

Shipra Agrawal Industrial Engineering and Operations Research Columbia University

Learning from sequential interactions

Tradeoff between

- Information and rewards
- Iearning and optimization
- Exploration and exploitation

Robotic Manipulation and Mobility

Managing exploitation-exploitation tradeoff

The multi-armed bandit problem (Thompson 1933; Robbins 1952)

Multiple rigged slot machines in a casino.

Which one to put money on?

• Try each one out

WHEN TO STOP TRYING (EXPLORATION) AND START PLAYING (EXPLOITATION)?

Stochastic multi-armed bandit problem

- Online decisions
 - At every time step t = 1, ..., T, pull one arm out of N arms
- Stochastic feedback
 - For each arm *i*, reward is generated **i.i.d.** from a **fixed but unknown distribution** support [0,1], mean μ_i
- Bandit feedback
 - Only the reward of the pulled arm can be observed
- Minimize regret compared to the best arm

$$E[\sum_{t=1}^{T} (\mu^* - \mu_{i_t})]$$
 where $\mu^* = \max_{j} \mu_{j}$

Other formulations: Bayesian bandits and Gittins index

- Prior distribution over parameters of each arm's reward distribution
 - E.g. if arm *i* has reward distribution Bernoulli(μ_i), there is a prior on distribution of μ_i
 - On observing a reward we have a posterior
- Expected reward/regret:
 - *Expectation over prior distribution*, in addition to reward distribution of arms
- Gittins Index [Gittins, 1979]
 - Optimal policy when maximizing expected total discounted reward
- Bayesian Regret minimization
 - e.g., see [Osband, Russo and Van Roy 2013, Russo and Van Roy 2014, 2015, 2016], [Bubeck and Liu 2013]

Outline

- Basic algorithmic techniques for the stochastic MAB problem
 - UCB
 - Thompson Sampling
- Useful Generalizations
 - Contextual bandits
 - Assortment optimization
 - Bandits with constraints
- Later: Bandit techniques for MDP/RL

Recall: Stochastic multi-armed bandit problem

- Online decisions
 - At every time step t = 1, ..., T, pull one arm out of N arms
- Stochastic feedback
 - For each arm *i*, reward is generated **i.i.d.** from a **fixed but unknown distribution** support [0,1], mean μ_i
- Bandit feedback
 - Only the reward of the pulled arm can be observed
- Minimize regret in time T

$$E[\sum_{t=1}^{T}(\mu^* - \mu_{i_t})]$$

The need for exploration

- Two arms black and red
 - Random rewards with unknown mean $\mu_1 = 1.1$, $\mu_2 = 1$
 - Optimal expected reward in T time steps is $1.1 \times T$
- Exploit only strategy: use the current best estimate (MLE/empirical mean) of unknown mean to pick arms
- Initial few trials can mislead into playing red action forever

1.1, 1, 0.2, 1, 1, 1, 1, 1, 1, 1,

• Expected regret in T steps is close to $0.1 \times T$

Exploration-Exploitation tradeoff

- Exploitation: play the empirical mean reward maximizer
- Exploration: play less explored actions to ensure empirical estimates converge

Lower bounds

• Expected regret in any time T,

$$\operatorname{Regret}(T) = \sum_{i} (\mu^* - \mu_{i_t}) = \sum_{i} \Delta_i E[k_i(T)]$$

Lower bounds

- Lai and Robbins 1985 [Informal] For *any* given instance of the MAB problem, any "reasonable algorithm" will play a suboptimal arm at least $\Omega(\log(T))$ times for large T
- Worst case bound: For every algorithm, there exists an instance with $\Omega(\sqrt{NT})$ regret

UCB algorithm [Auer 2002]

- Empirical mean at time t for arm i
- Upper confidence bound (UCB)

 $\hat{\mu}_{i,t} = \frac{\sum_{s=1:I_s=i}^{t} r_s}{n_{i,t}}$ $UCB_{i,t} = \hat{\mu}_{i,t} + \sqrt{\frac{4\ln t}{n_{i,t}}}$

• Optimism:

 $UCB_{i,t} > \mu_i$ w.h.p.

