Bridging stochastic and adversarial bandits

Thodoris Lykouris

https://www.regendus.com/best-random-number-generator-apps/ https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Gaoliang_Bridge.JPG/1200px-Gaoliang_Bridge.JPG https://physicsworld.com/wp-content/uploads/2022/04/Crease-demon-or-devil-110425232-Shutterstock_ChromaCo.jpg

<u>For t = 1 ... T:</u>

- 1. Learner selects a distribution p(t) across arms
- 2. Each arm *a* gets a reward $r_a(t)$
- 3. Learner (randomly) selects arm $A(t) \sim p(t)$
- 4. **Reward earning:** Learner earns reward $r_{A(t)}(t)$
- 5. Bandit feedback: Learner observes reward $r_{A(t)}(t)$

<u>For $t = 1 \dots T$:</u>

- 1. Learner selects a distribution p(t) across arms
- 2. Each arm *a* gets a reward $r_a(t)$
- 3. Learner (randomly) selects arm $A(t) \sim p(t)$
- 4. **Reward earning:** Learner earns reward $r_{A(t)}(t)$
- 5. **Bandit feedback:** Learner observes reward $r_{A(t)}(t)$

Stochastic bandits

i.i.d. rewards for each arm

$$r_a(t) \sim F_a$$

For t = 1 ... T:

- 1. Learner selects a distribution p(t) across arms

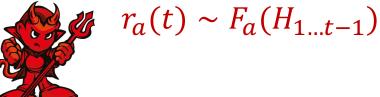
- Each arm a gets a reward r_a(t)
 Learner (randomly) selects arm A(t) ~ p(t)
 Reward earning: Learner earns reward r_{A(t)}(t)
- 5. **Bandit feedback:** Learner observes reward $r_{A(t)}(t)$

Stochastic bandits

i.i.d. rewards for each arm

$$r_a(t) \sim F_a$$

Adversarial bandits



For t = 1 ... T:

- Learner selects a distribution p(t) across arms 1.

- Each arm a gets a reward r_a(t)
 Learner (randomly) selects arm A(t) ~ p(t)
 Reward earning: Learner earns reward r_{A(t)}(t)
- 5. Bandit feedback: Learner observes reward $r_{A(t)}(t)$

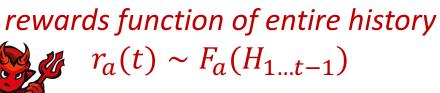
Stochastic bandits

i.i.d. rewards for each arm

$r_a(t) \sim F_a$

This talk

Adversarial bandits



Main questions

Q1 (Best of both worlds)

How can we simultaneously obtain the stochastic guarantee for stochastic environment and the adversarial guarantee for adversarial environment?

Main questions

Q1 (Best of both worlds)

How can we simultaneously obtain the stochastic guarantee for stochastic environment and the adversarial guarantee for adversarial environment?

Q2 (Bridging the two worlds)

What are models that interpolate between the two worlds? What are design principles that adapt to the difficulty of such stochastic-adversarial models?

Main questions

Q1 (Best of both worlds)

How can we simultaneously obtain the stochastic guarantee for stochastic environment and the adversarial guarantee for adversarial environment?

Q2 (Bridging the two worlds)

What are models that interpolate between the two worlds? What are design principles that adapt to the difficulty of such stochastic-adversarial models?

<u>Q3 (Beyond multi-armed bandits)</u>

How do these design principles extend beyond multi-armed bandits to more complex reward and feedback structures?

Performance metrics

$$Regret = \max_{a^{\star}} \sum_{t} r_{a^{\star}}(t) - \sum_{t} r_{A(t)}(t)$$

compares to hindsight-optimal arm a^{\star}

- depends on the realized rewards
- also depends on the algorithm in adversarial bandits

Performance metrics

$$Regret = \max_{a^{\star}} \sum_{t} r_{a^{\star}}(t) - \sum_{t} r_{A(t)}(t)$$

compares to hindsight-optimal arm a^{\star}

- depends on the realized rewards
- also depends on the algorithm in adversarial bandits

$$PseudoRegret = \max_{a^{\star}} E\left[\sum_{t} r_{a^{\star}}(t)\right] - E\left[\sum_{t} r_{A(t)}(t)\right]$$

compares to ex-ante optimal arm a^*

- highest mean in stochastic bandits (only function of reward distributions)
- still depends on algorithm but not on realizations in adversarial bandits

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

• Example: Online advertising

K arms => ads, F(a) => click propensity, mean $\mu(a)$ => click-through-rate

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

• Example: Online advertising

K arms => ads, F(a) => click propensity, mean $\mu(a)$ => click-through-rate

• <u>Algorithms</u>

UCB.[Auer, Cesa-Bianchi, Fischer, Machine Learning '02]Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]Thompson Sampling[Agrawal & Goyal, JACM'17]

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

• Example: Online advertising

K arms => ads, F(a) => click propensity, mean $\mu(a)$ => click-through-rate

• <u>Algorithms</u>

UCB.[Auer, Cesa-Bianchi, Fischer, Machine Learning '02]Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]Thompson Sampling[Agrawal & Goyal, JACM'17]

• Performance guarantee:
$$\Delta(a) = \max_{a^*} \mu(a^*) - \mu(a)$$

Pseudoregret $\approx \sum_a \min\left(\frac{\log T}{\Delta(a)}, \Delta(a) T\right)$
Regret $\approx \sum_a \min\left(\frac{\log(KT/\delta)}{\Delta(a)}, \sqrt{T}\right)$ with prob. $\ge 1 - \delta$

Stochastic bandits

• Example: Online advertising

K arms => ads, F(a) => click propensity, mean $\mu(a) =>$ click-through-rate

Algorithms

UCB. [Auer, Cesa-Bianchi, Fischer, Machine Learning '02] Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06] Thompson Sampling [Agrawal & Goyal, JACM'17]

• <u>Performance guarantee</u>: $\Delta(a) = \max_{a^*} \mu(a^*) - \mu(a)$ Pseudoregret $\approx \sum_{a} \min\left(\frac{\log T}{\Lambda(a)}, \Delta(a) T\right)$ Regret $\approx \sum_{a} \min\left(\frac{\log(KT/\delta)}{\Lambda(a)}, \sqrt{T}\right)$ with prob. $\geq 1 - \delta$

