Solving Polynomial Equations in Smoothed Polynomial Time

Peter Bürgisser Technische Universität Berlin

joint work with Felipe Cucker (CityU Hong Kong)

Workshop on Polynomial Equation Solving Simons Institute for the Theory of Computing, October 16, 2014

Context and Motivation

- \triangleright Solving polynomial equations is a fundamental mathematical problem, studied for several hundred years.
- \blacktriangleright The problem is NP-complete over the field \mathbb{F}_2 (equivalent to SAT).
- \triangleright Traditionally, the problem is studied over $\mathbb C$. There, it is NP-complete in the model of Blum-Shub-Smale.
- ▶ Methods of symbolic computation (Gröbner bases etc) solve polynomial equations, but the running time is exponential. And these algorithms are also slow in practice.
- \triangleright Numerical methods provide less information on the solutions, but perform much better in practice.

 \blacktriangleright Theoretical explanation?

Smale's 17th Problem

 \triangleright The 17th of Steve Smale's problems for the 21st century asks:

Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?

- \triangleright The problem has its origins in the series of papers "Complexity of Bezout's Theorem I-V" by Shub and Smale (1993-1996).
- ▶ Beltrán and Pardo (2008) answered Smale's 17th problem affirmatively, when allowing randomized algorithms.

Our Contributions

Near solution to Smale's 17th problem

We design a deterministic numerical algorithm for Smale's 17th problem with expected running time *NO*(log log *^N*) , where *N* denotes input size.

For systems of bounded degree the expected running time is polynomial. E.g., $O(N^2)$ for quadratic polynomials.

Smoothed analysis is a blend of average-case and worst-case analysis. It was proposed by Spielman and Teng (2001) and successfully applied to the simplex algorithm.

Smoothed polynomial time

We perform a smoothed analysis of the randomized algorithm of Beltrán and Pardo, proving that its smoothed expected running time is polynomial.

[Solving Polynomial Equations in Smoothed Polynomial Time](#page-0-0) [Newton iteration, condition, and homotopy continuation](#page-4-0)

Setting

For degree vector $d = (d_1, \ldots, d_n)$ define input space

 $\mathcal{H}_d := \{f = (f_1, \ldots, f_n) \mid f_i \in \mathbb{C}[\mathcal{X}_0, \ldots, \mathcal{X}_n] \text{ homogeneous of degree } d_i\}.$

Input size $N = \dim_{\mathbb{C}} \mathcal{H}_d$.

- \triangleright Output space is complex projective space \mathbb{P}^n : Look for zero $\zeta \in \mathbb{P}^n$ with $f(\zeta) = 0$.
- \blacktriangleright Metric *d* on \mathbb{P}^n (angle).
- Fix unitary invariant hermitian inner product \langle , \rangle on \mathcal{H}_d (Weyl). This defines a norm $||f|| := \langle f, f \rangle^{1/2}$ and an (angular) distance *d* on the projective space $\mathbb{P}(\mathcal{H}_d)$, respectively on the sphere $S(\mathcal{H}_d)$.

 \triangleright Solution variety (smooth manifold)

$$
V:=\{(f,\zeta)\mid f(\zeta)=0\}\subseteq \mathcal{H}_d\times \mathbb{P}^n.
$$

Condition number

- In Let $f(\zeta) = 0$. How much does ζ change when we perturb f a little?
- \blacktriangleright This can be quantified by the condition number of (f,ζ) :

 $\mu(f, \zeta) := ||f|| \cdot ||M^{\dagger}||,$

where ($\|\zeta\| = 1$, M^{\dagger} stands for pseudo-inverse)

$$
M := \text{diag}(\sqrt{d_1}, \ldots, \sqrt{d_n})^{-1} Df(\zeta) \in \mathbb{C}^{n \times (n+1)}.
$$

▶ μ is well defined on $\mathbb{P}(\mathcal{H}_d) \times \mathbb{P}^n$: $\mu(tf, \zeta) = \mu(f, \zeta)$ for $t \in \mathbb{C}^*$.

Newton iteration and approximate zeros

 \blacktriangleright Projective Newton iteration

$$
x_{k+1} = N_f(x_k)
$$

with Newton operator N_f : $\mathbb{P}^n \to \mathbb{P}^n$ and starting point x_0 .

 \triangleright Gamma Theorem (Smale): Put $D := \max_i d_i$. If

$$
d(x_0,\zeta)\leq \frac{0.3}{D^{3/2}\,\mu(f,\zeta)},
$$

then immediate convergence of $x_{k+1} = N_f(x_k)$ with quadratic speed:

$$
d(x_k,\zeta)\leq \frac{1}{2^{2^k-1}}\,d(x_0,\zeta).
$$

Call *x*⁰ approximate zero of *f* .

From local to global search: homotopy continuation

 \blacktriangleright Given a start system

$$
(g,\zeta)\in V:=\Big\{(f,\zeta)\mid f(\zeta)=0\Big\}\subseteq \mathcal{H}_d\times \mathbb{P}^n.
$$

in the solution manifold *V*.

- ▶ Connect input $f \in \mathcal{H}_d$ to *g* by line segment $[g, f] = \{q_t | t \in [0, 1]\}$.
- If none of the q_t has multiple zero, there exists unique lifting of $t \mapsto q_t$ to a solution path in *V*

$$
\gamma\colon [0,1]\to V, t\mapsto (q_t,\zeta_t)
$$

such that $(q_0, \zeta_0) = (g, \zeta)$.