- Optimistic Algorithm
 - At each time step *t*, play the with best optimistic estimates

$$i_t = \arg\max_i \text{UCB}_{t,i}$$

UCB algorithm [Auer 2002]

Algorithm 1: UCB algorithm for the stochastic N-armed bandit problem

```
for
each t = 1, ..., N do
Play arm t
end
for
each t = N + 1, N + 2..., T do
Play arm I_t = \arg \max_{i \in \{1,...,N\}} \text{UCB}_{i,t-1}.
Observe r_t, compute UCB<sub>i,t</sub>
end
```


Regret analysis

Recall Regret in any time T,

$$Regret(T) = \sum_{i} \Delta_{it} = \sum_{i} \Delta_{i} E[k_{i}(T)]$$

where $\Delta_i = \mu^* - \mu_i$

Bound the number of mistakes E[k_i(T)] for all suboptimal arms i ≠ i*
A bound of E[k_i(T)] ≤ C ln T / Δ_i² for i each implies Σ_{i≠i*} C ln T / Δ_i regret bound

Regret analysis

• Arm i will be played at time t only if $UCB_{i,t} > UCB_{i^*,t}$

• If
$$n_{i,t} > \frac{16\ln(T)}{\Delta_i^2}$$
: $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$, $UCB_{i,t} \le \hat{\mu}_{i,t} + \frac{\Delta_i}{2}$

No more plays of arm i (with high probability)

 ^{16ln(T)}/_{\Delta_i^2} bound on expected number of mistakes

•
$$Regret(T) = \sum_{i} \Delta_{i_{t}} = \sum_{i} \Delta_{i} E[k_{i}(T)] \leq \sum_{i \neq i^{*}} \frac{16\ln(T)}{\Delta_{i}}$$

Thompson Sampling [Thompson, 1933]

- Natural and Efficient heuristic
- Maintain belief about parameters (e.g., mean reward) of each arm
- Observe feedback, update belief of pulled arm i in Bayesian manner
- Pull arm with posterior probability of being best arm
 - NOT same as choosing the arm that is most likely to be best

Bernoulli rewards, Beta priors

Uniform distribution *Beta*(1,1)

 $Beta(\alpha, \beta)$ prior \Rightarrow Posterior

- $Beta(\alpha + 1, \beta)$ if you observe 1
- $Beta(\alpha, \beta + 1)$ if you observe 0

Start with Beta(1,1) prior belief for every arm In round t,

- For every arm *i*, sample $\theta_{i,t}$ independently from posterior $Beta(S_{i,t} + 1, F_{i,t} + 1)$
- Play arm $i_t = \max_i \theta_{i,t}$
- Observe reward and update the Beta posterior for arm i_t

Arbitrary reward distribution mean μ , Gaussian prior

Standard normal prior N(0,1)

Gaussian likelihood $N(\mu, 1)$ of reward

Posterior after n independent observations: $N\left(\hat{\mu}, \frac{1}{n+1}\right)$

• $\hat{\mu}$ is the empirical mean

```
Start with N(0, v^2) prior belief for every arm
In round t,
```

- For every arm *i*, sample $\theta_{i,t}$ independently from posterior N $\left(\hat{\mu}_{i}, \frac{\nu^{2}}{n_{i+1}}\right)$
- Play arm $i_t = \max_i \theta_{i,t}$
- Observe reward and update empirical mean $\hat{\mu}_i$ and number of plays n_i for arm i_t

Regret bounds

Optimal instance-dependent bounds for Bernoulli rewards

- Regret $(T) \leq ln(T)(1+\epsilon) \sum_{i} \frac{\Delta_i}{KL(\mu^*||\mu_i)} + O(\frac{N}{\epsilon^2})$ [A. and Goyal 2012, 2013]
 - Matches asymptotic instance wise lower bound [Lai Robbins 1985]
 - Closely related bounds by [Kaufmann et al. 2013]
 - Bayesian UCB algorithm also achieves this [Kaufmann et al. 2012]

Arbitrary bounded reward distribution (Beta and Gaussian priors)

- Regret $(T) \leq O(ln(T)\sum_{i}\frac{1}{\Delta_i})$ [A. and Goyal 2013]
 - Matches the best available for UCB for general reward distributions

Instance-independent bounds (Beta and Gaussian priors)

- Regret $(T) \leq O(\sqrt{NT \ln T})$ [A. and Goyal 2013]
 - Lower bound $\Omega(\sqrt{NT})$
- Prior and likelihood mismatch allowed! worst case regret bounds

