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The classical story of overfitting



Overfitting can be benign

Classical Modern



How harmful is overfitting for standard deep 
neural networks (DNNs)?



Our Setting

Want to estimate:



A taxonomy of overfitting

Classical Modern
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A taxonomy of overfitting

Catastrophic BenignTempered

random classifier



How harmful is overfitting for standard deep 
neural networks (DNNs)?



A simple experiment

No added label noise Flip 30% of labels

Binary CIFAR-10, WideResNets interpolating training data
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(Some) prior works
Bartlett, Long, Lugosi, Tsigler (2020) Linear regression

Liang, Rakhlin (2018) Kernel ridgeless regression

Mei, Montanari (2019) Random feature regression (ridgeless 
limits)

Belkin, Hsu, Mitra (2018) Kernel smoothers / nearest neighbors

Rakhlin, Zhai (2019) Laplace kernel interpolation

Koehler, Zhou, Sutherland, Srebro (2021) High-dim linear regression

Ji, Li, Telgarsky (2021) Early-stopped neural networks

Beaglehole, Belkin, Pandit (2022) Shift-invariant kernel interpolators

d - input (ambient) dimension, n - number of training samples
Benign overfitting commonly shown for d > n or (d, n) scale jointly
Generalization error bounds in d, n



Motivation for a taxonomy

We consider: fixed input dimension (d), take n → 

In this setting, benign = consistent

Prior works show inconsistency of interpolators on noisy data in low 
/ fixed dimension (Rakhlin & Zhai ‘19; Beaglehole, Belkin, Pandit 
‘22)

Two ways to be inconsistent when interpolating: 
1. tempered (bounded risk as a function of label noise)
2. catastrophic (unbounded risk)



Example methods in the taxonomy

Benign (Consistent)

● Ridged kernel 
regression (KR)

● k-NN, k ~ log n
● Nadaraya-Watson 

estimator with singular 
kernel

Tempered (Inconsistent)

● Interpolating DNNs
● Laplacian KR

● k-NN, constant k

Catastrophic (Inconsistent)

● Models at double 
descent peak

● Polynomial regression 
w/ degree = n

● Gaussian KR



Example methods in the taxonomy

Classifying Binary MNIST (even/odd)
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Interpolating DNNs are tempered
● Multi-class classification, CIFAR-10, WideResNet



Interpolating DNNs are tempered
● Binary classification, synthetic data on 10-dim hypersphere, y = 1, MLP



Early-stopped DNNs are benign

Shallow & wide ReLU nets are consistent w/ early stopping (Ji, Li, Telgarsky, 2021) 



Time dynamics of MLP regression

ReLU MLP
Full batch GD
X = 5-dim sphere
y = 1 + N(0,1)
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Kernel regression can exhibit all three types of fitting



Kernel regression



The kernel eigensystem

Eigenmodes of dot-product 
kernel on unit circle

Eigensystem:

Target function:



KR = linear regression with eigenfunction features

With feature map ψ … … the feature-feature inner product is K …

… and LR with features ψ is equivalent to KR with kernel K.



Approximation: features are Gaussian and uncorrelated

“Universality” assumption:

Closed-form expression for generalization of LR with Gaussian covariates?



The “eigenlearning” equations
[Hastie et al. ‘19], [Bordelon et al. ‘20],

[Jacot et al. ‘20], [Bartlett et al. ‘21],
[Loureiro et al. ‘21], [Simon et al. ‘21]

test MSE

eigenvalue threshold

noise-fitting MSE

“eigenmode 
learnability” 
∈ [0,1]



The Trichotomy Theorem

BENIGN

TEMPERED

CATASTROPHIC

Spectrum Limiting risk



model for wide DNNs 
trained to interpolation



Linear regression with

asymptotically “overfitting by a factor of the exponent”!



Implications of the Trichotomy Theorem

● Laplace kernels are tempered, ridgeless Gaussian kernels are catastrophic
● NTKs’ fitting depends on activation function:

○ ReLU -> powerlaw spectrum -> tempered
○ other choices (e.g. erf) -> superpowerlaw spectrum -> catastrophic

● Ridge parameter ≈ early stopping, so early-stopped DNNs are benign



Conclusions

● There are three ways to overfit
● Common interpolating methods fall into the intermediate regime
● For KR, ridge + kernel spectrum determine the regime



Open Questions

1. How do input / manifold dimensionality affect overfitting?
2. Theoretical results "beyond kernels"?
3. Trichotomy theorem for classification?
4. Trichotomy theorem with exhaustive conditions?
5. Do any closed-form kernels give benign overfitting?
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Eigenlearning theory closely matches experiment in many real and synthetic tasks

width 500 FCNs (circles), NTK regression (triangles), theoretical “eigenlearning” predictions (solid curves)
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