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$ function of entire history: $r_a(t) \sim F_a(H_{1,t-1})$

Adversarial bandits

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

- Example: Online advertising
 K arms => ads, F(a) => click propensity,
 mean μ(a) => click-through-rate
- <u>Algorithms</u>

UCB.[Auer, Cesa-Bianchi, Fischer, Machine Learning '02]Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]Thompson Sampling[Agrawal & Goyal, JACM'17]

• <u>Performance guarantee</u>: $\Delta(a) = \max_{a^*} \mu(a^*) - \mu(a)$ *Pseudoregret* $\approx \sum_a \min\left(\frac{\log T}{\Delta(a)}, \Delta(a) T\right)$ *Regret* $\approx \sum_a \min\left(\frac{\log(KT/\delta)}{\Delta(a)}, \sqrt{T}\right)$ with prob. $\ge 1 - \delta$

function of entire history: $r_a(t) \sim F_a(H_{1...t-1})$

Adversarial bandits

 <u>Example: Learning in games</u> arms => bidding strategies, other agents makes rewards non-stochastic

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

- Example: Online advertising
 K arms => ads, F(a) => click propensity,
 mean μ(a) => click-through-rate
- <u>Algorithms</u>

UCB.[Auer, Cesa-Bianchi, Fischer, Machine Learning '02]Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]Thompson Sampling[Agrawal & Goyal, JACM'17]

• <u>Performance guarantee</u>: $\Delta(a) = \max_{a^*} \mu(a^*) - \mu(a)$ *Pseudoregret* $\approx \sum_a \min\left(\frac{\log T}{\Delta(a)}, \Delta(a) T\right)$ *Regret* $\approx \sum_a \min\left(\frac{\log(KT/\delta)}{\Delta(a)}, \sqrt{T}\right)$ with prob. $\ge 1 - \delta$

Adversarial bandits \checkmark function of entire history: $r_a(t) \sim F_a(H_{1...t-1})$

- <u>Example: Learning in games</u> arms => bidding strategies, other agents makes rewards non-stochastic
- <u>Algorithms</u>
 - EXP3.P[Auer, Cesa-Bianchi, Freund, Schapire, SICOMP '02]Tsallis-INF[Audibert & Bubeck, JMLR'10][Abernethy, Lee, Tewari, NeurIPS'15]Log-barrier[Foster, Li, L, Sridharan, Tardos, NeurIPS'16]

Stochastic bandits

i.i.d. rewards for each arm: $r_a(t) \sim F(a)$

- Example: Online advertising
 K arms => ads, F(a) => click propensity,
 mean μ(a) => click-through-rate
- <u>Algorithms</u>

UCB.[Auer, Cesa-Bianchi, Fischer, Machine Learning '02]Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]Thompson Sampling[Agrawal & Goyal, JACM'17]

• <u>Performance guarantee</u>: $\Delta(a) = \max_{a^*} \mu(a^*) - \mu(a)$ *Pseudoregret* $\approx \sum_a \min\left(\frac{\log T}{\Delta(a)}, \Delta(a) T\right)$ *Regret* $\approx \sum_a \min\left(\frac{\log(KT/\delta)}{\Delta(a)}, \sqrt{T}\right)$ with prob. $\geq 1 - \delta$

function of entire history: $r_a(t) \sim F_a(H_{1...t-1})$

Adversarial bandits

- <u>Example: Learning in games</u> arms => bidding strategies, other agents makes rewards non-stochastic
- <u>Algorithms</u>
 - EXP3.P[Auer, Cesa-Bianchi, Freund, Schapire, SICOMP '02]Tsallis-INF[Audibert & Bubeck, JMLR'10][Abernethy, Lee, Tewari, NeurIPS'15]Log-barrier[Foster, Li, L, Sridharan, Tardos, NeurIPS'16]
- Performance guarantee:

Pseudoregret $\approx \sqrt{KT}$ Regret $\approx \sqrt{KT \log(KT/\delta)}$

with prob. $\geq 1-\delta$

Best of both worlds

<u>Q1 (Best of both worlds)</u> [Bubeck & Slivkins, COLT'12]

How can we simultaneously obtain the stochastic guarantee for stochastic environment and the adversarial guarantee for adversarial environment?

Best of both worlds

<u>Q1 (Best of both worlds)</u> [Bubeck & Slivkins, COLT'12]

How can we simultaneously obtain the stochastic guarantee for stochastic environment and the adversarial guarantee for adversarial environment?

Stochastic-based approach

- 1. Run stochastic bandit algorithm
- 2. Test if stochasticity holds
- 3. If test fails, switch to adversarial bandits

Best of both worlds

<u>Q1 (Best of both worlds)</u> [Bubeck & Slivkins, COLT'12]

How can we simultaneously obtain the stochastic guarantee for stochastic environment and the adversarial guarantee for adversarial environment?

Stochastic-based approach

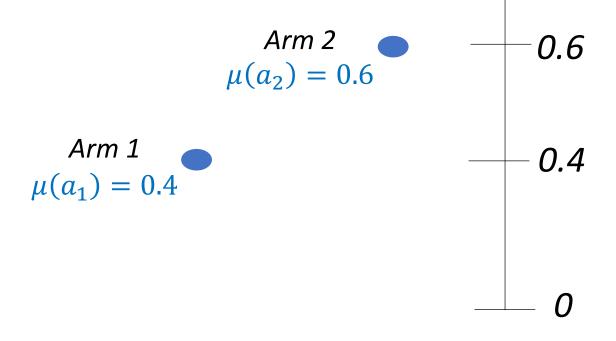
- 1. Run stochastic bandit algorithm
- 2. Test if stochasticity holds
- 3. If test fails, switch to adversarial bandits

