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For 𝑡 = 1…𝑇:
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compares to ex-ante optimal arm 𝑎⋆

• highest mean in stochastic bandits (only function of reward distributions)
• still depends on algorithm but not on realizations in adversarial bandits
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Q1 (Best of both worlds) [Bubeck & Slivkins, COLT’12]

How can we simultaneously obtain the stochastic guarantee for stochastic 
environment and the adversarial guarantee for adversarial environment?

Adversarial-based approach
1. Run adversarial bandit algorithm
2. Exploration adapts to empirical gap
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Crux of analysis
• W.h.p. actual mean in confidence interval (concentration arguments)

• Subopimal arm 𝑎 is deactivated after 456 78/:
;! " rounds w.h.p.

• Contributes "#$ (%/*
&! " ⋅ Δ! =

"#$ (%/*
&!

to regret
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Stochastic and Adversarial PseudoOptimal (SAPO) algorithm [Auer & Chiang, COLT’16]

• No algorithm can have o log" 𝑇 stochastic pseudoregret and o 𝑇 adversarial regret w.h.p.

• Guarantee: Stochastic pseudoregret of -𝑂 #⋅%&' (
)

and adversarial pseudoregret of -𝑂 𝐾𝑇
• Key idea: use past negative pseudoregret to allow for more infrequent tests
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MD beyond Shannon entropy [Wei & Luo, COLT’18] [Zimmert & Seldin, JMLR’21]

• Run Mirror Descent with a stronger regularizer (log-barrier / Tsallis)
• No direct gap-driven exploration but probabilities of suboptimal arms decrease starkly

• Analysis upper bounds regret via a unified ”self-bounding term”
• Optimal stochastic and adversarial pseudoregret guarantees

Julian Zimmert will present this result 
in the September workshop
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• In more complex learning settings, there is often no “adversarial” bandit algorithm
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Q2 (Bridging the two worlds)
What are models that interpolate between the two worlds? What are design 
principles that adapt to the difficulty of such stochastic-adversarial models?

Q3 (Beyond multi-armed bandits)
How do these design principles extend beyond multi-armed bandits to more 
complex reward and feedback structures?



Stochastic bandits w/ adversarial corruptions
[L, Mirrokni, Paes Leme, STOC’18]

Most of the data are i.i.d. but some rounds are adversarially corrupted

Examples
• Click fraud in online advertising
• Fake reviews in recommender systems
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Goal: Algorithm design principles that adapt to 
the number of corrupted rounds 𝑪 = ∑𝒕 𝒄 𝒕



Three main techniques
Multi-layering Successive Elimination Race [L, Mirrokni, Paes Leme, STOC’18]

With high probability: 𝑹𝒆𝒈𝒓𝒆𝒕 ≤ ∑𝒂
𝒍𝒐𝒈𝟐 𝑻 E𝑪𝑲⋅𝒍𝒐𝒈(𝑲𝑻/𝜹)

𝚫 𝒂

BARBAR: Bad Arms get Recource [Gupta, Koren, Talwar, COLT’19]

With high probability: 𝑹𝒆𝒈𝒓𝒆𝒕 ≤ 𝑪𝑲 + ∑𝒂
𝒍𝒐𝒈𝟐 𝑲𝑻/𝜹

𝚫 𝒂

Mirror Descent with Tsallis-INF [Zimmert & Seldin, JMLR’21]

𝑷𝒔𝒆𝒖𝒅𝒐𝒓𝒆𝒈𝒓𝒆𝒕 ≤ ∑𝒂
𝒍𝒐𝒈 𝑻
𝚫 𝒂

+ 𝑪∑𝒂
𝒍𝒐𝒈 𝑻
𝚫 𝒂

• assumes uniqueness of optimal arm

Unknown number of corrupted rounds: 𝑪 = ∑𝒕 𝒄𝒕

Number of arms: 𝑲



Brittleness of stochastic approaches
Successive Elimination [Even-Dar, Mannor, Mansour, JMLR’06]

• Each arm has a mean 𝜇(𝑎)
• Keep a set of “active” arms (initially all)
• Confidence interval = Empirical mean ± Bonus

