Characterization of the affine solutions of sparse polynomial systems

María Isabel Herrero

Based on joint work with: Professors Gabriela Jeronimo & Juan Sabia

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Buenos Aires, Argentina

Simons Institute for the Theory of Computing Algorithms and Complexity in Algebraic Geometry Program Workshop on Solving Polynomial Equations

Sparse polynomial systems

Given a polynomial system $f_1, \ldots, f_m \in \mathbb{Q}[X_1, \ldots, X_n]$, we describe algorithmically the algebraic variety $V(f_1, \ldots, f_m)$ of all common zeros in \mathbb{C}^n of the system

$$f_1(X_1,\ldots,X_n)=0,\ldots,f_m(X_1,\ldots,X_n)=0.$$

A sparse polynomial system in the variables $X=(X_1,\ldots,X_n)$ over $\mathbb Q$ with support the finite sets $\mathcal A=(\mathcal A_1,\ldots,\mathcal A_m)$ in $(\mathbb Z_{\geq 0})^n$ is a collection of polynomials

$$f_j(X) = \sum_{\alpha \in A_j} a_{j,\alpha} X^{\alpha} \qquad j = 1, \dots, m$$

such that for all $a_{i,\alpha} \in \mathbb{Q} \setminus \{0\}$, $\alpha \in \mathcal{A}_i$

Sparse polynomial systems

Given a polynomial system $f_1, \ldots, f_m \in \mathbb{Q}[X_1, \ldots, X_n]$, we describe algorithmically the algebraic variety $V(f_1, \ldots, f_m)$ of all common zeros in \mathbb{C}^n of the system

$$f_1(X_1,\ldots,X_n)=0,\ldots,f_m(X_1,\ldots,X_n)=0.$$

A sparse polynomial system in the variables $X=(X_1,\ldots,X_n)$ over $\mathbb Q$ with support the finite sets $\mathcal A=(\mathcal A_1,\ldots,\mathcal A_m)$ in $(\mathbb Z_{\geq 0})^n$ is a collection of polynomials

$$f_j(X) = \sum_{\alpha \in \mathcal{A}_j} \mathsf{a}_{j,\alpha} X^{\alpha} \qquad j = 1, \dots, m$$

such that for all $a_{j,\alpha} \in \mathbb{Q} \setminus \{0\}$, $\alpha \in \mathcal{A}_j$.

Geometric resolution

Let $V = \{\xi_1, \dots, \xi_D\} \subset \mathbb{C}^n$ be an algebraic variety definable over \mathbb{Q} . Let $\mu \in \mathbb{Q}[X_1, \dots, X_n]$ be a linear form such that $\mu(\xi_i) \neq \mu(\xi_j)$ if $i \neq j$. Then a geometric resolution of V with respect to μ is a family of polynomials $(q, v_1, \dots, v_n) \in (\mathbb{Q}[U])^{n+1}$ such that

- $ullet q = \prod\limits_{i=1}^D (U \mu(\xi_i)) \in \mathbb{Q}[U]$, and
- the polynomials $v_1, \ldots, v_n \in \mathbb{Q}[U]$ fulfill $\deg(v_j) < D$ for all $1 \le j \le n$ and $V = \{(v_1(u), \ldots, v_n(u)) \in \mathbb{C}^n \mid u \in \mathbb{C}, q(u) = 0\}.$

Let $V \subset \mathbb{C}^n$ be an equidimensional variety of dimension r defined by polynomials in $\mathbb{Q}[X_1,\ldots,X_n]$ such that, for each irreducible component W of V, the identity $I(W) \cap \mathbb{Q}[X_1,\ldots,X_r] = \{0\}$ holds. By considering $\mathbb{Q}(X_1,\ldots,X_r) \otimes \mathbb{Q}[V]$, we are in a zero-dimensional situation.

Geometric resolution

Let $V = \{\xi_1, \dots, \xi_D\} \subset \mathbb{C}^n$ be an algebraic variety definable over \mathbb{Q} . Let $\mu \in \mathbb{Q}[X_1, \dots, X_n]$ be a linear form such that $\mu(\xi_i) \neq \mu(\xi_j)$ if $i \neq j$. Then a geometric resolution of V with respect to μ is a family of polynomials $(q, v_1, \dots, v_n) \in (\mathbb{Q}[U])^{n+1}$ such that

- $ullet q = \prod\limits_{i=1}^D ig(U \mu(\xi_i) ig) \in \mathbb{Q}[U]$, and
- the polynomials $v_1, \ldots, v_n \in \mathbb{Q}[U]$ fulfill $\deg(v_j) < D$ for all $1 \le j \le n$ and $V = \{(v_1(u), \ldots, v_n(u)) \in \mathbb{C}^n \mid u \in \mathbb{C}, q(u) = 0\}.$

Let $V \subset \mathbb{C}^n$ be an equidimensional variety of dimension r defined by polynomials in $\mathbb{Q}[X_1,\ldots,X_n]$ such that, for each irreducible component W of V, the identity $I(W) \cap \mathbb{Q}[X_1,\ldots,X_r] = \{0\}$ holds. By considering $\mathbb{Q}(X_1,\ldots,X_r) \otimes \mathbb{Q}[V]$, we are in a zero-dimensional situation.

