The Degree of Central Curve in Quadratic Programming

Serkan Hoşten and Dennis Schlief

Mathematics Department San Francisco State University

15 October 2014

Quadratic Programs

minimize
$$\frac{1}{2}x^tQx + x^tc$$

subject to $Ax = b$
 $x \ge 0$

where

- Q is $n \times n$ positive definite matrix
- $c \in \mathbb{R}^n$
- A is $d \times n$ matrix of rank d
- $b \in \mathbb{R}_+(A)$

Quadratic Programs

minimize
$$\frac{1}{2}x^tQx + x^tc$$

subject to $Ax = b$
 $x \ge 0$

where

- Q is $n \times n$ positive definite matrix
- $c \in \mathbb{R}^n$
- A is $d \times n$ matrix of rank d
- $b \in \mathbb{R}_+(A)$

A convex optimization problem!

Log-barrier and a curve

A related convex problem to be solved for $\lambda o 0$

minimize
$$\frac{1}{2}x^tQx + x^tc - \lambda \sum \log(x_i)$$

subject to $Ax = b$

Log-barrier and a curve

A related convex problem to be solved for $\lambda o 0$

minimize
$$\frac{1}{2}x^tQx + x^tc - \lambda \sum \log(x_i)$$

subject to $Ax = b$

... and its Karush-Kuhn-Tucker (KKT) Equations:

$$Ax = b, x \ge 0,$$

$$Qx + c - \sum_{i} \frac{\lambda}{x_i} e_i - A^t y = 0$$

Log-barrier and a curve

A related convex problem to be solved for $\lambda \to 0$

minimize
$$\frac{1}{2}x^tQx + x^tc - \lambda \sum \log(x_i)$$

subject to $Ax = b$

... and its Karush-Kuhn-Tucker (KKT) Equations:

$$Ax = b, x \ge 0,$$

$$Qx + c - \sum_{i} \frac{\lambda}{x_i} e_i - A^t y = 0$$

 $\{(x^*(\lambda), \lambda, y^*(\lambda))\}\$ for $\lambda > 0$ is a curve in \mathbb{R}^{n+1+d} .

Example

minimize
$$\frac{1}{2}(2x_1^2 + 3x_2^2 + 3x_3^2 + 4x_4^2)$$
 $+4x_1 - x_2 + 3x_3 - 2x_4$
subject to $2x_1 - 3x_2 + x_3 = 9$
 $-x_1 - 2x_2 + x_4 = -6$
 $x_1, x_2, x_3, x_4 \ge 0$

The Central Path

Definition

Assume $\{x \in \mathbb{R}^n : Ax = b, \ x \geq 0\}$ bounded. Then the projection of $\{(x^*(\lambda), \lambda, y^*(\lambda)) \text{ for } \lambda > 0 \text{ on } \mathbb{R}^n \text{ is called the central path of the quadratic program.}$

The Central Path

Definition

Assume $\{x \in \mathbb{R}^n : Ax = b, \ x \geq 0\}$ bounded. Then the projection of $\{(x^*(\lambda), \lambda, y^*(\lambda)) \text{ for } \lambda > 0 \text{ on } \mathbb{R}^n \text{ is called the central path of the quadratic program.}$

The Central Path

Definition

The Zariski closure of the projection onto \mathbb{C}^n of the solutions to

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, ..., n, \text{ and } Ax - b = 0$$

is called the central curve of the quadradic program.

Definition

The Zariski closure of the projection onto \mathbb{C}^n of the solutions to

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, ..., n, \text{ and } Ax - b = 0$$

is called the central curve of the quadradic program.

Definition

The Zariski closure of the projection onto \mathbb{C}^n of the solutions to

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, ..., n, \text{ and } Ax - b = 0$$

is called the central curve of the quadradic program.

Definition

The Zariski closure of the projection onto \mathbb{C}^n of the solutions to

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, ..., n, \text{ and } Ax - b = 0$$

is called the central curve of the quadradic program.

