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Quadratic Programs

minimize 1
2x tQx + x tc

subject to Ax = b
x ≥ 0

where

Q is n × n positive definite matrix

c ∈ Rn

A is d × n matrix of rank d

b ∈ R+(A)

A convex optimization problem!
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Log-barrier and a curve

A related convex problem to be solved for λ→ 0

minimize 1
2x tQx + x tc − λ

∑
log(xi )

subject to Ax = b

... and its Karush-Kuhn-Tucker (KKT) Equations:

Ax = b, x ≥ 0,

Qx + c −
∑ λ

xi
ei − Aty = 0

{(x∗(λ), λ, y∗(λ))} for λ > 0 is a curve in Rn+1+d .
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Example

minimize 1
2(2x2

1 +3x2
2 +3x2

3 +4x2
4 ) +4x1 − x2 + 3x3 − 2x4

subject to 2x1 −3x2 +x3 = 9
−x1 −2x2 +x4 = −6

x1, x2, x3, x4 ≥ 0
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The Central Path

Definition

Assume {x ∈ Rn : Ax = b, x ≥ 0} bounded. Then the projection of
{(x∗(λ), λ, y∗(λ)) for λ > 0 on Rn is called the central path of the
quadratic program.

2x1 +4 − λ
x1
−2y1 +y2 = 0

3x2 −1 − λ
x2

+3y1 +2y2 = 0

3x3 +3 − λ
x3
−y1 = 0

4x4 −2 − λ
x4

−y2 = 0

2x1 −3x2 +x3 = 9
−x1 −2x2 +x4 = −6
x1 x2 x3 x4 ≥ 0
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The Central Path
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The Central Curve

Definition

The Zariski closure of the projection onto Cn of the solutions to

(Qx)ixi + cixi − λ− (y tAi )xi = 0, i = 1, . . . , n, and Ax − b = 0

is called the central curve of the quadradic program.

2x2
1 +4x1 −λ −2y1x1 +y2x1 = 0

3x2
2 −x2 −λ +3y1x2 +2y2x2 = 0

3x2
3 +3x3 −λ −y1x3 = 0

4x4
4 −2x4 −λ −y2x4 = 0

2x1 −3x2 +x3 = 9
−x1 −2x2 +x4 = −6
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The Central Curve

Definition

The Zariski closure of the projection onto Cn of the solutions to

(Qx)ixi + cixi − λ− (y tAi )xi = 0, i = 1, . . . , n, and Ax − b = 0

is called the central curve of the quadradic program.

We denote the ideal generated by the above equations by J. And we
denote the ideal of the central curve by IC .

Serkan Hoşten and Dennis Schlief Degree of Central Curve



The Central Curve

Definition

The Zariski closure of the projection onto Cn of the solutions to

(Qx)ixi + cixi − λ− (y tAi )xi = 0, i = 1, . . . , n, and Ax − b = 0

is called the central curve of the quadradic program.

We denote the ideal generated by the above equations by J. And we
denote the ideal of the central curve by IC .
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The Central Curve

In our running example the central curve is defined by Ax = b and

4x2
1x2x3 − 3x1x2

2x3 − 21x1x2x2
3 + 6x2

1x2x4 + 6x1x2
2x4 + 2x2

1x3x4 −
3x2

2x3x4 − 6x1x2
3x4 − 9x2x2

3x4 + 28x1x2x2
4 + 4x1x3x2

4 − 8x2x3x2
4 −

12x1x2x3 − 4x1x2x4 − 4x1x3x4 − 4x2x3x4 = 0
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The Central Curve
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The Degree of the Central Curve

Goal: Compute equations for and the degree (of the projective closure) of
the central curve of quadratic programs (for generic Q, c ,A, b).

Motivation:

Work started by Bayer and Lagarias

Dedieu, Malajovich, and Shub (2005) considered the total curvature
of the central path for a given linear program

De Loera, Sturmfels, and Vinzant (2012) determined the equations
for the central curve of linear programs and computed the degree to
be
(n−1

d

)
. This implies a bound of 2π(n − d − 1)

(n−1
d−1
)

on the total
curvature of the central curve of a generic LP

Continuous Hirsch Conjecture is false: Allemigeon, Benchimol,
Gaubert, and Joswig (2014)

Quadratic programming is an intermediate stage from linear to
semidefinite programs
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Clearing Denominators

Proposition

V(J : (x1x2 · · · xn)∞) = V(J)

The central curve does not have components in coordinate
hyperplanes.

