Stochastic multi-armed bandits

Shipra Agrawal

Industrial Engineering and Operations Research Columbia University

Learning from sequential interactions

Tradeoff between

- information and rewards
- learning and optimization
- Exploration and exploitation

Managing exploitation-exploitation tradeoff

The multi-armed bandit problem (Thompson 1933; Robbins 1952)

Multiple rigged slot machines in a casino.
Which one to put money on?

- Try each one out

WHEN TO STOP TRYING (EXPLORATION) AND START PLAYING (EXPLOITATION)?

Stochastic multi-armed bandit problem

- Online decisions
- At every time step $t=1, \ldots, T$, pull one arm out of N arms
- Stochastic feedback
- For each arm i, reward is generated i.i.d. from a fixed but unknown distribution support [0,1], mean μ_{i}
- Bandit feedback
- Only the reward of the pulled arm can be observed
- Minimize regret compared to the best arm

$$
E\left[\sum_{t=1}^{T}\left(\mu^{*}-\mu_{i_{t}}\right)\right] \quad \text { where } \mu^{*}=\max _{j} \mu_{j}
$$

Other formulations: Bayesian bandits and Gittins index

- Prior distribution over parameters of each arm's reward distribution
- E.g. if arm i has reward distribution Bernoulli $\left(\mu_{i}\right)$, there is a prior on distribution of μ_{i}
- On observing a reward we have a posterior
- Expected reward/regret:
- Expectation over prior distribution, in addition to reward distribution of arms
- Gittins Index [Gittins, 1979]
- Optimal policy when maximizing expected total discounted reward
- Bayesian Regret minimization
- e.g., see [Osband, Russo and Van Roy 2013, Russo and Van Roy 2014, 2015, 2016], [Bubeck and Liu 2013]

Outline

- Basic algorithmic techniques for the stochastic MAB problem
- UCB
- Thompson Sampling
- Useful Generalizations
- Contextual bandits
- Assortment optimization
- Bandits with constraints
- Later: Bandit techniques for MDP/RL

Recall: Stochasticmulti-armed bandit problem

- Online decisions
- At every time step $t=1, \ldots, T$, pull one arm out of N arms
- Stochastic feedback
- For each arm i, reward is generated i.i.d. from a fixed but unknown distribution support [0,1], mean μ_{i}
- Bandit feedback
- Only the reward of the pulled arm can be observed
- Minimize regret in time T

$$
E\left[\sum_{t=1}^{T}\left(\mu^{*}-\mu_{i_{t}}\right)\right]
$$

The need for exploration

- Two arms black and red
- Random rewards with unknown mean $\mu_{1}=1.1, \mu_{2}=1$
- Optimal expected reward in T time steps is $1.1 \times T$
- Exploit only strategy: use the current best estimate (MLE/empirical mean) of unknown mean to pick arms
- Initial few trials can mislead into playing red action forever

> 1.1, 1, 0.2,
$1,1,1,1,1,1,1, \ldots .$.

- Expected regret in T steps is close to $0.1 \times T$

Exploration-Exploitation tradeoff

- Exploitation: play the empirical mean reward maximizer
- Exploration: play less explored actions to ensure empirical estimates converge

Lower bounds

- Expected regret in any time T,

$$
\operatorname{Regret}(T)=\sum_{i}\left(\mu^{*}-\mu_{i_{t}}\right)=\sum_{i} \Delta_{i} E\left[k_{i}(T)\right]
$$

Lower bounds

- Lai and Robbins 1985 [Informal] For any given instance of the MAB problem, any "reasonable algorithm" will play a suboptimal arm at least $\Omega(\log (T))$ times for large T
- Worst case bound: For every algorithm, there exists an instance with $\Omega(\sqrt{N T})$ regret

UCB algorithm [Auer 2002]

- Empirical mean at time t for arm i
- Upper confidence bound (UCB)
- Optimism:

$$
\begin{aligned}
& \hat{\mu}_{i, t}=\frac{\sum_{s=1: I_{s}=i}^{t} r_{s}}{n_{i, t}} \\
& U C B_{i, t}=\hat{\mu}_{i, t}+\sqrt{\frac{4 \ln t}{n_{i, t}}}
\end{aligned}
$$

$U C B_{i, t}>\mu_{i}$ w.h.p.