We denote the ideal generated by the above equations by J. And we denote the ideal of the central curve by $I_{\mathcal{C}}$.

In our running example the central curve is defined by Ax = b and

$$\begin{array}{l} 4x_1^2x_2x_3 - 3x_1x_2^2x_3 - 21x_1x_2x_3^2 + 6x_1^2x_2x_4 + 6x_1x_2^2x_4 + 2x_1^2x_3x_4 - \\ 3x_2^2x_3x_4 - 6x_1x_3^2x_4 - 9x_2x_3^2x_4 + 28x_1x_2x_4^2 + 4x_1x_3x_4^2 - 8x_2x_3x_4^2 - \\ 12x_1x_2x_3 - 4x_1x_2x_4 - 4x_1x_3x_4 - 4x_2x_3x_4 = 0 \end{array}$$

The Degree of the Central Curve

Goal: Compute equations for and the degree (of the projective closure) of the central curve of quadratic programs (for generic Q, c, A, b).

The Degree of the Central Curve

Goal: Compute equations for and the degree (of the projective closure) of the central curve of quadratic programs (for generic Q, c, A, b).

Motivation:

- Work started by Bayer and Lagarias
- Dedieu, Malajovich, and Shub (2005) considered the total curvature of the central path for a given *linear program*
- De Loera, Sturmfels, and Vinzant (2012) determined the equations for the central curve of linear programs and computed the degree to be $\binom{n-1}{d}$. This implies a bound of $2\pi(n-d-1)\binom{n-1}{d-1}$ on the total curvature of the central curve of a generic LP
- Continuous Hirsch Conjecture is false: Allemigeon, Benchimol, Gaubert, and Joswig (2014)
- Quadratic programming is an intermediate stage from linear to semidefinite programs

Clearing Denominators

Proposition

$$\mathcal{V}(J:(x_1x_2\cdots x_n)^{\infty})=\mathcal{V}(J)$$

Clearing Denominators

Proposition

$$\mathcal{V}(J:(x_1x_2\cdots x_n)^{\infty})=\mathcal{V}(J)$$

- The central curve does not have components in coordinate hyperplanes.
- The LP central curve is an irreducible curve. The QP central curve should be irreducible as well.

Degree and the Solutions in the Torus

Theorem

When Q, A, c, and b are generic then the degree of the central curve is equal to the number of solutions in $(\mathbb{C}^*)^{n+d+1}$ to the system

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, \ i = 1, \dots, n,$$

$$Ax = b$$

$$ex = f$$

Degree and the Solutions in the Torus

Theorem

When Q, A, c, and b are generic then the degree of the central curve is equal to the number of solutions in $(\mathbb{C}^*)^{n+d+1}$ to the system

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, \quad i = 1, \dots, n,$$

$$Ax = b$$

$$ex = f$$

Theorem

The number of solutions in $(\mathbb{C}^*)^{n+d+1}$ to the above system is equal to the number of solutions in $(\mathbb{C}^*)^{n+d+1}$ to the system when Q is generic and diagonal.

Computational Data for the Diagonal Case

d/n	3	4	5	6	7	8	9	10
1	3					127		
2	1	4	11	26	57	120	247	502
3		1	5	16	42	99	219	466
4			1	6	22	64	163	382

The equations:

$$c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, ..., n,$$

$$Ax = b$$

$$ex = f$$

The equations:

$$c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, ..., n,$$

$$Ax = b$$

$$ex = f$$

Using the (d+1) linear equations make a substitution $x=v_0+t_1v_1+\ldots+t_{n-d-1}v_{n-d-1}$ and get a system of n equations in n unknowns: $t_1,\ldots,t_{n-d-1},\lambda,y_1,\ldots,y_d$ where the support of each equation is

$$\lambda, 1, t_1, \dots, t_{n-d-1}, y_1, y_1t_1, \dots, y_1t_{n-d-1}, \dots, y_d, y_dt_1, \dots, y_dt_{n-d-1}$$

So the mixed volume for the LP system is the volume of $\Delta_{n-d-1} \times \Delta_d$.