Posterior Sampling: main idea [Thompson 1933]

- Maintain Bayesian posteriors for unknown parameters
- With more trials posteriors concentrate on the true parameters
 - Mode captures MLE: enables exploitation
- Less trials means more uncertainty in estimates
 - Spread/variance captures uncertainty: enables exploration

Why does it work? Two arms example

- Two arms, $\mu_1 \geq \mu_2$, $\Delta = \mu_1 \mu_2$
- Every time arm 2 is pulled, Δ regret
- Bound the number of pulls of arm 2 by $\frac{\log(T)}{\Lambda^2}$ to get $\frac{\log(T)}{\Lambda}$ regret bound
 - How many pulls of arm 2 are actually needed?

Easy situation

After $n \ge \frac{16 \log(T)}{\Delta^2}$ pulls of arm 2 and arm 1

Empirical means are well separated

Error
$$|\widehat{\mu_i} - \mu_i| \le \sqrt{\frac{\log(T)}{n}} \le \frac{\Delta}{4}$$
 whp

(Using Azuma Hoeffding inequality)

Beta Posteriors are well separated

Mean = $\frac{\alpha_i}{\alpha_i + \beta_i} = \hat{\mu}_i$ standard deviation $\simeq \frac{1}{\sqrt{\alpha + \beta}} = \frac{1}{\sqrt{n}} \le \frac{\Delta}{4}$ The two arms can be distinguished! No more arm 2 pulls.

Easy situation

• Before arm 2 is pulled less than n=
$$\frac{16 \log(T)}{\Delta^2}$$
 times?
• Regret is at most n $\Delta = \frac{16 \log(T)}{\Delta}$

Difficult situation

• After
$$\frac{16 \log(T)}{\Lambda^2}$$
 pulls of arm 2, but before arm 1 is pulled enough

Main insight

- Arm 1 will be played roughly every constant number of steps in this situation
- It will take at most constant $\times \frac{\log T}{\Delta^2}$ steps (extra pulls of arm 2) to get out of this situation
- Total number of pulls of arm 2 before enough pulls of arm 1 is at most $O(\frac{\log T}{\Lambda^2})$
- Summary: variance of posterior enables exploration
- Optimal bounds (and for multiple arms) require more careful use of posterior structure

Multiple arms case

Main observation: Given some high probability events

$$\Pr(i_t = a^* | F_{t-1}) \ge \frac{p}{1-p} \cdot \Pr(i_t = i | F_{t-1})$$

ullet p is the probability of anti-concentration of posterior sample for the best arm

• E.g.,
$$p_a := \Pr(\theta_{i^*} \ge \mu_{i^*} - \frac{\Delta_i}{4})$$

- Best arm gets played roughly every $\frac{1}{p}$ plays of arm *i*
 - p can be lower bounded by Δ_i in general but it actually goes to 1 exponentially fast with increase in number of trials of best arm.
 - Cannot accumulate much regret from arm i without playing arm i^* sufficiently

Next: Useful Generalizations of the basic MAB problem

Recall: The basic Stochastic multi-armed bandit problem

- Online decisions
 - At every time step t = 1, ..., T, pull one arm out of N arms
- Stochastic feedback
 - For each arm *i*, reward is generated i.i.d. across time from a fixed but unknown distribution support [0,1], mean μ_i
- Bandit feedback
 - Only the reward of the pulled arm can be observed
- Minimize regret in time T

$$E[\sum_{t=1}^{T}(\mu^* - \mu_{i_t})]$$

#1: Handling context in MAB

- Large number of products and customer types
- Utilize similarity?
- Content based recommendation (Supervised learning)
 - Customers and products described by their features
 - Similar features means similar preferences
 - Parametric models mapping customer and product features to customer preferences
 - E.g. linear regression
- Contextual bandits
 - Exploration-exploitation to learn the parametric models

Linear Contextual Bandits

- N arms, possibly very large N
- A d-dimensional context (feature vector) $x_{i,t}$ for every arm *i*, time *t*
- Linear parametric model
 - Unknown parameter vector μ
 - Expected reward for arm i at time t is $x_{i,t} \cdot \mu$
- Algorithm picks $x_t \in \{x_{1,t}, \dots, x_{N,t}\}$, observes $r_t = x_t \cdot \mu + \eta_t$
- Optimal arm depends on context: $x_t^* = \arg \max_i x_{i,t} \cdot \mu$
- Goal: Minimize regret
 - Regret(T) = $\sum_t (x_t^* \cdot \mu x_t \cdot \mu)$