- Optimistic Algorithm
- At each time step t, play the with best optimistic estimates

$$
i_{t}=\underset{i}{\arg \max } U C B_{t, i}
$$

UCB algorithm [Auer 2002]

```
Algorithm 1: UCB algorithm for the stochastic N -armed bandit problem
    foreach \(t=1, \ldots, N\) do
    Play arm \(t\)
    end
    foreach \(t=N+1, N+2 \ldots, T\) do
    Play arm \(I_{t}=\arg \max _{i \in\{1, \ldots, N\}} \mathrm{UCB}_{i, t-1}\).
    Observe \(r_{t}\), compute \(\mathrm{UCB}_{i, t}\)
    end
```


Regret analysis

- Recall Regret in any time T,

$$
\operatorname{Regret}(T)=\sum_{i} \Delta_{i_{t}}=\sum_{i} \Delta_{i} E\left[k_{i}(T)\right]
$$

where $\Delta_{i}=\mu^{*}-\mu_{i}$

- Bound the number of mistakes $E\left[k_{i}(T)\right]$ for all suboptimal arms $i \neq i^{*}$
- A bound of $E\left[k_{i}(T)\right] \leq \frac{c \ln T}{\Delta_{i}^{2}}$ for i each implies $\sum_{i \neq i^{*}} \frac{c \ln T}{\Delta_{i}}$ regret bound

Regret analysis

- Arm i will be played at time t only if $U C B_{i, t}>U C B_{i^{*}, t}$
- If $n_{i, t}>\frac{16 \ln (T)}{\Delta_{i}^{2}}: \hat{\mu}_{i, t}<\mu_{i}+\frac{\Delta_{i}}{2}, U C B_{i, t} \leq \hat{\mu}_{i, t}+\frac{\Delta_{i}}{2}$

- No more plays of arm i (with high probability)
- $\frac{16 \ln (T)}{\Delta_{i}^{2}}$ bound on expected number of mistakes
- $\operatorname{Regret}(T)=\sum_{i} \Delta_{i_{t}}=\sum_{i} \Delta_{i} E\left[k_{i}(T)\right] \leq \sum_{i \neq i^{*}} \frac{16 \ln (T)}{\Delta_{i}}$

Thompson Sampling [Thompson, 1933]

- Natural and Efficient heuristic
- Maintain belief about parameters (e.g., mean reward) of each arm
- Observe feedback, update belief of pulled arm in Bayesian manner
- Pull arm with posterior probability of being best arm
- NOT same as choosing the arm that is most likely to be best

Bernoulli rewards, Beta priors

Uniform distribution Beta(1,1)
Beta (α, β) prior \Rightarrow Posterior

- $\operatorname{Beta}(\alpha+1, \beta)$ if you observe 1
- $\operatorname{Beta}(\alpha, \beta+1)$ if you observe 0

Start with Beta $(1,1)$ prior belief for every arm
In round t,

- For every arm i, sample $\theta_{i, t}$ independently from posterior $\operatorname{Beta}\left(S_{i, t}+1, F_{i, t}+1\right)$
- Play arm $i_{t}=\max _{i} \theta_{i, t}$
- Observe reward and update the Beta posterior for arm i_{t}

Arbitrary reward distribution mean μ, Gaussian prior

Standard normal prior $N(0,1)$
Gaussian likelihood $N(\mu, 1)$ of reward
Posterior after n independent observations: $N\left(\hat{\mu}, \frac{1}{n+1}\right)$

- $\hat{\mu}$ is the empirical mean

Start with $N\left(0, v^{2}\right)$ prior belief for every arm
In round t,

- For every arm i, sample $\theta_{i, t}$ independently from posterior $\mathrm{N}\left(\hat{\mu}_{i}, \frac{v^{2}}{n_{i}+1}\right)$
- Play arm $i_{t}=\max _{i} \theta_{i, t}$
- Observe reward and update empirical mean $\hat{\mu}_{i}$ and number of plays n_{i} for arm i_{t}