Adversarial-based approach

- 1. Run adversarial bandit algorithm
- 2. Exploration adapts to empirical gap

Successive Elimination

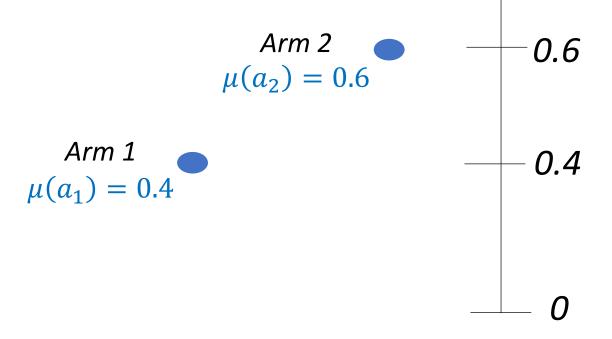
- [Even-Dar, Mannor, Mansour, JMLR'06]
- Each arm has a mean $\mu(a)$



[Even-Dar, Mannor, Mansour, JMLR'06]

Successive Elimination

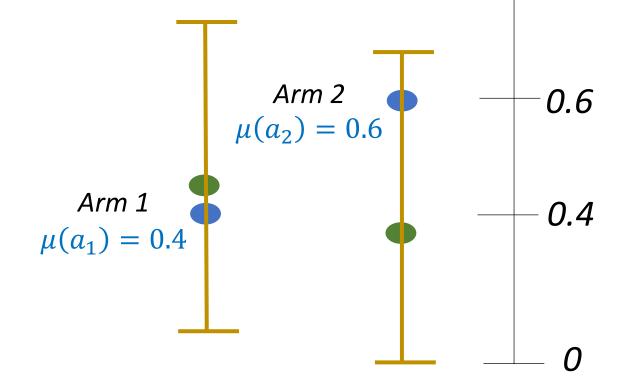
- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)



Successive Elimination

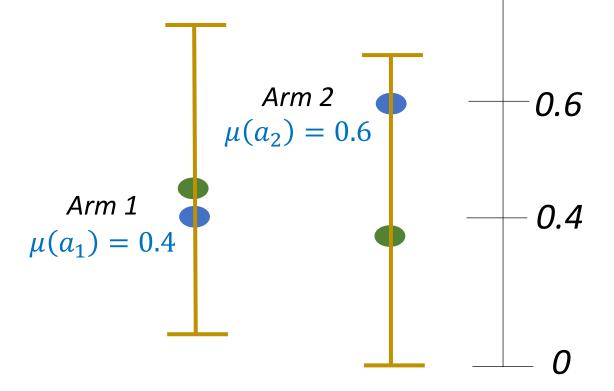
[Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials



Successive Elimination

- [Even-Dar, Mannor, Mansour, JMLR'06]
- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another



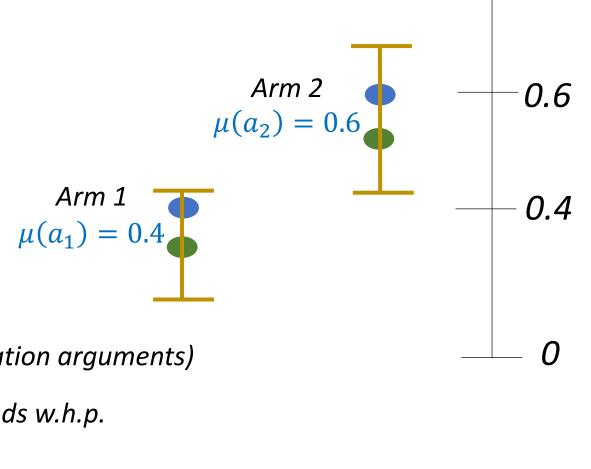
Successive Elimination

[Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another

Crux of analysis

- W.h.p. actual mean in confidence interval (concentration arguments)
- Subopimal arm a is deactivated after $\frac{\log(KT/\delta)}{(\Delta_a)^2}$ rounds w.h.p.
 - Contributes $\frac{\log(KT/\delta)}{(\Delta_a)^2} \cdot \Delta_a = \frac{\log(KT/\delta)}{\Delta_a}$ to regret



Stochastic and Adversarial Optimal (SAO) algorithm

[Bubeck & Slivkins, COLT'12]

- Run Successive Elimination
- For deactivated arms, randomly test if rewards are consistent with confidence interval
- If not: switch to EXP3.P
- Guarantee: Stochastic pseudoregret of $\tilde{O}\left(\frac{K \cdot \log^2(T)}{\Delta}\right)$ and adversarial regret of $\tilde{O}(KT)$

Stochastic and Adversarial Optimal (SAO) algorithm

[Bubeck & Slivkins, COLT'12]

- Run Successive Elimination
- For deactivated arms, randomly test if rewards are consistent with confidence interval
 - Tests should not be very frequent (to maintain logarithmic guarantee)
- If not: switch to EXP3.P
 - Tests should not be very infrequent (to have at most \sqrt{T} regret at time of switch)
- Guarantee: Stochastic pseudoregret of $\tilde{O}\left(\frac{K \cdot \log^2(T)}{\Delta}\right)$ and adversarial regret of $\tilde{O}\left(\sqrt{KT}\right)$

Stochastic and Adversarial Optimal (SAO) algorithm

[Bubeck & Slivkins, COLT'12]

- Run Successive Elimination
- For deactivated arms, randomly test if rewards are consistent with confidence interval
 - Tests should not be very frequent (to maintain logarithmic guarantee)
- If not: switch to EXP3.P
 - Tests should not be very infrequent (to have at most \sqrt{T} regret at time of switch)
- Guarantee: Stochastic pseudoregret of $\tilde{O}\left(\frac{K \cdot \log^2(T)}{\Delta}\right)$ and adversarial regret of $\tilde{O}\left(\sqrt{KT}\right)$

Stochastic and Adversarial PseudoOptimal (SAPO) algorithm [Auer & Chiang, COLT'16]

• No algorithm can have $o(\log^2(T))$ stochastic pseudoregret and o(T) adversarial regret w.h.p.

