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Solving sparse polynomial systems

Sparse polynomial systems

Given a polynomial system f1, . . . , fm ∈ Q[X1, . . . ,Xn], we describe
algorithmically the algebraic variety V (f1, . . . , fm) of all common zeros in
Cn of the system

f1(X1, . . . ,Xn) = 0, . . . , fm(X1, . . . ,Xn) = 0.

A sparse polynomial system in the variables X = (X1, . . . ,Xn) over Q with
support the finite sets A = (A1, . . . ,Am) in (Z≥0)n is a collection of
polynomials

fj(X ) =
∑
α∈Aj

aj ,α X
α j = 1, . . . ,m

such that for all aj ,α ∈ Q\{0}, α ∈ Aj .
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Solving sparse polynomial systems How to describe the variety

Geometric resolution

Let V = {ξ1, . . . , ξD} ⊂ Cn be an algebraic variety definable over Q. Let
µ ∈ Q[X1, . . . ,Xn] be a linear form such that µ(ξi ) 6= µ(ξj) if i 6= j . Then
a geometric resolution of V with respect to µ is a family of polynomials
(q, v1, . . . , vn) ∈ (Q[U])n+1 such that

q =
D∏
i=1

(U − µ(ξi )) ∈ Q[U], and

the polynomials v1, . . . , vn ∈ Q[U] fulfill deg(vj) < D for all 1 ≤ j ≤ n
and V = {(v1(u), . . . , vn(u)) ∈ Cn | u ∈ C, q(u) = 0}.

Let V ⊂ Cn be an equidimensional variety of dimension r defined by
polynomials in Q[X1, . . . ,Xn] such that, for each irreducible component W
of V , the identity I (W ) ∩Q[X1, . . . ,Xr ] = {0} holds. By considering
Q(X1, . . . ,Xr )⊗Q[V ], we are in a zero-dimensional situation.
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Solving sparse polynomial systems The problem

Sets of zeros of sparse polynomial systems

Even a generic square sparse system can have positive dimensional sets of
zeros:

Let F =


f1 = aX1X2X

2
3 + bX1X2X3

= X1X2X3(aX3 + b)

f2 = cX 2
1 X3 + dX1X3

= X1X3(cX1 + d)

f3 = eX 2
2 X3 + fX2X3

= X2X3(eX2 + f )

The zero set V (F ) ⊆ C3 has 5 components:

1 point: (−d
c ,−

f
e ,−

b
a )

3 lines: {X1 = 0, X2 = − f
e }, {X1 = −d

c , X2 = 0} and
{X1 = 0, X2 = 0}
1 plane: {X3 = 0}
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Solving sparse polynomial systems Generic sparse systems

Generic sparse systems
Components in the torus

If V ⊂ Cn is an irreducible variety of dimension r , the degree of V is
deg(V ) = max{#(H1 ∩ · · · ∩ Hr ∩ V ) | H1, . . . ,Hr are affine hyperplanes
in Cn such that H1 ∩ · · · ∩ Hr ∩ V is a finite set}.

If V ⊂ Cn is an arbitrary variety, the degree of V is the sum of the degrees
of every irreducible component of V .

Lemma Let F = (f1, . . . , fm) be a generic system with supports
A = (A1, . . . ,Am) in (Z≥0)n. If m > n, F does not have zeros in (C∗)n. If
m ≤ n and dim

(∑
j∈J Aj

)
≥ #J for all J ⊆ {1, . . . ,m}, the Zariski

closure V ∗(F ) in Cn of the set of zeros in (C∗)n of F is an
equidimensional variety of dimension n −m and degree

D =MVn(A1, . . . ,Am,∆
(n−m)).
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Solving sparse polynomial systems Generic sparse systems

Algorithm for the toric case

Proposition Let F = (f1, . . . , fm) be a generic system with supports
A = (A1, . . . ,Am) in (Z≥0)n. If m ≤ n, there exists a probabilistic
algorithm that computes a geometric resolution of V ∗(F ) with complexity

Olog(n3(N + (n −m)n)D(D2 + (D + E)Υ)),

where

N =
n∑

j=1
#Aj ,

D =MVn(A,∆(n−m)),

E =MVn+1({0} ×∆, {0, 1} × A1, . . . , {0, 1} × Am, ({0, 1} ×∆)(n−m)).
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Solving sparse polynomial systems Generic sparse systems

Components in the affine space

For all I ⊂ {1, . . . , n}, let

FI be obtained by evaluating F in Xi = 0 for all i ∈ I and discarding
the polynomials that vanish,

JI ⊂ {1, . . . ,m} be the set of indices of FI ,

πI : Cn → Cn−#I , such that πI (X1, . . . ,Xn) = (Xi )i /∈I .