UCB for linear contextual bandits

Linear regression

• Least square solution $\hat{\mu_t}$ of set of t-1 equations

$$x_s \cdot \mu = r_s, \quad s = 1, \dots, t-1$$

•
$$\hat{\mu_t} \simeq B_t^{-1}(\sum_{s=1}^{t-1} x_s r_s)$$
 where $B_t = I + \sum_{s=1}^{t-1} x_s x_s'$

• B_t^{-1} covariance matrix of this estimator

High confidence interval for $\boldsymbol{\theta}$

• With high probability
$$||\mu - \hat{\mu}_t||_{B_t} \leq C\sqrt{d\log (\text{Td})}$$

[Rusmevichientong and Tsitsiklis 2010] [Abbasi-Yadkori et al 2011]

UCB algorithm

- At time *t*
 - Observe the contexts $x_{i,t}$ for different arms i = 1, ... N
 - Compute confidence interval for the unknown parameter
 - Choose the best arm according to the most optimistic parameter in C_t

$$C_t = \{z : \left| |z - \hat{\mu}| \right|_{B_t} \le C\sqrt{d \log(Td)} \}$$

Algorithm _: LinUCB algorithm

for each t = 1, ..., T do Observe set $A_t \subseteq [N]$, and context $\mathbf{x}_{i,t}$ for all $i \in A_t$. Play arm $I_t = \arg \max_{i \in A_t} \max_{z \in C_t} z^\top \mathbf{x}_{i,t}$ with C_t as defined : Observe r_t . Compute C_{t+1} end

Regret bounds

- LinUCB [Auer 2002] With probability $1-\delta$, regret

 $Regret(T) \leq \tilde{O}(d\sqrt{T})$

- Note : no dependence on number of arms
- Lower bound $\Omega(d\sqrt{T})$

Proof outline

Thompson Sampling for linear contextual bandits

Linear regression

• Least square error solution $\hat{\mu_t}$ of set of t-1 equations

 $x_s \cdot \mu = r_s$, $s = 1, \dots, t-1$

- $\hat{\mu}_t \simeq B_t^{-1}(\sum_{s=1}^{t-1} x_s r_s)$ where $B_t = I + \sum_{s=1}^{t-1} x_s x_s'$
- B_t^{-1} covariance matrix of this estimator

Gaussian posterior

- N(0, I) starting prior on μ ,
- Reward distribution given μ , $x_{i,t}$: $N(\mu^T x_{i,t}, 1)$,
- posterior on μ at time t is $N(\hat{\mu}_t, B_t^{-1})$

Thompson Sampling for linear contextual bandits

[A., Goyal 2013] Algorithm:

At Step t,

- Sample $\tilde{\mu}_t$ from $N(\hat{\mu}_t, v^2 B_t^{-1})$
- Observe context x_t
- Pull arm with feature x_t where

$$x_t = \max_i x_{i,t} \cdot \widetilde{\mu_t}$$

Regret bounds

- LinUCB [Auer 2002] With probability $1-\delta$, regret

 $Regret(T) \leq \tilde{O}(d\sqrt{T})$

- Thompson Sampling [A. and Goyal 2013] With probability $1-\delta$, regret

 $Regret(T) \leq \tilde{O}(d^{3/2}\sqrt{T})$

- Any likelihood, unknown prior, only assumes bounded or sub-Gaussian noise
- Note : no dependence on number of arms
- Lower bound $\Omega(d\sqrt{T})$

Many other contextual formulations

More general functions modeling expected reward on playing arm with context x

• Generalized linear bandits $g(\mu^T x)$

[Filippi et al. 2010]

• Convex bandits: f(x) for f convex in x

[Agarwal et al. 2011][Bubeck et al. 2015, 2016, 2017]

• Lipschitz bandits : f(x) for Lipschitz function f on a metric space

[Kleinberg 2004] [Kleinberg et al. 2008] [Slivkins 2011] [Bubeck et al. 2011]