Stochastic and Adversarial Optimal (SAO) algorithm

[Bubeck & Slivkins, COLT'12]

- Run Successive Elimination
- For deactivated arms, randomly test if rewards are consistent with confidence interval
 - Tests should not be very frequent (to maintain logarithmic guarantee)
- If not: switch to EXP3.P
 - Tests should not be very infrequent (to have at most \sqrt{T} regret at time of switch)
- Guarantee: Stochastic pseudoregret of $\tilde{O}\left(\frac{K \cdot \log^2(T)}{\Delta}\right)$ and adversarial regret of $\tilde{O}\left(\sqrt{KT}\right)$

Stochastic and Adversarial PseudoOptimal (SAPO) algorithm [Auer & Chiang, COLT'16]

- No algorithm can have $o(\log^2(T))$ stochastic pseudoregret and o(T) adversarial regret w.h.p.
- Guarantee: Stochastic pseudoregret of $\tilde{O}\left(\frac{K \cdot \log T}{\Delta}\right)$ and adversarial pseudoregret of $\tilde{O}\left(\sqrt{KT}\right)$
 - *Key idea: use past negative pseudoregret to allow for more infrequent tests*

Adversarial-based best of both worlds

[Seldin & Slivkins, COLT'14] [Seldin & Lugosi, COLT'17]

• Original version of EXP3 mixes with a uniform distribution γ

EXP3++

- Run EXP3 with arm-specific exploration probabilities $\gamma(a)$ that are inverse to empirical gap
- Leads to near-optimal stochastic and adversarial pseudoregret guarantees

Adversarial-based best of both worlds

<u>EXP3++</u>

[Seldin & Slivkins, COLT'14] [Seldin & Lugosi, COLT'17]

- Original version of EXP3 mixes with a uniform distribution γ
- Run EXP3 with arm-specific exploration probabilities $\gamma(a)$ that are inverse to empirical gap
- Leads to near-optimal stochastic and adversarial pseudoregret guarantees

MD beyond Shannon entropy [Wei & Luo, COLT'18] [Zimmert & Seldin, JMLR'21]

- Run Mirror Descent with a stronger regularizer (log-barrier / Tsallis)
 - No direct gap-driven exploration but probabilities of suboptimal arms decrease starkly
- Analysis upper bounds regret via a unified "self-bounding term"
- Optimal stochastic and adversarial pseudoregret guarantees

Adversarial-based best of both worlds

[Seldin & Slivkins, COLT'14] [Seldin & Lugosi, COLT'17]

- Original version of EXP3 mixes with a uniform distribution γ
- Run EXP3 with arm-specific exploration probabilities $\gamma(a)$ that are inverse to empirical gap
- Leads to near-optimal stochastic and adversarial pseudoregret guarantees

MD beyond Shannon entropy [Wei & Luo, COLT'18] [Zimmert & Seldin, JMLR'21]

- Run Mirror Descent with a stronger regularizer (log-barrier / Tsallis)
 - No direct gap-driven exploration but probabilities of suboptimal arms decrease starkly
- Analysis upper bounds regret via a unified "self-bounding term"
- Optimal stochastic and adversarial pseudoregret guarantees

Julian Zimmert will present this result in the September workshop

<u>EXP3++</u>

Hybrid stochastic-adversarial models

<u>Challenges with most best of both worlds approaches:</u>

- Stochastic-based approaches switch to EXP3.P if they detect non-stochasticity
- Until recently, adversarial-based approaches analyzed stochastic and adversarial separately
- In more complex learning settings, there is often no "adversarial" bandit algorithm

Hybrid stochastic-adversarial models

Challenges with most best of both worlds approaches:

- Stochastic-based approaches switch to EXP3.P if they detect non-stochasticity
- Until recently, adversarial-based approaches analyzed stochastic and adversarial separately
- In more complex learning settings, there is often no "adversarial" bandit algorithm

Q2 (Bridging the two worlds)

What are models that interpolate between the two worlds? What are design principles that adapt to the difficulty of such stochastic-adversarial models?

<u>Q3 (Beyond multi-armed bandits)</u>

How do these design principles extend beyond multi-armed bandits to more complex reward and feedback structures?

Stochastic bandits w/ adversarial corruptions

[L, Mirrokni, Paes Leme, STOC'18]

Most of the data are i.i.d. but some rounds are adversarially corrupted

Examples

- *Click fraud* in online advertising
- Fake reviews in recommender systems

Model

<u>For t = 1 ... T:</u>

1. Learner selects a distribution p(t) across arms

2.

- 3. Each arm *a* gets a reward $r_a(t)$
- 4. Learner (randomly) selects arm $A(t) \sim p(t)$
- 5. **Reward earning:** Learner earns reward $r_{A(t)}(t)$
- 6. Bandit feedback: Learner observes reward $r_{A(t)}(t)$

Model

For t = 1 ... T:

[L, Mirrokni, Paes Leme, STOC'18]

- 1. Learner selects a distribution p(t) across arms
- 2. Adversary selects *latent* corruption $c(t) \in \{0,1\}$ as function of history $H_{1...t-1}$
- 3. Each arm a gets a reward $r_a(t)$
 - If $c^t = 0$, $r_a(t) \coloneqq \tilde{r}_a(t) \sim F_a$ else $r_a(t) \coloneqq \bar{r}_a(t) \sim F_a(H_{1...t-1})$
- 4. Learner (randomly) selects arm $A(t) \sim p(t)$
- 5. **Reward earning:** Learner earns reward $r_{A(t)}(t)$
- 6. Bandit feedback: Learner observes reward $r_{A(t)}(t)$

Model

For t = 1 ... T:

[L, Mirrokni, Paes Leme, STOC'18]

- 1. Learner selects a distribution p(t) across arms
- 2. Adversary selects *latent* corruption $c(t) \in \{0,1\}$ as function of history $H_{1...t-1}$
- 3. Each arm *a* gets a reward $r_a(t)$
 - If $c^t = 0$, $r_a(t) \coloneqq \tilde{r}_a(t) \sim F_a$ else $r_a(t) \coloneqq \bar{r}_a(t) \sim F_a(H_{1...t-1})$
- 4. Learner (randomly) selects arm $A(t) \sim p(t)$
- 5. **Reward earning:** Learner earns reward $r_{A(t)}(t)$
- 6. Bandit feedback: Learner observes reward $r_{A(t)}(t)$