[Newton iteration, condition, and homotopy continuation](#page-8-0)

Adaptive linear homotopy

 \triangleright Adaptive Linear Homotopy ALH: follow solution path γ numerically. Put $t_0 = 0, q_0 := g, z_0 := \zeta$. Compute $t_{i+1}, q_{i+1}, z_{i+1}$ adaptively from $t_i, q_i := q_{t_i}, z_i$ by Newton's method:

$$
d(q_{i+1}, q_i) = \frac{7.5 \cdot 10^{-3}}{D^{3/2} \mu(q_i, z_i)^2},
$$

$$
z_{i+1} = N_{q_{i+1}}(z_i).
$$

- In Let $K(f, g, \zeta)$ denote the number *k* of Newton continuation steps needed to follow the homotopy.
- **If** Shub-Smale & Shub (2007): z_i is approximate zero of ζ_t and

$$
\mathcal{K}(f,g,\zeta) \ \leq \ 217 \, D^{3/2} \, \int_0^1 \mu(\gamma(t))^2 \, \|\dot{q}_t\| \, dt.
$$

Randomization

- \blacktriangleright How to choose the start system?
- Almost all $(g, \zeta) \in V$ are "good": $\mu(g, \zeta) = N^{\mathcal{O}(1)}$ (Shub-Smale).
- Inknown how to efficiently construct such (g, ζ) : "problem to find hay in a haystack."
- \blacktriangleright We may choose $g \in S(\mathcal{H}_d)$ uniformly at random.
- \triangleright Alternatively, we may choose g according to the standard Gaussian distribution on \mathcal{H}_d : it has the density

$$
\rho(g) = (2\pi)^{-N} \exp(-\frac{1}{2}||g||^2).
$$

[Newton iteration, condition, and homotopy continuation](#page-10-0)

A Las Vegas algorithm

- ▶ Standard distribution on solution variety V :
	- \blacktriangleright choose $g \in \mathcal{H}_d$ from standard Gaussian,
	- \triangleright choose one of the $d_1 \cdots d_n$ many zeros ζ of g uniformly at random.
- Fificient sampling of $(g, \zeta) \in V$ is possible (Beltrán & Pardo 2008).
- I Las Vegas algorithm LV: on input *f*, draw $(g, \zeta) \in V$ at random, run ALH on (f, g, ζ)
- IV has expected "running time" $K(f) := \mathbb{E}_{g} K(f, g, \zeta)$.

Average of LV (Beltrán and Pardo)

$$
\mathbb{E}_f K(f) = \mathcal{O}(D^{3/2} N n)
$$

for standard Gaussian $f \in \mathcal{H}_d$.

Smoothed expected polynomial time

Smoothed analysis: Fix $\overline{f} \in \mathcal{H}_d$ and $\sigma > 0$. The isotropic Gaussian on \mathcal{H}_d with mean \overline{f} and variance σ^2 has the density

$$
\rho(f) = \frac{1}{(2\pi\sigma^2)^N} \exp\Big(-\frac{1}{2\sigma^2}||f - \overline{f}||^2\Big).
$$

We write $f \sim N(\overline{f}, \sigma^2 I)$.

Technical issue: we truncate this Gaussian by requiring $||f - \overline{f}|| \le \sqrt{2N}$, obtaining the distribution $N_T(\bar{f}, \sigma^2 I)$.

Smoothed analysis of LV

$$
\sup_{\|\overline{f}\| = 1} \mathbb{E}_{f \sim N_T(\overline{f}, \sigma^2 I)} \mathcal{K}(f) = \mathcal{O}\Big(\frac{D^{3/2} N n}{\sigma}\Big).
$$

Near solution to Smale's 17th problem

The deterministic algorithm below computes an approximate zero of $f \in \mathcal{H}_d$ with an expected number of arithmetic operations $N^{\mathcal{O}(\log \log N)}$, for standard Gaussian input $f \in \mathcal{H}_d$.

 \blacktriangleright (1) $D \leq n$: Run ALH with the start system (g,ζ) , where

$$
g_i = X_i^{d_i} - X_0^{d_i}, \quad \zeta = (1,\ldots,1)
$$

$$
\mu(g,\zeta)^2\leq 2(n+1)^D.
$$

 \triangleright (II) $D > n$: Use known method from computer algebra (Renegar), taking roughly *Dⁿ* steps.

If $D \leq n^{1-\epsilon}$, for fixed $\epsilon > 0$, then n^D and hence the running time is polynomially bounded in *N*. Similarly for $D > n^{1+\epsilon}$.

On the proof

 \triangleright Reduce to smoothed analysis of mean square condition number defined as

$$
\mu_2(q) := \Big(\frac{1}{d_1\cdots d_n}\sum_{q(\zeta)=0} \mu(q,\zeta)^2\Big)^{1/2} \quad \text{ for } q\in\mathcal{H}_d.
$$

 \blacktriangleright Main auxiliary result:

$$
\sup_{\|\overline{q}\|=1}\mathbb{E}_{q\sim N(\overline{q},\sigma^2 I)}\left(\frac{\mu_2(q)^2}{\|q\|^2}\right) = \mathcal{O}\left(\frac{n}{\sigma^2}\right).
$$

- \triangleright Proof is involved and proceeds by the analysis of certain probability distributions on fiber bundles (coarea formula etc).
- \triangleright This way, the proof essentially reduces to a smoothed analysis of a matrix condition number.