• Bonus = "#$ (%/*
,! -
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Brittleness of stochastic approaches
Successive Elimination [Even-Dar, Mannor, Mansour, JMLR’06]

• Each arm has a mean 𝜇(𝑎)
• Keep a set of “active” arms (initially all)
• Confidence interval = Empirical mean ± Bonus

• Bonus = "#$ (%/*
,! -

where 𝑁! 𝑡 = #trials

1. Select an “active” arm uniformly at random
2. “Deactivate” any arm dominated by another

0.6

0.4

1

0

Arm 1 
𝜇 𝑎! = 0.4

What breaks if adversary corrupts the exploration rounds?
• W.h.p. actual mean in confidence interval (concentration arguments)

• Opimal arm 𝑎 is deactivated after log 𝑇 rounds
• Corruption then stops: linear regret with only logarithmic corruption!

Arm 2
𝜇 𝑎" = 0.6
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Multi-layering Successive Elimination Race

If we knew that the number of corrupted rounds we encounter was ̅𝑐 ≤ 𝒍𝒐𝒈 𝑲𝑻/𝜹

We can account for it even if all corruption is going against us
• Confidence interval = Empirical mean ± Corruption Bonus

• Bonus = "#$ (%/*
,! -

+ ̅/
,!(-)

where 𝑁! 𝑡 = #trials

Successive Elimination analysis goes through
• W.h.p. actual mean in confidence interval

• Suboptimal arm 𝑎 is deactivated after 
456 78/: > ̅@

;! " rounds w.h.p.

• Contributes "#$ (%/*
&! " ⋅ Δ! =

"#$ (%/*
&!

to regret

[L, Mirrokni, Paes Leme, STOC’18]



Multi-layering Successive Elimination Race
[L, Mirrokni, Paes Leme, STOC’18]

Idea: Create multiple independent copies of Successive Elimination (layers)
• Copy ℓ is responsible for corruption of ≈ 2ℓ



Multi-layering Successive Elimination Race
[L, Mirrokni, Paes Leme, STOC’18]

Idea: Create multiple independent copies of Successive Elimination (layers)
• Copy ℓ is responsible for corruption of ≈ 2ℓ

At every round: w.p. 𝟐&ℓ play according to copy ℓ = 𝟏… 𝒍𝒐𝒈 𝑻
• Do not update estimates of any other copy
• Larger ℓ ≥ log 𝐶 observe corruption at most ̅𝑐 ≤ 𝒍𝒐𝒈 𝑲𝑻/𝜹 but slower to find 𝑎⋆

• Smaller ℓ faster but prone to corruption (similar as in Successive Elimination)



Multi-layering Successive Elimination Race
[L, Mirrokni, Paes Leme, STOC’18]

Idea: Create multiple independent copies of Successive Elimination (layers)
• Copy ℓ is responsible for corruption of ≈ 2ℓ

At every round: w.p. 𝟐&ℓ play according to copy ℓ = 𝟏… 𝒍𝒐𝒈 𝑻
• Do not update estimates of any other copy
• Larger ℓ ≥ log 𝐶 observe corruption at most ̅𝑐 ≤ 𝒍𝒐𝒈 𝑲𝑻/𝜹 but slower to find 𝑎⋆

• Smaller ℓ faster but prone to corruption (similar as in Successive Elimination)

Challenge: achieve a race across copies that combines learning speed with robustness
Idea: robust copies supervise faster ones   (nested eliminations of active arms)

• Number of rounds that a suboptimal arm survives: dictated by fastest robust copy ℓ⋆ = 𝒍𝒐𝒈𝑪

Regret of non−robust copies ≤ 𝑪 ⋅ Regret of fastest robust copy ℓ⋆



Steps:

1. Robustness to known amount of corruption ̅𝑐 ≈ log 𝑇 : ALG ⇒ ROBUSTALG(J𝒄)

2. Adapting to unknown amount of corruption 𝐶:
• Run independent copies of ROBUSTALG(𝒍𝒐𝒈 𝑻) in parallel
• Each copy responsible for a different level of corruption
• Robust versions supervise non-robust & correct errors via nested eliminations

Recipe for corruptions in multi-armed bandits
[L, Mirrokni, Paes Leme, STOC’18]

Require:
• Problem that can be solved by estimating “ground truth”