<u>Goal</u>: Algorithm design principles that adapt to the number of corrupted rounds $C = \sum_t c(t)$ Unknown number of corrupted rounds: $C = \sum_{t} c^{t}$

K

Number of arms:

Three main techniques

Multi-layering Successive Elimination Race

With high probability:

[*L*, Mirrokni, Paes Leme, STOC'18]

$$Regret \leq \sum_{a} \frac{log^{2}(T) + CK \cdot log(KT/\delta)}{\Delta(a)}$$

BARBAR: Bad Arms get Recource

[Gupta, Koren, Talwar, COLT'19]

$$Regret \leq CK + \sum_{a} \frac{\log^2(KT/\delta)}{\Delta(a)}$$

Mirror Descent with Tsallis-INF

[Zimmert & Seldin, JMLR'21]

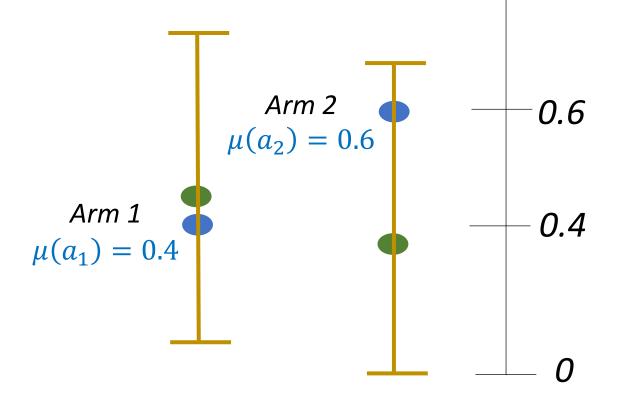
$$Pseudoregret \leq \sum_{a} \frac{\log(T)}{\Delta(a)} + \sqrt{C \sum_{a} \frac{\log(T)}{\Delta(a)}}$$

assumes uniqueness of optimal arm

Brittleness of stochastic approaches

Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another



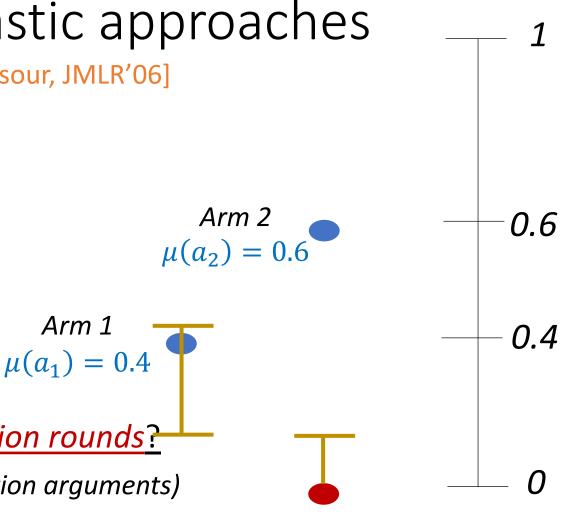
Brittleness of stochastic approaches

Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another

What breaks if adversary corrupts the exploration rounds?

W.h.p. actual mean in confidence interval (concentration arguments)

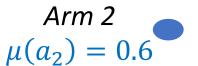


Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another

What breaks if adversary corrupts the exploration rounds?

W.h.p. actual mean in resultance interval (concentration arguments)



 $\mu(a_1) = 0.4$

0.6

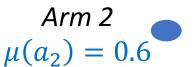
0.4

Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another

What breaks if adversary corrupts the exploration rounds?

- W.h.p. actual mean in any filtence interval (concentration arguments)
- Opimal arm a is deactivated after $\log T$ rounds



 $\mu(a_1) = 0.4$

0.6

0.4

Brittleness of stochastic approaches

Arm 2 $\mu(a_2) = 0.6$

 $Arm 1 - \mu(a_1) = 0.4$

0.6

0.4

Successive Elimination [Even-Dar, Mannor, Mansour, JMLR'06]

- Each arm has a mean $\mu(a)$
- Keep a set of "active" arms (initially all)
- Confidence interval = *Empirical mean* ± *Bonus*
 - Bonus = $\sqrt{\frac{\log(KT/\delta)}{N_a(t)}}$ where $N_a(t)$ = #trials
- 1. Select an "active" arm uniformly at random
- 2. "Deactivate" any arm dominated by another

What breaks if adversary corrupts the exploration rounds?

- W.h.p. actual mean in residence reserval (concentration arguments)
- Opimal arm *a* is deactivated after log *T* rounds
- Corruption then stops: linear regret with only logarithmic corruption!

If we knew that the number of corrupted rounds we encounter was $\bar{c} \leq log(KT/\delta)$

If we knew that the number of corrupted rounds we encounter was $\bar{c} \leq log(KT/\delta)$

We can account for it even if all corruption is going against us

• Confidence interval = *Empirical mean* ± *Corruption Bonus*

• Bonus =
$$\sqrt{\frac{\log(KT/\delta)}{N_a(t)} + \frac{\bar{c}}{N_a(t)}}$$
 where $N_a(t)$ = #trials

If we knew that the number of corrupted rounds we encounter was $\bar{c} \leq log(KT/\delta)$

We can account for it even if all corruption is going against us

• Confidence interval = *Empirical mean* ± *Corruption Bonus*

• Bonus =
$$\sqrt{\frac{\log(KT/\delta)}{N_a(t)} + \frac{\bar{c}}{N_a(t)}}$$
 where $N_a(t)$ = #trials

Successive Elimination analysis goes through

- W.h.p. actual mean in confidence interval
- Suboptimal arm a is deactivated after $\frac{\log(KT/\delta) + \bar{c}}{(\Delta_a)^2}$ rounds w.h.p.