AI be the support set of FI .

Lemma Let W be an irreducible component of V (F ). Denote
IW = {i ∈ {1, . . . , n} |W ⊂ {Xi = 0}}. Then,

dimW = n −#IW −#JIW ,

πIW (W ) is an irreducible component of V (FIW ) ⊂ Cn−#IW that
intersects (C∗)n−#IW .
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Solving sparse polynomial systems Descomposition of V (F )

Combinatorial description of V (F )

Let I ⊂ {1, . . . , n}. Then V (FI ) ∩ (C∗)n−#I 6= ∅ iff for all J ⊂ JI ,
dim(

∑
j∈J AI

j ) ≥ #J. In that case, V ∗(FI ) has dimension n −#I −#JI .

ϕI : Cn−#I → Cn, inserts zeros in the coordinates indexed by I .

Proposition If W is an irreducible component of V ∗(FI ), then ϕI (W )
is an irreducible component of V (F ) if and only if for all I ′ ⊂ I ,
#I ′ + #JI ′ ≥ #I + #JI .

Theorem Let F = (f1, . . . , fm) be a generic system with supports
A = (A1, . . . ,Am) in (Z≥0)n. Then,

V (F ) =
⋃
I

ϕI (V
∗(FI )),

where the union is over all I ⊂ {1, . . . , n} that fulfill the previous
conditions. Moreover, deg(V (F )) =

∑
IMVn−#I (AI ,∆(n−#I−#JI )).
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Solving sparse polynomial systems Algorithm GenericAffineSolve

Algorithm GenericAffineSolve for generic sparse
systems

Input: A generic system F = (f1, . . . , fm) with supports A in (Z≥0)n.

1 Find all I ⊂ {1, . . . , n} such that #I + #JI ≤ n and for all I ′ ⊂ I ,
#I ′ + #JI ′ ≥ #I + #JI .

2 Find for every I in step 1 a geometric resolution RI of V ∗(FI ).

3 Compute ϕI (RI ) and group by dimensions.

Output: A family of geometric resolutions that describe each
equidimensional component of V (F ).
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Solving sparse polynomial systems Algorithm GenericAffineSolve

The result for generic sparse systems

Theorem Let F = (f1, . . . , fm) be a generic system with supports
A = (A1, . . . ,Am) in (Z≥0)n. The probabilistic algorithm
GenericAffineSolve computes a list of geometric resolutions that
describe each equidimensional component of V (F ) within complexity

Olog(n2nN + n3(N + n2)D(D2 + (D + E)Υ)),

Example Let F be the generic system of n polynomials in 2n variables

F =


f1(X1, . . . ,X2n) = a11X1X2 + a12X3X4 + · · ·+ a1nX2n−1X2n

...

fn(X1, . . . ,X2n) = an1X1X2 + an2X3X4 + · · ·+ annX2n−1X2n

.

V (F ) has 2n irreducible components of dimension n associated to the sets
IS = {2k − 1 | k ∈ S} ∪ {2k | k ∈ {1, . . . , n} \ S} for all S ⊂ {1, . . . , n}.
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Solving sparse polynomial systems A particular case of generic sparse systems

Unmixed case

When A = (A1, . . . ,Am) is unmixed (i.e. A1 = · · · = Am), then we can
reformulate our characterization:

Proposition Let F = (f1, . . . , fm) be a generic system with unmixed
supports A = (A1, . . . ,Am) in (Z≥0)n. For k = 0, . . . , n − 1, let Vk(F ) be
the equidimensional component of V (F ) of dimension k. Then,

if k 6= n −m, Vk(F ) =
⋃
I

{x ∈ Cn | xi = 0 for all i ∈ I},

if m ≤ n, Vn−m(F ) = V ∗(F ) ∪
⋃
I

{x ∈ Cn | xi = 0 for all i ∈ I},

where for each dimension k the union is over all I ⊂ {0, . . . , n} such that
#I = n − k , #JI = 0 and #JI ′ = m for all I ′ ⊂ I .