So the mixed volume for the LP system is the volume of $\Delta_{n-d-1} \times \Delta_d$.

Theorem

The degree of the LP central curve for generic data is

$$\binom{n-1}{d} = \sum_{k=0}^{n-d-1} \binom{n-2-k}{d-1}$$

So the mixed volume for the LP system is the volume of $\Delta_{n-d-1} \times \Delta_d$.

Theorem

The degree of the LP central curve for generic data is

$$\binom{n-1}{d} = \sum_{k=0}^{n-d-1} \binom{n-2-k}{d-1}$$

For the right hand side of the formula use, for instance, staircase triangulation.

The equations:

$$(Qx)_i x_i + c_i x_i - \lambda - (y^t A_i) x_i = 0, i = 1, \dots, n,$$

$$Ax = b$$

$$ex = f$$

The equations:

$$(Qx)_{i}x_{i} + c_{i}x_{i} - \lambda - (y^{t}A_{i})x_{i} = 0, i = 1,..., n,$$

$$Ax = b$$

$$ex = f$$

Using the (d+1) linear equations make a substitution $x=v_0+t_1v_1+\ldots+t_{n-d-1}v_{n-d-1}$ and get a system of n equations in n unknowns: $t_1,\ldots,t_{n-d-1},\lambda,y_1,\ldots,y_d$ where the support of each equation is

$$\lambda, 1, t_1, \dots, t_{n-d-1}, t_1^2, t_1 t_2, \dots, t_{n-d-1}^2$$

 $y_1, y_1 t_1, \dots, y_1 t_{n-d-1}, \dots, y_d, y_d t_1, \dots, y_d t_{n-d-1}$

Theorem

The degree of the QP central curve for generic data is

$$\sum_{k=0}^{n-d-1} \binom{n-2-k}{d-1} 2^k$$

Theorem

The degree of the QP central curve for generic data is

$$\sum_{k=0}^{n-d-1} \binom{n-2-k}{d-1} 2^k$$

Again use staircase triangulation but with the right volumes of the simplices.

Equations

If a degree reverse lex $x_1 < x_2 < \cdots < x_n$ is used, the reduced Gröbner bases look like this (d = 2, n = 5):

$$26x_2^2x_3x_4 - 16x_2x_3^2x_4 - 44x_2x_3x_4^2 + 62x_2^2x_3x_5 + 16x_2x_3^2x_5 + \cdots$$

$$39x_1^2x_3x_4 - 42x_1x_3^2x_4 - 44x_1x_3x_4^2 + 93x_1^2x_3x_5 - 46x_1x_3^2x_5 + 96x_1^2x_4x_5 - \cdots$$

$$24x_1^2x_2x_4 - 42x_1x_2^2x_4 + 44x_1x_2x_4^2 - 24x_1^2x_2x_5 - 46x_1x_2^2x_5 + 96x_1^2x_4x_5 - \cdots$$

$$33x_1^2x_2x_3 - 22x_1x_2^2x_3 - 22x_1x_2x_3^2 + 24x_1^2x_2x_5 + 46x_1x_2^2x_5 + 93x_1^2x_3x_5 - \cdots$$

Equations

If a degree reverse lex $x_1 < x_2 < \cdots < x_n$ is used, the reduced Gröbner bases look like this (d = 2, n = 5):

$$\begin{array}{l} 26x_2^2x_3x_4 - 16x_2x_3^2x_4 - 44x_2x_3x_4^2 + 62x_2^2x_3x_5 + 16x_2x_3^2x_5 + \cdots \\ 39x_1^2x_3x_4 - 42x_1x_3^2x_4 - 44x_1x_3x_4^2 + 93x_1^2x_3x_5 - 46x_1x_3^2x_5 + 96x_1^2x_4x_5 - \cdots \\ 24x_1^2x_2x_4 - 42x_1x_2^2x_4 + 44x_1x_2x_4^2 - 24x_1^2x_2x_5 - 46x_1x_2^2x_5 + 96x_1^2x_4x_5 - \cdots \\ 33x_1^2x_2x_3 - 22x_1x_2^2x_3 - 22x_1x_2x_3^2 + 24x_1^2x_2x_5 + 46x_1x_2^2x_5 + 93x_1^2x_3x_5 - \cdots \end{array}$$