Regret bounds

Optimal instance-dependent bounds for Bernoulli rewards

- Regret $(T) \leq \boldsymbol{\operatorname { l n }}(\boldsymbol{T})(1+\epsilon) \sum_{i} \frac{\Delta_{i}}{K L\left(\mu^{*} \| \mu_{i}\right)}+O\left(\frac{N}{\epsilon^{2}}\right)$ [A. and Goyal 2012, 2013]
- Matches asymptotic instance wise lower bound [Lai Robbins 1985]
- Closely related bounds by [Kaufmann et al. 2013]
- Bayesian UCB algorithm also achieves this [Kaufmann et al. 2012]

Arbitrary bounded reward distribution (Beta and Gaussian priors)

- Regret $(T) \leq O\left(\boldsymbol{\operatorname { l n }}(\boldsymbol{T}) \sum_{i} \frac{1}{\Delta_{i}}\right)$ [A. and Goyal 2013]
- Matches the best available for UCB for general reward distributions

Instance-independent bounds (Beta and Gaussian priors)

- Regret $(T) \leq O(\sqrt{N T \ln T})$ [A. and Goyal 2013]
- Lower bound $\Omega(\sqrt{N T})$
- Prior and likelihood mismatch allowed! - worst case regret bounds

Posterior Sampling: main idea [Thompson 1933]

- Maintain Bayesian posteriors for unknown parameters
- With more trials posteriors concentrate on the true parameters
- Mode captures MLE: enables exploitation
- Less trials means more uncertainty in estimates
- Spread/variance captures uncertainty: enables exploration

Why does it work? Two arms example

- Two arms, $\mu_{1} \geq \mu_{2}, \Delta=\mu_{1}-\mu_{2}$
- Every time arm 2 is pulled, Δ regret
- Bound the number of pulls of arm 2 by $\frac{\log (\mathrm{T})}{\Delta^{2}}$ to get $\frac{\log (\mathrm{T})}{\Delta}$ regret bound
- How many pulls of arm 2 are actually needed?

Easy situation

After $\mathrm{n} \geq \frac{16 \log (\mathrm{~T})}{\Delta^{2}}$ pulls of arm 2 and arm 1

- Empirical means are well separated

Error $\left|\widehat{\mu}_{i}-\mu_{i}\right| \leq \sqrt{\frac{\log (T)}{n}} \leq \frac{\Delta}{4}$ whp (Using Azuma Hoeffding inequality)

- Beta Posteriors are well separated

$$
\text { Mean }=\frac{\alpha_{i}}{\alpha_{i}+\beta_{i}}=\widehat{\mu_{i}}
$$

$$
\mu_{2}
$$

$$
\text { standard deviation } \simeq \frac{1}{\sqrt{\alpha+\beta}}=\frac{1}{\sqrt{n}} \leq \frac{\Delta}{4}
$$

The two arms can be distinguished!
No more arm 2 pulls.

Easy situation

- Before arm 2 is pulled less than $n=\frac{16 \log (T)}{\Delta^{2}}$ times?
- Regret is at most $\mathrm{n} \Delta=\frac{16 \log (\mathrm{~T})}{\Delta}$

Difficult situation

- After $\frac{16 \log (\mathrm{~T})}{\Delta^{2}}$ pulls of arm 2 , but before arm 1 is pulled enough

Δ

Main insight

- Arm 1 will be played roughly every constant number of steps in this situation
- It will take at most constant $\times \frac{\log T}{\Delta^{2}}$ steps (extra pulls of arm 2) to get out of this situation
- Total number of pulls of arm 2 before enough pulls of arm 1 is at most $O\left(\frac{\log T}{\Delta^{2}}\right)$
- Summary: variance of posterior enables exploration
- Optimal bounds (and for multiple arms) require more careful use of posterior structure