𝑎⋆ in multi-armed bandits
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Successive Elimina=on [Even-Dar, Mannor, Mansour, JMLR’06]
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Recipe for corruptions in contextual pricing

Require:
• Problem that can be solved by estimating “ground truth”

𝜃⋆ in contextual pricing ---> value of customer is ⟨𝜃⋆, 𝑥$⟩ for adversarial context 𝑥$
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Projected Volume [Lobel, Paes Leme, Vladu, EC’17 / OR’18]

[Krishnamurthy, L, Podimata, Schapire, STOC’21 / OR’22]

Chara Podimata will present this result 
in the September workshop



Multi-layering race: a general recipe for corruptions

Require:
• Problem that can be solved by estimating “ground truth”

𝑎⋆ in multi-armed bandits 𝜃⋆ in contextual pricing
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Successive Elimina=on ALG=Projected Volume
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1. Robustness to known amount of corruption ̅𝑐 ≈ log 𝑇 : ALG ⇒ ROBUSTALG(J𝒄)
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• Each copy responsible for a different level of corruption
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Multi-layering race: a general recipe for corruptions

Require:
• Problem that can be solved by estimating “ground truth”

𝑎⋆ in multi-armed bandits 𝜃⋆ in contextual pricing
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Successive Elimina=on ALG=Projected Volume
Steps:

1. Robustness to known amount of corruption ̅𝑐 ≈ log 𝑇 : ALG ⇒ ROBUSTALG(J𝒄)

2. Adapting to unknown amount of corruption 𝐶:
Other results via this recipe
Assortment optimization  [Chen, Krishnamurty, Wang’19] via [Agrawal, Avandhanula, Goyal, Zeevi, OR’19] 

Product rankings [Golrezaei, Manshadi, Schneider, Sekar,  EC’21] via [Derakhshan, Golrezaei, Manshadi, Mirrokni EC’20/MS’21]
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BARBAR

Multi-layering Successive Elimination Race runs copies in parallel
Robustness as slower copies are not selected too often: corruption subsampled

[Gupta, Koren, Talwar, COLT’19]

Bandit Algorithms with Robustness: Bad Arms get Recourse (BARBAR)
• Works in geometrically increasing epochs: decisions always determined by previous epoch
• If input was stochastic, learn all arms with gap 2%ℓ by epoch ℓ
• Instead of eliminating “suboptimal” arms, BARBAR selects them w.p. inverse to empirical gap
• If 𝑎⋆ seems “bad” in an epoch, adversary needs much budget to corrupt it again

• corruption subsampled automatically for any “bad arm”



Tsallis-INF

Building block for regularizers that extend beyond multi-armed bandits
• combinatorial semi-bandits (routing) [Zimmert, Luo, Wei, ICML’19]

• reinforcement learning with unknown i.i.d. transitions [Jin, Huang, Luo, NeurIPS’21]

[Zimmert & Seldin, JMLR’21]

• Analysis upper bounds regret via a unified ”self-bounding term”
• Optimal stochastic and adversarial pseudoregret guarantees 
• Same analysis extends for pseudoregret in adversarial corruptions
• Dependence slightly strengthened subsequently         [Massoudian & Seldin, COLT’21] [Ito, NeurIPS’21]



Comparison of these techniques
Multi-layering successive elimination race [L, Mirrokni, Paes Leme, STOC’18]

+ applies to any setting with “confidence set” (binary feedback, no adversarial counterparts, etc)
+ high-probability guarantees
- multiplicative dependence on number of corrupted rounds 𝐶
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Tsallis-INF [Zimmert & Seldin, JMLR’21]

+ achieves interpolation between two extremes
- requires some way to do IW: unclear how to go beyond bandit feedback & finite # policies

BARBAR [Gupta, Koren, Talwar, COLT’19]
+ elegant corruption subsampling => additive dependence on corrupted rounds 𝐶
+ high-probability guarantees
- requires some notion of “gap” to apply: less broadly applicable

Multi-layering successive elimination race [L, Mirrokni, Paes Leme, STOC’18]
+ applies to any setting with “confidence set” (binary feedback, no adversarial counterparts, etc)
+ high-probability guarantees
- multiplicative dependence on number of corrupted rounds 𝐶
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Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT’21]

+ applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results)
- Multiplicative dependence on number of corrupted rounds 𝐶
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Application to episodic RL

Building on BARBAR [Chen, Du, Jamieson, ICML’21]

+ Additive dependence on number of corrupted rounds 
- only applies to tabular MDP and gap-independent results

Building on Tsallis-INF [Jin, Huang, Luo, NeurIPS’21]

+ interpolation between the two extremes
- Requires transitions to not be corrupted => not clear how to do IW otherwise

Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT’21]

+ applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results)
- Multiplicative dependence on number of corrupted rounds 𝐶
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Symbiosis of these techniques
[Chen & Wang, OR’22]

Algorithm combines the two techniques & achieves near-optimal regret 

Need for symbiosis
• Tsallis-INF cannot work with binary feedback for the first task
• Multi-layering successive elimination race: suboptimal regret for the second task

Recent work on learning and pricing with inventory constraints
• Binary search to identify right inventory level
• Multi-armed bandits to decide the most profitable price (arm)
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• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT’22]
• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT’21]
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Model selection lens

Chen-Yu Wei will present this line of work 
in the September workshop

Another stochastic-adversarial interpolation via model selection
• Memory of the adversary: 𝑟!(𝑡) ∼ 𝐹!(𝐻$%B…$%")
• Some results for full information [Muthukumar, Ray, Sahai, Bartlett, AISTATS’21]

Vidya Muthukumar will present this line 
of work in the September workshop

Model selection: One way to view adversarial corruptions
• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT’22]
• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT’21]
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Agent-based learning

Principal-agent or Stackelberg games capture this paradigm
• Principal commits on a (randomized) action 𝒙𝒕
• Agent best responds according to their payoff matrix

Learning in Stackelberg games: Principal does not know agent’s payoff matrix
• Stackelberg Security Games [Blum, Haghtalab, Procaccia, NeurIPS’14] [Peng, Shen, Tang, Zuo, AAAI’19]

• Pricing with an unknown demand curve [Kleinberg & Leighton, FOCS’03] [Besbes & Zeevi, OR’09]
• Strategic classification [Dong, Roth, Schutzman, Waggoner, Wu, EC’18] [Chen, Liu, Podimata, NeurIPS’20]

Crucial limitation of stochastic model: Agent is completely myopic (thus best responds)
• Agent may want to sacrifice present payoff to affect principal’s learning & get future utility

Stochastic model can often be thought as best response for an agent
• Pricing example: agent buys if value ≥ price



Learning with non-myopic agents
[Haghtalab, L, Nietert, Wei, EC’22]

Typical model for non-myopia: Agent is discounting the future
• At round 𝜏, agent selects action 𝑦, that (approx.) maximizes ∑-., 𝛾-/,𝐸[𝑣- 𝑥- , 𝑦- ]
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Learning with non-myopic agents
[Haghtalab, L, Nietert, Wei, EC’22]

Sloan Nietert will likely present a poster 
on this work in the September workshop

Typical model for non-myopia: Agent is discounting the future
• At round 𝜏, agent selects action 𝑦, that (approx.) maximizes ∑-., 𝛾-/,𝐸[𝑣- 𝑥- , 𝑦- ]
• Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:
• Establish an information screen: slows down reacting to agent’s responses

• Delaying reaction decreases incentive for large deviations from best response
• Design minimally reactive algorithms that are robust to approximate best responses

• On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents
• Apply the multi-layering race recipe to adapt to unknown discount factor of agent
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Summary

Q3 (Beyond multi-armed bandits)
• General recipe for multi-layering race (e.g., contextual pricing, non-myopic learning)
• Tsallis-INF extendable in settings where one can do Importance Weighted Sampling
• Sometimes symbiosis is useful

Q1 (Best of both worlds)
• Stochastic-based: Run stochastic, test, switch to adversarial if test fails
• Adversarial-based: Run adversarial, adapt exploration to empirical gap

Q2 (Bridging the two worlds)
• Number of adversarial corruptions, memory of adversary, discount factor of non-myopic agent
• For adversarial corruptions: Multi-layering race, BARBAR, Tsallis-INF 

Thank you!