Initial ideal =
$$\langle x_2^2 x_3 x_4, x_1^2 x_3 x_4, x_1^2 x_2 x_4, x_1^2 x_2 x_3 \rangle = \langle x_3, x_4 \rangle \cap \langle x_2, x_4 \rangle \cap \langle x_1^2, x_4 \rangle \cap \langle x_2, x_3 \rangle \cap \langle x_1^2, x_3^2 \rangle \cap \langle x_1^2, x_2^2 \rangle.$$

Elimination in the Quadratic Case

In order to eliminate λ and y_1, \ldots, y_d from

$$d_i x_i^2 + c_i x_i - \lambda - (y^t A_i) x_i = 0, \quad i = 1, ..., n$$

eliminate y_1, \ldots, y_d and z_1, \ldots, z_n from

$$d_i(w_i+z_i) = y^t A_i - c_i, i = 1, ..., n \text{ and } d_1w_1z_1 = d_2w_2z_2 = \cdots = d_nw_nz_n$$

Elimination in the Quadratic Case

In order to eliminate λ and y_1, \ldots, y_d from

$$d_i x_i^2 + c_i x_i - \lambda - (y^t A_i) x_i = 0, \quad i = 1, \dots, n$$

eliminate y_1, \ldots, y_d and z_1, \ldots, z_n from

$$d_i(w_i + z_i) = y^t A_i - c_i, \ i = 1, ..., n \text{ and } d_1 w_1 z_1 = d_2 w_2 z_2 = \cdots = d_n w_n z_n$$

- Use each *circuit* C of A to eliminate y from the first set of equations, then use $z_k = (d_1w_1z_1)/(d_kw_k)$ to write the resulting equation as $f_C(w_1, \ldots, w_n, z_1)$.
- each f_C is linear in z₁
- now using two carefully chosen C and C' eliminate z_1 to obtain $g_{C,C'}(w_1,\ldots,w_n)$ in the elimination ideal.

Elimination in the Quadratic Case

Theorem

The ideal $J = \langle g_{C,C'}(w_1, \dots, w_n) \rangle$ is contained in the elimination ideal I and $M = \langle \operatorname{in}_{<}(g_{C,C'}) \rangle$ is contained in $\operatorname{in}_{<}(I)$. The ideal M is equal to

$$M = \langle w_i^2 w_{j_1} w_{j_2} \dots w_{j_d} : 1 \leq i \leq n - d - 1, i < j_1 < j_2 < \dots < j_d < n \rangle.$$

Morever, M has the irreducible decomposition

$$M = \bigcap_{k=0}^{n-d-1} \bigcap_{T \subset \{k+2,\dots,n\}, |T| = n-d-k-1} \langle w_j^2 : 0 < j < k+1 \rangle + \langle w_t : t \in T \rangle$$

Equations of the Central Curve in the Diagonal Case

Corollary

The degree of M is equal to

$$\sum_{k=0}^{n-d-1} \binom{n-2-k}{d-1} 2^k$$

Equations of the Central Curve in the Diagonal Case

Corollary

The degree of M is equal to

$$\sum_{k=0}^{n-d-1} \binom{n-2-k}{d-1} 2^k$$

Theorem

For generic Q, A, b, c and Q a diagonal matrix the central curve for quadratic programming is defined by $J = \langle g_{C,C'}(w_1,\ldots,w_n) \rangle$