• Contributes
$$\frac{\log(KT/\delta)}{(\Delta_a)^2} \cdot \Delta_a = \frac{\log(KT/\delta)}{\Delta_a}$$
 to regret

Idea: Create multiple independent copies of Successive Elimination (layers)

• Copy ℓ is responsible for corruption of $\approx 2^{\ell}$

Idea: Create multiple independent copies of Successive Elimination (layers)

• Copy ℓ is responsible for corruption of $\approx 2^{\ell}$

At every round: w.p. $2^{-\ell}$ play according to copy $\ell = 1 \dots \log T$

- Do not update estimates of any other copy
- Larger $\ell \geq \log C$ observe corruption at most $\overline{c} \leq \log(KT/\delta)$ but slower to find a^*
- Smaller *l* faster but prone to corruption (similar as in Successive Elimination)

Idea: Create multiple independent copies of Successive Elimination (layers)

• Copy ℓ is responsible for corruption of $\approx 2^{\ell}$

At every round: w.p. $2^{-\ell}$ play according to copy $\ell = 1 \dots \log T$

- Do not update estimates of any other copy
- Larger $\ell \geq \log C$ observe corruption at most $\overline{c} \leq \log(KT/\delta)$ but slower to find a^*
- Smaller ℓ faster but prone to corruption (similar as in Successive Elimination)

Challenge: achieve a *race across copies* that combines learning speed with robustness

- Idea: robust copies supervise faster ones (nested eliminations of active arms)
 - Number of rounds that a suboptimal arm survives: dictated by fastest robust copy $\ell^* = [log C]$

Regret of non-robust copies $\leq C \cdot \text{Regret of fastest robust copy } \ell^{\star}$

Recipe for corruptions in multi-armed bandits

[L, Mirrokni, Paes Leme, STOC'18]

Require:

- Problem that can be solved by estimating "ground truth"
 - a^{\star} in multi-armed bandits
- An algorithm *ALG* that aggressively refines active confidence set containing "ground truth" *ALG=Successive Elimination* [Even-Dar, Mannor, Mansour, JMLR'06]

 Steps:
- 1. Robustness to **known amount** of corruption $\overline{c} \approx \log T$: **ALG** \Rightarrow **ROBUSTALG**(\overline{c})
- 2. Adapting to **unknown amount** of corruption C:
 - Run independent copies of **ROBUSTALG**(*log T*) in parallel
 - Each copy responsible for a different level of corruption
 - Robust versions supervise non-robust & correct errors via nested eliminations

Recipe for corruptions in contextual pricing

[Krishnamurthy, L, Podimata, Schapire, STOC'21 / OR'22]

Require:

Problem that can be solved by estimating "ground truth"

 θ^{\star} in contextual pricing ---> value of customer is $\langle \theta^{\star}, x_t \rangle$ for adversarial context x_t

- An algorithm *ALG* that aggressively refines active confidence set containing "ground truth" *ALG=Projected Volume* [Lobel, Paes Leme, Vladu, EC'17 / OR'18]

 Steps:
- 1. Robustness to **known amount** of corruption $\overline{c} \approx \log T$: **ALG** \Rightarrow **ROBUSTALG**(\overline{c})
- 2. Adapting to **unknown amount** of corruption C

Recipe for corruptions in contextual pricing

[Krishnamurthy, L, Podimata, Schapire, STOC'21 / OR'22]

Require:

Problem that can be solved by estimating "ground truth"

 θ^{\star} in contextual pricing ---> value of customer is $\langle \theta^{\star}, x_t \rangle$ for adversarial context x_t

- An algorithm *ALG* that aggressively refines active confidence set containing "ground truth" *ALG=Projected Volume* [Lobel, Paes Leme, Vladu, EC'17 / OR'18]

 Steps:
- 1. Robustness to **known amount** of corruption $\overline{c} \approx \log T$: **ALG** \Rightarrow **ROBUSTALG**(\overline{c})
- 2. Adapting to **unknown amount** of corruption C

Chara Podimata will present this result in the September workshop

Multi-layering race: a general recipe for corruptions

Require:

- Problem that can be solved by estimating "ground truth"
 - a^{\star} in multi-armed bandits θ^{\star} in contextual pricing
- An algorithm *ALG* that aggressively refines active confidence set containing "ground truth" *ALG=Successive Elimination ALG=Projected Volume*
 Steps:
- 1. Robustness to **known amount** of corruption $\overline{c} \approx \log T$: **ALG** \Rightarrow **ROBUSTALG**(\overline{c})
- 2. Adapting to **unknown amount** of corruption C:
 - Run independent copies of **ROBUSTALG**(log T) in parallel
 - Each copy responsible for a different level of corruption
 - Robust versions supervise non-robust & correct errors via nested eliminations

Multi-layering race: a general recipe for corruptions

Require:

- Problem that can be solved by estimating "ground truth"
 - a^{\star} in multi-armed bandits θ^{\star} in contextual pricing
- An algorithm *ALG* that aggressively refines active confidence set containing "ground truth" *ALG=Successive Elimination ALG=Projected Volume*
 Steps:
- 1. Robustness to **known amount** of corruption $\overline{c} \approx \log T$: **ALG** \Rightarrow **ROBUSTALG**(\overline{c})
- 2. Adapting to **unknown amount** of corruption C:

Other results via this recipe

Assortment optimization [Chen, Krishnamurty, Wang'19] via [Agrawal, Avandhanula, Goyal, Zeevi, OR'19] Product rankings [Golrezaei, Manshadi, Schneider, Sekar, EC'21] via [Derakhshan, Golrezaei, Manshadi, Mirrokni EC'20/MS'21]

BARBAR

[Gupta, Koren, Talwar, COLT'19]

Multi-layering Successive Elimination Race runs copies in parallel

Robustness as slower copies are not selected too often: corruption subsampled

BARBAR

[Gupta, Koren, Talwar, COLT'19]

Multi-layering Successive Elimination Race runs copies in parallel

Robustness as slower copies are not selected too often: corruption subsampled

Bandit Algorithms with Robustness: Bad Arms get Recourse (BARBAR)

- Works in geometrically increasing epochs: decisions always determined by previous epoch
- If input was stochastic, learn all arms with gap $2^{-\ell}$ by epoch ℓ

BARBAR

[Gupta, Koren, Talwar, COLT'19]

Multi-layering Successive Elimination Race runs copies in parallel

Robustness as slower copies are not selected too often: corruption subsampled

Bandit Algorithms with Robustness: Bad Arms get Recourse (BARBAR)

