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Solving Polynomial Equations in Smoothed Polynomial Time

Overview

Context and Motivation

I Solving polynomial equations is a fundamental mathematical
problem, studied for several hundred years.

I The problem is NP-complete over the field F2 (equivalent to SAT).

I Traditionally, the problem is studied over C. There, it is
NP-complete in the model of Blum-Shub-Smale.

I Methods of symbolic computation (Gröbner bases etc) solve
polynomial equations, but the running time is exponential. And
these algorithms are also slow in practice.

I Numerical methods provide less information on the solutions, but
perform much better in practice.

I Theoretical explanation?
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Overview

Smale’s 17th Problem

I The 17th of Steve Smale’s problems for the 21st century asks:

Can a zero of n complex polynomial equations in

n unknowns be found approximately, on the average, in

polynomial time with a uniform algorithm?

I The problem has its origins in the series of papers ”Complexity of
Bezout’s Theorem I-V” by Shub and Smale (1993-1996).

I Beltrán and Pardo (2008) answered Smale’s 17th problem
a�rmatively, when allowing randomized algorithms.
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Our Contributions

Near solution to Smale’s 17th problem

We design a deterministic numerical algorithm for Smale’s 17th problem
with expected running time N

O(log logN), where N denotes input size.

For systems of bounded degree the expected running time is polynomial.
E.g., O(N2) for quadratic polynomials.

Smoothed analysis is a blend of average-case and worst-case analysis. It
was proposed by Spielman and Teng (2001) and successfully applied to
the simplex algorithm.

Smoothed polynomial time

We perform a smoothed analysis of the randomized algorithm of Beltrán
and Pardo, proving that its smoothed expected running time is
polynomial.
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Newton iteration, condition, and homotopy continuation

Setting

I For degree vector d = (d1, . . . , dn) define input space

Hd := {f = (f1, . . . , fn) | fi 2 C[X0, . . . ,Xn] homogeneous of degree di}.

Input size N:= dimC Hd .

I Output space is complex projective space Pn: Look for zero ⇣ 2 Pn

with f (⇣) = 0.

I Metric d on Pn (angle).

I Fix unitary invariant hermitian inner product h , i on Hd (Weyl).
This defines a norm kf k := hf , f i1/2 and an (angular) distance d on
the projective space P(Hd), respectively on the sphere S(Hd).

I Solution variety (smooth manifold)

V := {(f , ⇣) | f (⇣) = 0
 
✓ Hd ⇥ Pn.
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Newton iteration, condition, and homotopy continuation

Condition number

I Let f (⇣) = 0. How much does ⇣ change when we perturb f a little?

I This can be quantified by the condition number of (f , ⇣):

µ(f , ⇣) := kf k · kM†k,

where (k⇣k = 1, M† stands for pseudo-inverse)

M := diag(
p
d1, . . . ,

p
dn)

�1
Df (⇣) 2 Cn⇥(n+1).

I µ is well defined on P(Hd)⇥ Pn: µ(tf , ⇣) = µ(f , ⇣) for t 2 C⇤.
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Newton iteration, condition, and homotopy continuation

Newton iteration and approximate zeros

I Projective Newton iteration

xk+1 = Nf (xk)

with Newton operator Nf : Pn ! Pn and starting point x0.

I Gamma Theorem (Smale): Put D := maxi di . If

d(x0, ⇣) 
0.3

D

3/2 µ(f , ⇣)
,

then immediate convergence of xk+1 = Nf (xk) with quadratic speed:

d(xk , ⇣) 
1

22k�1
d(x0, ⇣).

Call x0 approximate zero of f .
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Newton iteration, condition, and homotopy continuation

From local to global search: homotopy continuation

I Given a start system

(g , ⇣) 2 V :=
n
(f , ⇣) | f (⇣) = 0

 
✓ Hd ⇥ Pn.

in the solution manifold V .