#2: Assortment selection as multi-armed bandit

- Consider arms as products
- Limited display space, k products displayed at a time
- Probability that customer choses product *i* from assortment $S: p_i(S)$
- Challenge: Customer response on one product is influenced by other products in the assortment
 - Feedbacks from individual arms are no longer independent

Flexion KS-901 Kinetic Series Wireless Bluetooth Headphones Noise Cancelling Headphones with Microphone/Running... by Flexion

\$29.99 \$49.99 *Imme*

Get it by Tuesday, Mar 29

More Buying Choices \$13.50 new (14 offers) \$22.24 used (1 offer)

★★★☆☆ * 1,512

FREE Shipping on eligible orders

Product Features ... bluetooth 4.0 + EDL in *headphones* 60% than the wireless ...

Sports & Outdoors: See all 60,247 items

Bluetooth Headphones, Liger MH770 High Quality Wireless Stereo Bluetooth 4.1 Sport Headphone with Magnetic Tips... by Liger

\$29.95 \$75.00 **/Prime** Get it by **Tuesday, Mar 29**

More Buying Choices \$29.95 new (2 offers)

★★★★☆ * 56

FREE Shipping on eligible orders

Product Features ... MAGNET *HEADPHONES* DESIGN Hang like a necklace around your neck, and a ...

Electronics: See all 2,011,479 items

Liger BLAZE Bluetooth 4.1 Sweatproof Earbuds Noise Cancelling Headphones with Mic - Black

by Liger

\$44.95 \$99.95 **//***Prime* Get it by **Tuesday, Mar 29**

More Buying Choices \$44.95 new (4 offers) \$38.50 used (1 offer) ★★★★★☆ ▼ 165
 FREE Shipping on eligible orders
 Electronics: See all 2,011,479 items

Panasonic ErgoFit In-Ear Earbud Headphones RP-HJE120-K (Black) Dynamic Crystal Clear Sound, Ergonomic Comfort-Fit by Panasonic

More Buying Choices **\$2.33 new** (139 offers)

★★★★ * 30,424

FREE Shipping on eligible orders

Product Features Black ultra-soft ErgoFit in-ear earbud headphones conform instantly to your ears

Electronics: See all 2,011,479 items

eal Time with Bill Maher: eason 14

VICE

Game of Thrones: Sn 6

Silicon Valley: Sn 3

Ve

Customer choice modeling

Multinomial logit choice model [Luce 1959, McFadden 1978]

- Probability of choosing product i (feature vector x_i) in assortment S $p_i(S) = \frac{e^{\theta_i}}{1 + \sum_{i \in S} e^{\theta_j}}$
- Probability of no purchase

$$p_i(S) = \frac{1}{1 + \sum_{j \in S} e^{\theta_j}}$$

- Key property: Independence of irrelevant alternatives
- Fixed reward r_i for product i
- Given a $\theta = (\theta_1, \theta_2, ..., \theta_N)$, the optimal assortment is efficiently computable [Rusmevichientong et al. 2010] [Davis et al. 2013]

The MNL bandit problem

[A., Avadhanula, Goyal, Zeevi, 2016]

N products, Unknown parameters $\theta_1, \theta_2, \dots, \theta_N$

At every step t,

- recommend an assortment S_t of size at most K,
- observe customer choice i_t , revenue r_{i_t}
- update parameter estimates

Goal:

- optimize total expected revenue $E[\sum_{t=1}^{T} r_{i_t}]$
- or minimize regret compared to the optimal assortment $S^* = \operatorname{argmax}_{S} \sum_{i=1}^{N} r_i p_i(S)$

Main challenges and techniques

Censored feedback

- Feedback for product *i* effected by other products in assortment
- Combinatorial choice: N^K possible assortments

[A., Avadhanula, Goyal, Zeevi, 2016, 2017]

- Technique to get unbiased estimate of individual parameters:
 - offer an assortment until no-purchase
 - Number of times *i* is purchased is unbiased estimate of its parameter e^{θ_i}
- Then, use standard UCB or Thompson Sampling techniques

Regret bounds

UCB based algorithm [A., Avadhanula, Goyal, Zeevi, 2016]

- $\tilde{O}(\sqrt{NT})$ regret bounds (under an assumption on no-purchase probability)
 - Parameter independent, no dependence on K
 - Matching lower bound of $\Omega(\sqrt{NT})$ [Chen and Wang 2017]