The LP central curve is an irreducible curve. The QP central curve
should be irreducible as well.
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Degree and the Solutions in the Torus

Theorem

When Q, A, c, and b are generic then the degree of the central curve is
equal to the number of solutions in (C∗)n+d+1 to the system

(Qx)ixi + cixi − λ− (y tAi )xi = 0, i = 1, . . . , n,

Ax = b

ex = f

Theorem

The number of solutions in (C∗)n+d+1 to the above system is equal to the
number of solutions in (C∗)n+d+1 to the system when Q is generic and
diagonal.
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Computational Data for the Diagonal Case

d/n 3 4 5 6 7 8 9 10

1 3 7 15 31 63 127 255 511

2 1 4 11 26 57 120 247 502

3 1 5 16 42 99 219 466

4 1 6 22 64 163 382
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Computing Mixed Volume: LP case

The equations:

cixi − λ− (y tAi )xi = 0, i = 1, . . . , n,

Ax = b

ex = f

Using the (d + 1) linear equations make a substitution
x = v0 + t1v1 + . . .+ tn−d−1vn−d−1 and get a system of n equations in n
unknowns: t1, . . . , tn−d−1, λ, y1, . . . , yd where the support of each
equation is

λ, 1, t1, . . . , tn−d−1, y1, y1t1, . . . , y1tn−d−1, . . . , yd , yd t1, . . . , yd tn−d−1
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Computing Mixed Volume: LP case

So the mixed volume for the LP system is the volume of ∆n−d−1 ×∆d .

Theorem

The degree of the LP central curve for generic data is(
n − 1

d

)
=

n−d−1∑
k=0

(
n − 2− k

d − 1

)
For the right hand side of the formula use, for instance, staircase
triangulation.
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Computing Mixed Volume: QP case

The equations:

(Qx)ixi + cixi − λ− (y tAi )xi = 0, i = 1, . . . , n,

Ax = b

ex = f

Using the (d + 1) linear equations make a substitution
x = v0 + t1v1 + . . .+ tn−d−1vn−d−1 and get a system of n equations in n
unknowns: t1, . . . , tn−d−1, λ, y1, . . . , yd where the support of each
equation is

λ, 1, t1, . . . , tn−d−1, t
2
1 , t1t2, . . . , t

2
n−d−1

y1, y1t1, . . . , y1tn−d−1, . . . , yd , yd t1, . . . , yd tn−d−1
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Computing Mixed Volume: QP case

Theorem

The degree of the QP central curve for generic data is

n−d−1∑
k=0

(
n − 2− k

d − 1

)
2k

Again use staircase triangulation but with the right volumes of the
simplices.
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Equations

If a degree reverse lex x1 < x2 < · · · < xn is used, the reduced Gröbner
bases look like this (d = 2, n = 5):

26x2
2x3x4 − 16x2x2

3x4 − 44x2x3x2
4 + 62x2

2x3x5 + 16x2x2
3x5 + · · ·

39x2
1x3x4 − 42x1x2

3x4 − 44x1x3x2
4 + 93x2

1x3x5 − 46x1x2
3x5 + 96x2

1x4x5 − · · ·
24x2

1x2x4 − 42x1x2
2x4 + 44x1x2x2

4 − 24x2
1x2x5 − 46x1x2

2x5 + 96x2
1x4x5 − · · ·

33x2
1x2x3 − 22x1x2

2x3 − 22x1x2x2
3 + 24x2

1x2x5 + 46x1x2
2x5 + 93x2

1x3x5 − · · ·

Initial ideal = 〈x2
2x3x4, x2

1x3x4, x2
1x2x4, x2

1x2x3〉 =
〈x3, x4〉 ∩ 〈x2, x4〉 ∩ 〈x2

1 , x4〉 ∩ 〈x2, x3〉 ∩ 〈x2
1 , x3〉 ∩ 〈x2

1 , x
2
2 〉.
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Elimination in the Quadratic Case

In order to eliminate λ and y1, . . . , yd from

dix
2
i + cixi − λ− (y tAi )xi = 0, i = 1, . . . , n

eliminate y1, . . . , yd and z1, . . . , zn from

di (wi +zi ) = y tAi−ci , i = 1, . . . , n and d1w1z1 = d2w2z2 = · · · = dnwnzn

Use each circuit C of A to eliminate y from the first set of equations,
then use zk = (d1w1z1)/(dkwk) to write the resulting equation as
fC (w1, . . . ,wn, z1).

each fC is linear in z1

now using two carefully chosen C and C ′ eliminate z1 to obtain
gC ,C ′(w1, . . . ,wn) in the elimination ideal.
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Elimination in the Quadratic Case

Theorem

The ideal J = 〈gC ,C ′(w1, . . . ,wn)〉 is contained in the elimination ideal I
and M = 〈in<(gC ,C ′)〉 is contained in in<(I ). The ideal M is equal to

M = 〈w2
i wj1wj2 . . .wjd : 1 ≤ i ≤ n − d − 1, i < j1 < j2 < · · · < jd < n〉.

Morever, M has the irreducible decomposition

M = ∩n−d−1k=0 ∩T⊂{k+2,...,n},|T |=n−d−k−1〈w2
j : 0 < j < k+1〉+〈wt : t ∈ T 〉
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Equations of the Central Curve in the Diagonal Case

Corollary

The degree of M is equal to

n−d−1∑
k=0

(
n − 2− k

d − 1

)
2k

Theorem

For generic Q, A, b, c and Q a diagonal matrix the central curve for
quadratic programming is defined by J = 〈gC ,C ′(w1, . . . ,wn)〉
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