- Works in geometrically increasing epochs: decisions always determined by previous epoch
- If input was stochastic, learn all arms with gap $2^{-\ell}$ by epoch ℓ
- Instead of eliminating "suboptimal" arms, BARBAR selects them w.p. inverse to empirical gap
- If a^* seems "bad" in an epoch, adversary needs much budget to corrupt it again
 - corruption subsampled automatically for any "bad arm"

Tsallis-INF

[Zimmert & Seldin, JMLR'21]

- Analysis upper bounds regret via a unified "self-bounding term"
- Optimal stochastic and adversarial pseudoregret guarantees
- Same analysis extends for pseudoregret in adversarial corruptions
- Dependence slightly strengthened subsequently [Massoudian & Seldin, COLT'21] [Ito, NeurIPS'21]

Building block for regularizers that extend beyond multi-armed bandits

- combinatorial semi-bandits (routing)
- reinforcement learning with unknown i.i.d. transitions

[Zimmert, Luo, Wei, ICML'19]

[Jin, Huang, Luo, NeurIPS'21]

Comparison of these techniques

Multi-layering successive elimination race

[L, Mirrokni, Paes Leme, STOC'18]

- + applies to any setting with "confidence set" (binary feedback, no adversarial counterparts, etc)
- + high-probability guarantees
- multiplicative dependence on number of corrupted rounds C

Comparison of these techniques

Multi-layering successive elimination race [L, Mirrokni, Paes Leme, STOC'18]

- + applies to any setting with "confidence set" (binary feedback, no adversarial counterparts, etc)
- + high-probability guarantees
- multiplicative dependence on number of corrupted rounds ${\ensuremath{\mathcal{C}}}$

BARBAR

[Gupta, Koren, Talwar, COLT'19]

- + elegant corruption subsampling => additive dependence on corrupted rounds C
- + high-probability guarantees
- requires some notion of "gap" to apply: less broadly applicable

Comparison of these techniques

Multi-layering successive elimination race [L, Mirrokni, Paes Leme, STOC'18]

- + applies to any setting with "confidence set" (binary feedback, no adversarial counterparts, etc)
- + high-probability guarantees
- multiplicative dependence on number of corrupted rounds C

BARBAR

[Gupta, Koren, Talwar, COLT'19]

- + elegant corruption subsampling => additive dependence on corrupted rounds C
- + high-probability guarantees
- requires some notion of "gap" to apply: less broadly applicable

<u>Tsallis-INF</u>

[Zimmert & Seldin, JMLR'21]

- + achieves interpolation between two extremes
- requires some way to do IW: unclear how to go beyond bandit feedback & finite # policies

Application to episodic RL

Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT'21]

+ applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results)

- Multiplicative dependence on number of corrupted rounds C

Application to episodic RL

Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT'21] + applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results) - Multiplicative dependence on number of corrupted rounds C

Building on BARBAR

[Chen, Du, Jamieson, ICML'21]

+ Additive dependence on number of corrupted rounds

- only applies to tabular MDP and gap-independent results

Application to episodic RL

Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT'21] + applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results) - Multiplicative dependence on number of corrupted rounds C

Building on BARBAR

+ Additive dependence on number of corrupted rounds

- only applies to tabular MDP and gap-independent results

Building on Tsallis-INF

- + interpolation between the two extremes
- Requires transitions to not be corrupted => not clear how to do IW otherwise

[Chen, Du, Jamieson, ICML'21]

[Jin, Huang, Luo, NeurIPS'21]

Symbiosis of these techniques [Chen & Wang, OR'22]

Recent work on learning and pricing with inventory constraints

- Binary search to identify right inventory level
- Multi-armed bandits to decide the most profitable price (arm)

Symbiosis of these techniques [Chen & Wang, OR'22]

Recent work on learning and pricing with inventory constraints

- Binary search to identify right inventory level
- Multi-armed bandits to decide the most profitable price (arm)

Need for symbiosis

- Tsallis-INF cannot work with binary feedback for the first task
- Multi-layering successive elimination race: suboptimal regret for the second task

Symbiosis of these techniques [Chen & Wang, OR'22]

Recent work on learning and pricing with inventory constraints

- Binary search to identify right inventory level
- Multi-armed bandits to decide the most profitable price (arm)

Need for symbiosis

- Tsallis-INF cannot work with binary feedback for the first task
- Multi-layering successive elimination race: suboptimal regret for the second task

<u>Algorithm combines the two techniques & achieves near-optimal regret</u>

Model selection lens

Model selection: One way to view adversarial corruptions

• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zin

Builds on model selection approach for non-stationary RL

[Wei, Dann, Zimmert, ALT'22] [Wei & Luo, COLT'21]

Model selection lens

Model selection: One way to view adversarial corruptions

• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT'22]

• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT'21]

Chen-Yu Wei will present this line of work in the September workshop

Model selection lens

Model selection: One way to view adversarial corruptions

• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT'22]

• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT'21]

Chen-Yu Wei will present this line of work in the September workshop

Another stochastic-adversarial interpolation via model selection

- Memory of the adversary: $r_a(t) \sim F_a(H_{t-M,..,t-1})$

• Some results for full information [Muthukumar, Ray, Sahai, Bartlett, AISTATS'21]

Model selection lens

Model selection: One way to view adversarial corruptions

• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT'22]

• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT'21]

Chen-Yu Wei will present this line of work in the September workshop

Another stochastic-adversarial interpolation via model selection

- Memory of the adversary: $r_a(t) \sim F_a(H_{t-M...t-1})$
- Some results for full information [Muthukumar, Ray, Sahai, Bartlett, AISTATS'21]

Vidya Muthukumar will present this line of work in the September workshop

Stochastic model can often be thought as best response for an agent

• Pricing example: agent buys if value \geq price

Stochastic model can often be thought as best response for an agent

• Pricing example: agent buys if value \geq price

Principal-agent or Stackelberg games capture this paradigm

- Principal commits on a (randomized) action x_t
- Agent best responds according to their payoff matrix

Stochastic model can often be thought as best response for an agent

• Pricing example: agent buys if value \geq price

Principal-agent or Stackelberg games capture this paradigm

- Principal commits on a (randomized) action x_t
- Agent best responds according to their payoff matrix