Thompson Sampling [A., Avadhanula, Goyal, Zeevi, 2017]

• Similar regret bounds, significantly more attractive empirical results

More recent work

- Contextual settings in [Chen et al. 2018][Ou et al 2018][Oh and Iyengar 2019]
- Nested logit models [Chen, Wang & Zhu, 2018]
- With resource constraints [Cheung & Simchi-Levi 2017]

#3: Bandits with constraints and non-linear aggregate utility

Regular bandits

- Total number of pulls constrained by T
 - No other global constraint on decisions across time
- Maximize sum of rewards

More global constraints

- Resource constraints in pricing and network revenue management
- Multiple Budget constraints in advertising campaigns
 - Nonlinear risk constraints
- Covering constraints in network routing and scheduling, sensor networks, crowdsourcing
- In pay-per-click advertising multiple performance criteria to be satisfied simultaneously
 - revenue, user satisfaction, diversity, minimum impressions

More than sum of rewards

- Smooth delivery in advertising
 - Minimize variance over time
- Demographics of clicks
 - maximizing minimum number of each type
- Nonlinear functions converting number of clicks to user satisfaction, or revenue
- Crowd sourcing: Need diversity among workers
- Sensor measurements: cover variety of locations
 - maximizing minimum number of successful sensor measurements from each location

Generalizing MAB

- Classic MAB
 - Observe reward r_t on pulling an arm i_t
 - Maximize $\sum_t r_t$
- Bandits with knapsacks (BwK) [Badanidiyuru, Kleinberg, Slivkins 2013, Besbes and Zeevi 2009, 2012]

Observe non-negative reward r_t and cost vector \boldsymbol{c}_t

maximize
$$\sum_{t} r_{t}$$

s.t. $\sum_{t} c_{t,j} \leq B, \forall j$

Bandits with convex knapsacks and concave rewards (BwCR) [Agrawal, Devanur 2014]

- Pulling an arm i_t generates a d dimensional vector v_t , unknown mean V_{i_t}
- Total number of pulls constrained by T
- + Arbitrary convex global constraints on average of observations across time $\frac{1}{T}\sum_{t} v_{t} \in S, S \text{ is arbitrary convex set}$
- Maximize arbitrary concave function $f\left(\frac{1}{T}\sum_t \boldsymbol{v}_t\right)$

Minimize distance dis $\left(\frac{1}{T}\sum_t \boldsymbol{v}_t, S\right)$ from convex set S

UCB like optimistic algorithm for BwCR

What is an optimistic estimate of the mean observation vectors?

- Need to estimate for every arm i and every coordinate j
- Non-decreasing f : upper bound (UCB)
 - The function value at the estimate will be more than actual
- Downward closed S: lower bound (LCB)
 - If actual mean is in S, the estimate will be in S
- In general
 - Most optimistic estimate in the confidence interval?

Optimistic algorithm for BwCR

Play the (distribution over) arm that appears to be the best

according to the most optimistic estimates in the confidence intervalTwo levels of optimizations

Actual mean lies in confidence intervals

 $H_t = \{ \tilde{V} : \tilde{V}_{ij} \in \left[\text{LCB}_{t,ij}, \text{UCB}_{t,ij} \right] \}$

Play best distribution over arms according to most optimistic estimate

$$\begin{aligned} \boldsymbol{p}_{t} &= \arg \max_{\boldsymbol{p}} \ \max_{\widetilde{V} \in H_{t}} f\left(\sum_{i} p_{i} \widetilde{V}_{i}\right) \\ &\text{s.t.} \ \min_{\widetilde{U} \in H_{t}} dis\left(\sum_{i} p_{i} \widetilde{U}_{i}, S\right) \leq 0 \end{aligned}$$

Regret bounds

• [A. and Devanur 2014] UCB like optimistic algorithm that

achieves near-optimal average regret

Regret in objective $\leq \tilde{O}\left(L\sqrt{N/T}\right)$, Regret in constraints $\leq \tilde{O}\left(\sqrt{N/T}\right)$

- achieves problem specific optimal bounds on regret for Bandits with knapsacks Regret $\leq \tilde{O} \left(OPT \sqrt{N/B} + \sqrt{N OPT} \right)$
- is polynomial time implementable
- Recent Extensions to contextual bandits