Multiple arms case

- Main observation: Given some high probability events

$$
\operatorname{Pr}\left(i_{t}=a^{*} \mid F_{t-1}\right) \geq \frac{p}{1-p} \cdot \operatorname{Pr}\left(i_{t}=i \mid F_{t-1}\right)
$$

- p is the probability of anti-concentration of posterior sample for the best arm
- E.g., $p_{a}:=\operatorname{Pr}\left(\theta_{i^{*}} \geq \mu_{i^{*}}-\frac{\Delta_{i}}{4}\right)$
- Best arm gets played roughly every $\frac{1}{p}$ plays of arm \boldsymbol{i}
- p can be lower bounded by Δ_{i} in general but it actually goes to 1 exponentially fast with increase in number of trials of best arm.
- Cannot accumulate much regret from arm i without playing arm i^{*} sufficiently

Next: Useful Generalizations of the basic MAB problem

Recall: The basic Stochastic multi-armed bandit problem

- Online decisions
- At every time step $t=1, \ldots, T$, pull one arm out of N arms
- Stochastic feedback
- For each arm i, reward is generated i.i.d. across time from a fixed but unknown distribution support [0,1], mean μ_{i}
- Bandit feedback
- Only the reward of the pulled arm can be observed
- Minimize regret in time T

$$
E\left[\sum_{t=1}^{T}\left(\mu^{*}-\mu_{i_{t}}\right)\right]
$$

\#1: Handling context in MAB

- Large number of products and customer types
- Utilize similarity?
- Content based recommendation (Supervised learning)
- Customers and products described by their features
- Similar features means similar preferences
- Parametric models mapping customer and product features to customer preferences
- E.g. linear regression
- Contextual bandits
- Exploration-exploitation to learn the parametric models

Linear Contextual Bandits

- N arms, possibly very large N
- A d-dimensional context (feature vector) $x_{i, t}$ for every arm i, time t
- Linear parametric model
- Unknown parameter vector $\boldsymbol{\mu}$
- Expected reward for arm i at time t is $x_{i, t} \cdot \mu$
- Algorithm picks $x_{t} \in\left\{x_{1, t}, \ldots, x_{N, t}\right\}$, observes $r_{t}=x_{t} \cdot \mu+\eta_{t}$
- Optimal arm depends on context: $\mathrm{x}_{\mathrm{t}}^{*}=\arg \max _{i} x_{i, t} \cdot \mu$
- Goal: Minimize regret
$-\operatorname{Regret}(\mathrm{T})=\sum_{t}\left(x_{t}^{*} \cdot \mu-x_{t} \cdot \mu\right)$

UCB for linear contextual bandits

Linear regression

- Least square solution $\widehat{\mu_{t}}$ of set of $t-1$ equations

$$
x_{s} \cdot \mu=r_{s}, \quad s=1, \ldots, t-1
$$

- $\widehat{\mu_{t}} \simeq B_{t}^{-1}\left(\sum_{s=1}^{t-1} x_{s} r_{s}\right)$ where $B_{t}=I+\sum_{s=1}^{t-1} x_{s} x_{s}{ }^{\prime}$
- B_{t}^{-1} covariance matrix of this estimator

High confidence interval for θ

- With high probability $\left|\mid \mu-\widehat{\mu_{t}} \|_{B_{t}} \leq C \sqrt{d \log (\mathrm{Td})}\right.$
[Rusmevichientong and Tsitsiklis 2010] [Abbasi-Yadkori et al 2011]

UCB algorithm

- At time t
- Observe the contexts $x_{i, t}$ for different arms $i=1, \ldots N$
- Compute confidence interval for the unknown parameter
- Choose the best arm according to the most optimistic parameter in C_{t}

$$
C_{t}=\left\{z:| | z-\hat{\mu} \|_{B_{t}} \leq C \sqrt{d \log (T d)}\right\}
$$

```
Algorithm : LinUCB algorithm
    foreach \(t=1, \ldots, T\) do
    Observe set \(A_{t} \subseteq[N]\), and context \(\mathrm{x}_{i, t}\) for all \(i \in A_{t}\).
    Play arm \(I_{t}=\arg \max _{i \in A_{\mathrm{t}}} \max _{z \in C_{t}} z^{\top} \mathrm{x}_{i, t}\) with \(C_{t}\) as defined
    Observe \(r_{t}\). Compute \(C_{t+1}\)
    end
```