I Connect input f 2 Hd to g by line segment [g , f ] = {qt | t 2 [0, 1]}.
I If none of the qt has multiple zero, there exists unique lifting of

t 7! qt to a solution path in V

� : [0, 1] ! V , t 7! (qt , ⇣t)

such that (q0, ⇣0) = (g , ⇣).
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Newton iteration, condition, and homotopy continuation

Adaptive linear homotopy

I Adaptive Linear Homotopy ALH: follow solution path � numerically.
Put t0 = 0, q0 := g , z0 := ⇣.
Compute ti+1, qi+1, zi+1 adaptively from ti , qi := qti , zi by Newton’s
method:

d(qi+1, qi ) =
7.5 · 10�3

D

3/2µ(qi , zi )2
,

zi+1 = Nqi+1(zi ).

I Let K (f , g , ⇣) denote the number k of Newton continuation steps
needed to follow the homotopy.

I Shub-Smale & Shub (2007): zi is approximate zero of ⇣ti and

K (f , g , ⇣)  217D3/2

Z 1

0

µ(�(t))2 kq̇tk dt.



Solving Polynomial Equations in Smoothed Polynomial Time

Newton iteration, condition, and homotopy continuation

Randomization

I How to choose the start system?

I Almost all (g , ⇣) 2 V are “good”: µ(g , ⇣) = N

O(1) (Shub-Smale).

I Unknown how to e�ciently construct such (g , ⇣):
“problem to find hay in a haystack.”

I We may choose g 2 S(Hd) uniformly at random.

I Alternatively, we may choose g according to the standard Gaussian
distribution on Hd : it has the density

⇢(g) = (2⇡)�N exp(�1

2
kgk2).
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Newton iteration, condition, and homotopy continuation

A Las Vegas algorithm

I Standard distribution on solution variety V :
I

choose g 2 Hd from standard Gaussian,

I
choose one of the d1 · · · dn many zeros ⇣ of g uniformly at random.

I E�cient sampling of (g , ⇣) 2 V is possible (Beltrán & Pardo 2008).

I Las Vegas algorithm LV: on input f , draw (g , ⇣) 2 V at random, run
ALH on (f , g , ⇣)

I LV has expected “running time” K (f ) := Eg ,⇣K (f , g , ⇣).

Average of LV (Beltrán and Pardo)

EfK (f ) = O
�
D

3/2
Nn

�

for standard Gaussian f 2 Hd .
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Results

Smoothed expected polynomial time

Smoothed analysis: Fix f 2 Hd and � > 0. The isotropic Gaussian
on Hd with mean f and variance �2 has the density

⇢(f ) =
1

(2⇡�2)N
exp

⇣
� 1

2�2
kf � f k2

⌘
.

We write f ⇠ N(f ,�2
I ).

Technical issue: we truncate this Gaussian by requiring kf � f k 
p
2N,

obtaining the distribution NT (f ,�2
I ).

Smoothed analysis of LV

sup
kf k=1

Ef⇠NT (f ,�2I )K (f ) = O
⇣
D

3/2
Nn

�

⌘
.
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Results

Near solution to Smale’s 17th problem

The deterministic algorithm below computes an approximate zero of
f 2 Hd with an expected number of arithmetic operations NO(log logN),
for standard Gaussian input f 2 Hd .

I
(I) D  n: Run ALH with the start system (g , ⇣), where

gi = X

di
i � X

di
0 , ⇣ = (1, . . . , 1)

µ(g , ⇣)2  2(n + 1)D .

I
(II) D � n: Use known method from computer algebra (Renegar),
taking roughly D

n steps.

If D  n

1�", for fixed " > 0, then n

D and hence the running time is
polynomially bounded in N. Similarly for D � n

1+".
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Results

On the proof

I Reduce to smoothed analysis of mean square condition number
defined as

µ2(q) :=
⇣ 1

d1 · · · dn
X

q(⇣)=0

µ(q, ⇣)2
⌘1/2

for q 2 Hd .

I Main auxiliary result:

sup
kqk=1

Eq⇠N(q,�2I )

⇣µ2(q)2

kqk2
⌘

= O
⇣
n

�2

⌘
.

I Proof is involved and proceeds by the analysis of certain probability
distributions on fiber bundles (coarea formula etc).

I This way, the proof essentially reduces to a smoothed analysis of a
matrix condition number.
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