Learning in Stackelberg games: Principal does not know agent's payoff matrix

- Stackelberg Security Games [Blum, Haghtalab, Procaccia, NeurIPS'14] [Peng, Shen, Tang, Zuo, AAAI'19]
- Pricing with an unknown demand curve [Kleinberg & Leighton, FOCS'03] [Besbes & Zeevi, OR'09]
- Strategic classification [Dong, Roth, Schutzman, Waggoner, Wu, EC'18] [Chen, Liu, Podimata, NeurIPS'20]

Stochastic model can often be thought as best response for an agent

• Pricing example: agent buys if value \geq price

Principal-agent or Stackelberg games capture this paradigm

- Principal commits on a (randomized) action x_t
- Agent best responds according to their payoff matrix

Learning in Stackelberg games: Principal does not know agent's payoff matrix

- Stackelberg Security Games [Blum, Haghtalab, Procaccia, NeurIPS'14] [Peng, Shen, Tang, Zuo, AAAI'19]
- Pricing with an unknown demand curve [Kleinberg & Leighton, FOCS'03] [Besbes & Zeevi, OR'09]
- Strategic classification [Dong, Roth, Schutzman, Waggoner, Wu, EC'18] [Chen, Liu, Podimata, NeurIPS'20]

Crucial limitation of stochastic model: Agent is completely myopic (thus best responds)

• Agent may want to sacrifice present payoff to affect principal's learning & get future utility

[Haghtalab, L, Nietert, Wei, EC'22]

Typical model for non-myopia: Agent is discounting the future

- At round τ , agent selects action y_{τ} that (approx.) maximizes $\sum_{t \ge \tau} \gamma^{t-\tau} E[v_t(x_t, y_t)]$
- Interpolation between stochastic (best response) and adversarial (infinitely patient)

[Haghtalab, *L*, Nietert, Wei, EC'22]

Typical model for non-myopia: Agent is discounting the future

- At round τ , agent selects action y_{τ} that (approx.) maximizes $\sum_{t \ge \tau} \gamma^{t-\tau} E[v_t(x_t, y_t)]$
- Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:

- Establish an information screen: slows down reacting to agent's responses
 - Delaying reaction decreases incentive for large deviations from best response

[Haghtalab, *L*, Nietert, Wei, EC'22]

Typical model for non-myopia: Agent is discounting the future

- At round τ , agent selects action y_{τ} that (approx.) maximizes $\sum_{t \ge \tau} \gamma^{t-\tau} E[v_t(x_t, y_t)]$
- Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:

- Establish an information screen: slows down reacting to agent's responses
 - Delaying reaction decreases incentive for large deviations from best response
- Design minimally reactive algorithms that are robust to approximate best responses
 - On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents

[Haghtalab, *L*, Nietert, Wei, EC'22]

Typical model for non-myopia: Agent is discounting the future

- At round τ , agent selects action y_{τ} that (approx.) maximizes $\sum_{t \ge \tau} \gamma^{t-\tau} E[v_t(x_t, y_t)]$
- Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:

- Establish an information screen: slows down reacting to agent's responses
 - Delaying reaction decreases incentive for large deviations from best response
- Design minimally reactive algorithms that are robust to approximate best responses
 - On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents
- Apply the multi-layering race recipe to adapt to unknown discount factor of agent

[Haghtalab, L, Nietert, Wei, EC'22]

Typical model for non-myopia: Agent is discounting the future

- At round τ , agent selects action y_{τ} that (approx.) maximizes $\sum_{t \ge \tau} \gamma^{t-\tau} E[v_t(x_t, y_t)]$
- Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:

- Establish an information screen: slows down reacting to agent's responses
 - Delaying reaction decreases incentive for large deviations from best response
- Design minimally reactive algorithms that are robust to approximate best responses
 - On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents
- Apply the multi-layering race recipe to adapt to unknown discount factor of agent

Sloan Nietert will likely present a poster on this work in the September workshop

Q1 (Best of both worlds)

Q2 (Bridging the two worlds)

Q1 (Best of both worlds)

- Stochastic-based: Run stochastic, test, switch to adversarial if test fails
- Adversarial-based: Run adversarial, adapt exploration to empirical gap

Q2 (Bridging the two worlds)

Q1 (Best of both worlds)

- Stochastic-based: Run stochastic, test, switch to adversarial if test fails
- Adversarial-based: Run adversarial, adapt exploration to empirical gap

Q2 (Bridging the two worlds)

- Number of adversarial corruptions, memory of adversary, discount factor of non-myopic agent
- For adversarial corruptions: Multi-layering race, BARBAR, Tsallis-INF

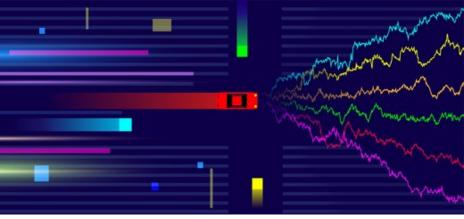
Q1 (Best of both worlds)

- Stochastic-based: Run stochastic, test, switch to adversarial if test fails
- Adversarial-based: Run adversarial, adapt exploration to empirical gap

Q2 (Bridging the two worlds)

- Number of adversarial corruptions, memory of adversary, discount factor of non-myopic agent
- For adversarial corruptions: Multi-layering race, BARBAR, Tsallis-INF

- General recipe for multi-layering race (e.g., contextual pricing, non-myopic learning)
- Tsallis-INF extendable in settings where one can do Importance Weighted Sampling
- Sometimes symbiosis is useful



Thank you!

Summary

Q1 (Best of both worlds)

- Stochastic-based: Run stochastic, test, switch to adversarial if test fails
- Adversarial-based: Run adversarial, adapt exploration to empirical gap

Q2 (Bridging the two worlds)

- Number of adversarial corruptions, memory of adversary, discount factor of non-myopic agent
- For adversarial corruptions: Multi-layering race, BARBAR, Tsallis-INF

- General recipe for multi-layering race (e.g., contextual pricing, non-myopic learning)
- Tsallis-INF extendable in settings where one can do Importance Weighted Sampling
- Sometimes symbiosis is useful