Regret bounds

- LinUCB [Auer 2002] With probability $1-\delta$, regret

$$
\operatorname{Regret}(T) \leq \tilde{O}(d \sqrt{T})
$$

- Note : no dependence on number of arms
- Lower bound $\Omega(d \sqrt{T})$

Proof outline

Thompson Sampling for linear contextual bandits

Linear regression

- Least square error solution $\widehat{\mu_{t}}$ of set of $t-1$ equations

$$
x_{s} \cdot \mu=r_{s}, \quad s=1, \ldots, t-1
$$

- $\widehat{\mu_{t}} \simeq B_{t}^{-1}\left(\sum_{s=1}^{t-1} x_{s} r_{s}\right)$ where $B_{t}=I+\sum_{s=1}^{t-1} x_{s} x_{s}{ }^{\prime}$
- B_{t}^{-1} covariance matrix of this estimator

Gaussian posterior

- $N(0, I)$ starting prior on μ,
- Reward distribution given $\mu, x_{i, t}: N\left(\mu^{T} x_{i, t}, 1\right)$,
- posterior on μ at time t is $N\left(\hat{\mu}_{t}, B_{t}^{-1}\right)$

Thompson Sampling for linear contextual bandits

[A., Goyal 2013] Algorithm:
At Step t,

- Sample $\tilde{\mu}_{t}$ from $N\left(\widehat{\mu_{t}}, v^{2} B_{t}^{-1}\right)$
- Observe context x_{t}
- Pull arm with feature x_{t} where

$$
x_{t}=\max _{i} x_{i, t} \cdot \widetilde{\mu_{t}}
$$

Regret bounds

- LinUCB [Auer 2002] With probability $1-\delta$, regret

$$
\operatorname{Regret}(T) \leq \tilde{O}(d \sqrt{T})
$$

- Thompson Sampling [A. and Goyal 2013] With probability $1-\delta$, regret

$$
\operatorname{Regret}(T) \leq \tilde{O}\left(d^{3 / 2} \sqrt{T}\right)
$$

- Any likelihood, unknown prior, only assumes bounded or sub-Gaussian noise
- Note : no dependence on number of arms
- Lower bound $\Omega(d \sqrt{T})$

Many other contextual formulations

More general functions modeling expected reward on playing arm with context x

- Generalized linear bandits $\mathrm{g}\left(\mu^{T} x\right)$
[Filippi et al. 2010]
- Convex bandits: $f(x)$ for f convex in x
[Agarwal et al. 2011][Bubeck et al. 2015, 2016, 2017]
- Lipschitz bandits : $f(x)$ for Lipschitz function f on a metric space
[Kleinberg 2004] [Kleinberg et al. 2008] [Slivkins 2011] [Bubeck et al. 2011]

\#2: Assortment selection as multi-armed bandit

- Consider arms as products
- Limited display space, k products displayed at a time
- Probability that customer choses product i from assortment S : $p_{i}(S)$
- Challenge: Customer response on one product is influenced by other products in the assortment
- Feedbacks from individual arms are no longer independent

Flexion KS-901 Kinetic Series Wireless Bluetooth Headphones Noise Cancelling Headphones with Microphone/Running...
by Flexion
\$29.99 \$49.99 /Prime

Get it by Tuesday, Mar 29
FREE Shipping on eligible orders
More Buying Choices $\$ 13.50$ new (14 offers) $\$ 22.24$ used (1 offer)