Solving sparse polynomial systems A bound for the degree of the variety

Non-generic sparse systems
A bound for the degree of the variety

A bound for the degree (Krick-Pardo-Sombra’01):

Let F = (f1, . . . , fm) be a system of m polynomials in C[X1, . . . ,Xn] with
supports A1, . . . ,Am. The degree of the variety V (F ) is bounded above by

MVn((
m⋃
i=1

Ai ∪∆)(n)).

Proposition Let F = (f1, . . . , fn) be a system of n polynomials in
C[x1, . . . , xn] with supports A1, . . . ,An. The degree of the variety
V (F ) ⊂ Cn is bounded above by MVn(A1 ∪∆, . . . ,An ∪∆).
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Solving sparse polynomial systems Non-generic sparse systems

Solving non-generic square sparse systems

Let F = (f1, . . . , fn) be an arbitrary sparse polynomial system with
supports A = (A1, . . . ,An) in (Z≥0)n. By intersecting with r generic
hyperplanes we obtain deg(W ) points in each irreducible component W of
V (F ) with dimension r .

The idea is to represent each equidimensional component by this set of
points, called witness points.

Let L1, . . . , Ln be n generic linear forms and, for each r = 0, 1, . . . , n, take
the system F (r) = (f1, . . . , fn, L1, . . . , Lr ). Taking generic coefficients (bji ),
the isolated zeros of F (r) are isolated zeros of the system with n
polynomials

Hr = (f1(x) +
r∑

i=1

b1iLi , . . . , fn(x) +
r∑

i=1

bniLi ).
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Solving sparse polynomial systems Algorithm PointsInEquidComps

Algorithm PointsInEquidComps for non-generic square
sparse systems

Input: A system F = (f1, . . . , fn) with supports A in (Z≥0)n, and the
mixed cells in a fine mixed subdivision Sω(A1 ∪∆, . . . ,An ∪∆).

1 Choose G with supports A1 ∪∆, . . . ,An ∪∆ and random integer coefficients.

2 Find the zeros of G in Cn using Sω(A1 ∪∆, . . . ,An ∪∆).

3 Choose L1, . . . , Ln linear forms and random coefficients bji .

4 For each 0 ≤ r ≤ n − 1:

From the zeros of G , find a geometric resolution of a finite set of points Pr

containing the isolated zeros of

Hr = (f1(x) +
∑

1≤j≤r

b1jLj , . . . , fn(x) +
∑

1≤j≤r

bnjLj) in Cn.

Find a geometric resolution R(r) of Pr ∩ V (F ).

Output: The family of geometric resolutions R(0), . . . ,R(n−1).
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3 Choose L1, . . . , Ln linear forms and random coefficients bji .

4 For each 0 ≤ r ≤ n − 1:

From the zeros of G , find a geometric resolution of a finite set of points Pr

containing the isolated zeros of

Hr = (f1(x) +
∑

1≤j≤r

b1jLj , . . . , fn(x) +
∑

1≤j≤r

bnjLj) in Cn.

Find a geometric resolution R(r) of Pr ∩ V (F ).

Output: The family of geometric resolutions R(0), . . . ,R(n−1).
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The result for non-generic square sparse systems

Theorem Let F = (f1, . . . , fn) be a system of polynomials in Q[x1, . . . , xn]
with supports A = (A1, . . . ,An) in (Z≥0)n. The probabilistic algorithm
PointsInEquidComps computes a family (R(0), . . . ,R(n−1)) of geometric
resolutions of finite sets of points containing a set of witness points of
every equidimensional component of V (F ). The order of complexity is

Olog(n4N∆dD2
∆Υ∆)

where

N∆ =
n∑

j=1
#(Aj ∪∆),

d = max1≤j≤n{deg(fj )},

D∆ =MVn(A1 ∪∆, . . . ,An ∪∆).
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