?

E.g., a shipping company starting out with just one routing IP
Could CPLEX still use ML to optimize performance?

Could similar problems provide guidance?
What does it mean for, say, IPs to be “similar enough”?



Future directions

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Data-driven 
algorithm design

Which algorithm classes to optimize over?

Q: Why are some (unexpected) configurations dominant?

Classical algorithm 
design & analysis



Future directions

Similar to how DALL-E will (ideally)
serve as an assistive tool for artists

“extremely muscular teapot”

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”



Future directions

Machine-learned algorithms can scale to larger instances
Applied research: Dai et al., NeurIPS’17; Agrawal et al., ICML’20; …

Eventually, solve problems no one’s ever been able to solve

Can theory provide guidance about how/when algs generalize?



Machine learning for 
algorithm design

Ellen Vitercik
Stanford University