Product Features
 ... bluetooth $4.0+$ EDL in headphones 60% than

 the wireless ...Sports \& Outdoors: See all 60,247 items

Bluetooth Headphones, Liger MH770 High Quality Wireless Stereo Bluetooth 4.1 Sport Headphone with Magnetic Tips..
by Liger
$\$ 29.95 \$ 75.00$ /Prime
Get it by Tuesday, Mar 29
More Buying Choices $\$ 29.95$ new (2 offers)

FREE Shipping on eligible orders

Product Features

. MAGNET HEADPHONES DESIGN Hang like a necklace around your neck, and a ..
Electronics: See all 2,011,479 items

Liger BLAZE Bluetooth 4.1 Sweatproof Earbuds Noise Cancelling Headphones with Mic - Black
by Liger
$\$ 44.95 \$ 99.95$ Prime
Get it by Tuesday, Mar 29

More Buying Choices
FREE Shipping on eligible orders
$\$ 44.95$ new (4 offers)
$\$ 38.50$ used (1 offer)
Electronics: See all 2,011,479 items

Panasonic ErgoFit In-Ear Earbud Headphones RP-HJE120-K (Black) Dynamic Crystal
Clear Sound, Ergonomic Comfort-Fit
by Panasonic
\$7.24 \$9.99 APrime
Get it by Tuesday, Mar 29
(30,424

More Buying Choices
$\$ 2.33$ new (139 offers)
FREE Shipping on eligible orders
Product Features
Black ultra-soft ErgoFit in-ear earbud
headphones conform instantly to your ears
Electronics: See all 2,011,479 items

Customer choice modeling

Multinomial logit choice model [Luce 1959, McFadden 1978]

- Probability of choosing product i (feature vector x_{i}) in assortment S

$$
p_{i}(S)=\frac{e^{\theta_{i}}}{1+\sum_{j \in S} e^{\theta_{j}}}
$$

- Probability of no purchase

$$
p_{i}(S)=\frac{1}{1+\sum_{j \in S} e^{\theta_{j}}}
$$

- Key property: Independence of irrelevant alternatives
- Fixed reward r_{i} for product i
- Given a $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right)$, the optimal assortment is efficiently computable [Rusmevichientong et al. 2010] [Davis et al. 2013]

The MNL bandit problem

[A., Avadhanula, Goyal, Zeevi, 2016]

N products, Unknown parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$
At every step t,

- recommend an assortment S_{t} of size at most K,
- observe customer choice i_{t}, revenue $r_{i_{t}}$
- update parameter estimates

Goal:

- optimize total expected revenue $\mathrm{E}\left[\sum_{t=1}^{T} r_{i_{t}}\right]$
- or minimize regret compared to the optimal assortment $\mathrm{S}^{*}=\underset{\mathrm{S}}{\operatorname{argmax}} \sum_{i=1}^{N} r_{i} p_{i}(S)$

Main challenges and techniques

- Censored feedback
- Feedback for product i effected by other products in assortment
- Combinatorial choice: N^{K} possible assortments
[A., Avadhanula, Goyal, Zeevi, 2016, 2017]
- Technique to get unbiased estimate of individual parameters:
- offer an assortment until no-purchase
- Number of times i is purchased is unbiased estimate of its parameter $e^{\theta_{i}}$
- Then, use standard UCB or Thompson Sampling techniques

Regret bounds

UCB based algorithm [A., Avadhanula, Goyal, Zeevi, 2016]

- $\tilde{O}(\sqrt{N T})$ regret bounds (under an assumption on no-purchase probability)
- Parameter independent, no dependence on K
- Matching lower bound of $\Omega(\sqrt{N T})$ [Chen and Wang 2017]

Thompson Sampling [A., Avadhanula, Goyal, Zeevi, 2017]

- Similar regret bounds, significantly more attractive empirical results

More recent work

- Contextual settings in [Chen et al. 2018][Ou et al 2018][Oh and lyengar 2019]
- Nested logit models [Chen, Wang \& Zhu, 2018]
- With resource constraints [Cheung \& Simchi-Levi 2017]

\#3: Bandits with constraints and non-linear aggregate utility

Regular bandits

- Total number of pulls constrained by T
- No other global constraint on decisions across time
- Maximize sum of rewards

