








































































T.aeYemfagintgimpfario
party and given the following map

upper routes
up EIfuture reward

O 6 H2 0.4 246 5
down down

Effuturereward

44 ftp
4 ca to 6 2 6 6

i
reward down up down

lower route

choose action up wp 0.6 go up
w p 0.4 go down

choose action down w p 0.4 go up
w p 0.6 go down

state where you are decide the distr for next state
action up down

reward per step tune of state and action
total reward sum of rewards over the time horizon

policy whichaction to take in eachstate at each time step

goal design a policy to maximize total expected reward

We next introduce the general form of an MDP where we also generalize

the time horizon from a finite one to an infinite one











































































mail.pl isi iet I pecitied by
State space 5 Let St E 5 be the state at time t

Action space a at E A action at time t

For simplicity we focus on the setting where 5 and A are finite

Transition probabilities P S x A 0157 015 prob distr over 5

PCS IS a prob of transitioning to state s when taking action a

in state s

Reward function r S x d s IR

res a immediate reward when taking action a in state s

res as could be random in which case res a denotes its mean

Policy In general a policy can choose at based on the full history
the So Ao ro Si Ai ri sty at 1 rt l St

Wefocus on stationary policies TL s old which chooses

actions based on only the current state i e at a C 1 St

We sometimes simply write at TL Se

Goal Find a policy th to solve

maximize V95 E ETÉ rt rest at so s I

r E Co 1 discount factor

Explanation I V prob that the problem continues aftereachtinted

2 Reward now is more important than that in thefuture
I S IR value function of policy th











































































Remarks In general the optimization is over all policies which can

be non stationary and non Markovian But it can be shown

that optimality can be achieved by a stationary policy











































































BellmanEquationCDynamicProgrammingEquation
Note that for a fixed policy TL

V95 ETÉ rt rest at so s I

res Tres

I EEEE.is atlsisg.pisils.a

res ACS T J E Vacs I So S A TLC S

whichgives an equation for U
Let s sup vacs be the optimal value function Then V satisfies

a similiar equation referred to as the Bellman equation

theorem The optimal value function U't satisfies

s max res a t r E Si so s a a t s 4

Moreover let policy be specified as

S E argmaax res a t r E si so s do a 2

Then I't is an optimalpolicy

Remand It is a stationary deterministic policy











































































How can we make use of the Bellman equation to get an optimal policy
Naturally we want to solve the Bellmanequation to get U't and then use

equation 12 to get an optimal policy To be able to do so we need to

answer the following questions

i If we find a solution to the Bellman equation is it guaranteed

to be v

ii How do we find a solution to the Bellman equation

To answer both questions it is convenient to write the Bellman equation

using the so called Bellman operator

Bellman or

Weindex the state space as 5 1 2 d3 Then a value function V

can be written as a vector V Va V12 V d E Rd
Recall the Bellman equation

s may res a t r E VCs So s a a t s E 5

We can rewrite the right hand sideof the Bellman equation by defining the
Bellman operator T Rd Rd which takes a value function as input ad

outputs another value function Specifically for any V E Rd TVE Rd
is defined as

TVCS max res a t y Vcs so s ao a t s E 5

Then the Bellman equation can be written as V TV











































































Now let's return to the two questions
i If we find a solution to the Bellman equation V TV

is it guaranteed to be v

Ii How do we find a solution to V TV

Solving V TV is to find a fixed pointof the operator T If T is

a contraction mapping then these two questions can be answered by
the Banach fixed point theorem

c actionmapping let CX d be a complete metric space Then a

mapping T X X is said to be a contraction mapping if there exists
r E co l such that d Tex Toy e r d x y t x y EX

contraction coefficient

We say T has a fixed point x't if TI x't

Iiittigasenmasingtictionmaringtaa complete metric space d d with

a contraction coefficient r Then

1 T has a unique fixed point xx
2 The iterative algorithm tht T Xk starting fromany initial point
Xo E X has the property dinner xx e r duh X
As a result xp geometrically fast with the following
equivalent descriptions of the convergence speed
i duh xx e r k dexo NH

ii dcan x e tr den Xo
den to e d to x da x 3 l ri dCto A

e I dah x











































































IentinistimatopiraIttistittiatitipping on ed under
II Us with the discount factory as a contraction coefficient
i e f Ui V2 ERd IITV TValla E J 11V1 Vallis

UXHis Max flail Ital lad13 the Ad

Proof Let S E 5 Then

TV S TVals supposethismax is achieved at at

matter si 50 5 Ao a

many res a t 8 ELVIS S s do a

E r is at r IV si so s Ao at

res at t r Vals so s do at

retesting
so s a at

E Y UU Valles

similarly TVs X TVI X E V11V1 Valles

Therefore ITVI TVall a E V11V1 Villa A

man equation V TV has a unique solution

Therefore the solution must be the optimal value function V

2 The iterative algorithm Vkt TUK guarantees that Uk V4 as k so

This gives rise to the value iteration algorithm below











































































V2 Starting at some V we iteratively apply T Ve TVi É na guess u set no

Z VRtl TUK

3 Ke htt

4 Repeat 2 3 until convergence

5 Let Vk be the output value function Output policy a definedby

Tk S E argmaax res a r EIVk Si so s ao a

From the contraction mapping theorem we have convergence

In practice we need to use some stopping criterion

If we stopafter k steps how good is Uk and howgood is Tk
IlUk V Ila By the contraction mapping theorem