More global constraints

- Resource constraints in pricing and network revenue management
- Multiple Budget constraints in advertising campaigns
- Nonlinear risk constraints
- Covering constraints in network routing and scheduling, sensor networks, crowdsourcing
- In pay-per-click advertising multiple performance criteria to be satisfied simultaneously
- revenue, user satisfaction, diversity, minimum impressions

More than sum of rewards

- Smooth delivery in advertising
- Minimize variance over time
- Demographics of clicks
- maximizing minimum number of each type
- Nonlinear functions converting number of clicks to user satisfaction, or revenue
- Crowd sourcing: Need diversity among workers
- Sensor measurements: cover variety of locations
- maximizing minimum number of successful sensor measurements from each location

Generalizing MAB

- Classic MAB
- Observe reward r_{t} on pulling an arm i_{t}
- Maximize $\sum_{t} r_{t}$
- Bandits with knapsacks (BwK) [Badanidiyuru, Kleinberg, Slivkins 2013, Besbes and Zeevi 2009, 2012]

Observe non-negative reward r_{t} and cost vector \boldsymbol{c}_{t}

$$
\begin{aligned}
& \operatorname{maximize} \sum_{t} r_{t} \\
& \text { s.t. } \sum_{t} \boldsymbol{c}_{t, j} \leq B, \forall j
\end{aligned}
$$

Bandits with convex knapsacks and concave rewards (BwCR)

- Pulling an arm i_{t} generates a d dimensional vector v_{t}, unknown mean $V_{i_{t}}$
- Total number of pulls constrained by T
+ Arbitrary convex global constraints on average of observations across time

$$
\frac{1}{T} \sum_{t} \boldsymbol{v}_{t} \in S, \quad S \text { is arbitrary convex set }
$$

- Maximize arbitrary concave function $f\left(\frac{1}{T} \sum_{t} \boldsymbol{v}_{t}\right)$

Minimize distance $\operatorname{dis}\left(\frac{1}{T} \sum_{t} \boldsymbol{v}_{t}, S\right)$ from convex set S

UCB like optimistic algorithm for BwCR

What is an optimistic estimate of the mean observation vectors?

- Need to estimate for every arm i and every coordinate j
- Non-decreasing f : upper bound (UCB)
- The function value at the estimate will be more than actual
- Downward closed S: lower bound (LCB)
- If actual mean is in S, the estimate will be in S
- In general
- Most optimistic estimate in the confidence interval?

Optimistic algorithm for BwCR

- Play the (distribution over) arm that appears to be the best according to the most optimistic estimates in the confidence interval
- Two levels of optimizations
- Actual mean lies in confidence intervals

$$
H_{t}=\left\{\tilde{V}: \tilde{V}_{\mathrm{ij}} \in\left[\mathrm{LCB}_{t, i j}, \mathrm{UCB}_{t, i j}\right]\right\}
$$

- Play best distribution over arms according to most optimistic estimate

$$
\begin{aligned}
& \boldsymbol{p}_{t}= \arg \max \\
& \max _{\boldsymbol{\widetilde { V }} \in H_{t}} f\left(\sum_{i} p_{i} \widetilde{V}_{i}\right) \\
& \text { s.t. } \min _{\tilde{U} \in H_{t}} \operatorname{dis}\left(\sum_{i} p_{i} \widetilde{U}_{i}, S\right) \leq 0
\end{aligned}
$$

Regret bounds

- [A. and Devanur 2014] UCB like optimistic algorithm that
- achieves near-optimal average regret

$$
\text { Regret in objective } \leq \tilde{O}(L \sqrt{N / T}), \quad \text { Regret in constraints } \leq \tilde{O}(\sqrt{N / T})
$$

- achieves problem specific optimal bounds on regret for Bandits with knapsacks

$$
\text { Regret } \leq \tilde{O}(\mathrm{OPT} \sqrt{N / B}+\sqrt{N \mathrm{OPT}})
$$

- is polynomial time implementable
- Recent Extensions to contextual bandits