Boundoni e É Ivi Voll

This bound is more useful than the bound INK V Ila E 8 IIVo Vill

because IlVi Vollis is computable while UVo Villa is unknown

Howgood is The Note that Uk is not necessarily the value function of Tik
butthey are close Recall that we use Vtk to denote the value functionof Tk

BoundtfII wutk Villa t

kff uided
Note that Vtk s r es Thes t TELV95 so S A Tik s

ris.mil ggiiiits is.ao asn











































































r V is UK Si S S Go Tk S

Vet s t r E VT Si UK Si S S Ao Tie S

Thus 11Vtk Uka Il o E 8 IlVtk Uk lls
Wealso know that 11 The Vice Il 3 Il Vtk Villa IlViet Uk lls

So IlVT UkIlo E IIUka Uk An

E IV Vollis

Putting themtogether we have

lute V In E Il Va Va lb t IlVe H lb

E 2 114 Voll is

The value iteration algorithm centers around thevalue function it first makes
sure that thevalue function obtained is closeenough to the optimal value

function and then outputs a policy Next we introduce another algorithm

that promotes a more policy centered view











































































PolicyiterationCPI The structure of PI is as follows We start from an

arbitrary policy and repeat the following iterative procedure

l Policy evaluation calculate the value function of the policy
2 Policy improvement update the policy to improve it

Tomake these two steps more concrete we firstdefine the operator
associated with a policy for convenience When we fix a policy t

we know that its value function Va satisfies

is r es ILS I REEVES I so S Ao Ties VS E 5

similar to the Bellman operator the operator T associated with policy th

is defined based on the right hand side of the equation Specifically forany
V E Rd T V E Rd is defined as

TV S r IS ILS RECUT Si I So S Ao IS VS E 5

Then theequation for policy I can be written as VT T V

Note that T is a linear operator

T is a contraction mapping on Rd under Il Ila with the
discount factor r as a contraction coefficient i e t Vi Va ERd

11TV TaValla E V IIV1 Valla

Implication I the equation Y T Il has a unique solution which is

thevaluefunction of a V

2 In the policyevaluation step we can use the iterative

algorithm Vre T Uk to calculate V

We can also show that boththe Bellman operator T and the operator T are

monotonic i e V E V2 TU ETUz TT V E TTV2











































































IYcattYmprt.it fftytsitgitae right hand sideof the Bellman equation
To update the policy tip at the kth iteration we define the as

The s E angmaax rex alt r E Uk Si so S Go a Ks

Using the notationof operators this implies that
TIRAVTR TURK

Putting the two steps together the PI algorithm is givenby
l Start with a policy To Set k o

2 Compute the value function vanofpolicy In using the equation V Taku

3 Update the policy

Tire s E angmaax rex alt r E Vtk Si so S a a Ks

4 K htt

5 Repeat 2 4 until convergence

Gem Under policy iteration we have

1 Van 3 Vtk i.e thepolicy improves at each step and

2 If Van Vtk then Tlr is an optimal policy

Proof l By step 3 TAKAVtk TVA 3 TakVer Vtk

By themonotonicity of the we have

TTRtl Tta v Tk 3 The Vtk E Vtk
keep applying Tm N times we get

TakeiNV k z Vtr

By the contraction property of The taking N is gives
Tati 3 UTk Utkal











































































V V

2 If VIKA VTR then TTRVTK TVTK TARAVTRY TVAkel

Until TVert So Van satisfies the Bellman equation which
means that the and Ek are optimal policies

Implicationsofthetheorem The theorem says that at each step you
eitherget an improved policy or youhavefound the optimal policy

So in principle PI converges in a finite numberof steps when
the statespaceand action space are finite
However in each step one needs to compute Vik This can be

done using the iterative algorithm Vie Tak Vi This inner loop
can take a long time to produce an accurate value for Va



go.tntTeuman equation
U CS

may res a t r FVCS Pls Is a

suppose U't is known we still cannot solve this maximization problemto

get theoptimalpolicy without knowing the model PCS Is a However if we
obtain the following function

QIS a E r es a t r FV45 Pls Is a

then we can solve my Q Is a to get the optimal policy The function
Q S x d IR is called the optimal Q function

meaning of QIs a the total discounted reward when we take action a

in the current step and follow the optimal policy
in all the future time steps

How can we get the Q function A starting point is the equation below

derived from the Bellman equation Note that V s may Q S
a

Then Qis a res a t 8 I is Pls Is a

res a t r EPCS Is a myQ S a

Directly evaluating the right hand side still requires the knowledge of
PCS IS a but there are many ways to learn the Q function when

the model is unknown

We can also define the Q function for a fixed policy t as follows

Q CS a res a t r EEvacs so s ao a

This is the total discounted reward when we take action a in the current



time step and follow the policy TL in the future Then

UT s ELQ CS a an TLC S

In many RL approaches we need to evaluate the Q function for a
given policy TL