Sets of zeros of sparse polynomial systems

Even a generic square sparse system can have positive dimensional sets of zeros:

Let
$$F = \begin{cases} f_1 = aX_1X_2X_3^2 + bX_1X_2X_3 \\ f_2 = cX_1^2X_3 + dX_1X_3 \\ f_3 = eX_2^2X_3 + fX_2X_3 \end{cases}$$

The zero set $V(F) \subseteq \mathbb{C}^3$ has 5 components:

- 1 point: $\left(-\frac{d}{c}, -\frac{f}{e}, -\frac{b}{a}\right)$
- 3 lines: $\{X_1 = 0, X_2 = -\frac{f}{e}\}, \{X_1 = -\frac{d}{c}, X_2 = 0\}$ and $\{X_1 = 0, X_2 = 0\}$
- 1 plane: $\{X_3 = 0\}$

Sets of zeros of sparse polynomial systems

Even a generic square sparse system can have positive dimensional sets of zeros:

Let
$$F = \begin{cases} f_1 = aX_1X_2X_3^2 + bX_1X_2X_3 = X_1X_2X_3(aX_3 + b) \\ f_2 = cX_1^2X_3 + dX_1X_3 = X_1X_3(cX_1 + d) \\ f_3 = eX_2^2X_3 + fX_2X_3 = X_2X_3(eX_2 + f) \end{cases}$$

The zero set $V(F) \subseteq \mathbb{C}^3$ has 5 components:

- 1 point: $\left(-\frac{d}{c}, -\frac{f}{e}, -\frac{b}{a}\right)$
- 3 lines: $\{X_1=0, X_2=-\frac{f}{e}\}, \{X_1=-\frac{d}{c}, X_2=0\}$ and $\{X_1=0, X_2=0\}$
- 1 plane: $\{X_3 = 0\}$

Generic sparse systems

Components in the torus

If $V \subset \mathbb{C}^n$ is an irreducible variety of dimension r, the degree of V is $\deg(V) = \max\{\#(H_1 \cap \cdots \cap H_r \cap V) \mid H_1, \ldots, H_r \text{ are affine hyperplanes} \text{ in } \mathbb{C}^n \text{ such that } H_1 \cap \cdots \cap H_r \cap V \text{ is a finite set}\}.$

If $V \subset \mathbb{C}^n$ is an arbitrary variety, the degree of V is the sum of the degrees of every irreducible component of V.

Lemma Let $F = (f_1, \ldots, f_m)$ be a generic system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. If m > n, F does not have zeros in $(\mathbb{C}^*)^n$. If $m \leq n$ and dim $(\sum_{j \in J} \mathcal{A}_j) \geq \#J$ for all $J \subseteq \{1, \ldots, m\}$, the Zariski closure $V^*(F)$ in \mathbb{C}^n of the set of zeros in $(\mathbb{C}^*)^n$ of F is an equidimensional variety of dimension n - m and degree

Generic sparse systems

Components in the torus

If $V \subset \mathbb{C}^n$ is an irreducible variety of dimension r, the degree of V is $\deg(V) = \max\{\#(H_1 \cap \cdots \cap H_r \cap V) \mid H_1, \ldots, H_r \text{ are affine hyperplanes in } \mathbb{C}^n \text{ such that } H_1 \cap \cdots \cap H_r \cap V \text{ is a finite set}\}.$

If $V \subset \mathbb{C}^n$ is an arbitrary variety, the degree of V is the sum of the degrees of every irreducible component of V.

Lemma Let $F=(f_1,\ldots,f_m)$ be a generic system with supports $\mathcal{A}=(\mathcal{A}_1,\ldots,\mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. If m>n, F does not have zeros in $(\mathbb{C}^*)^n$. If $m\leq n$ and dim $(\sum_{j\in J}\mathcal{A}_j)\geq \#J$ for all $J\subseteq \{1,\ldots,m\}$, the Zariski closure $V^*(F)$ in \mathbb{C}^n of the set of zeros in $(\mathbb{C}^*)^n$ of F is an equidimensional variety of dimension n-m and degree $\mathcal{D}=\mathcal{MV}_n(\mathcal{A}_1,\ldots,\mathcal{A}_m,\Delta^{(n-m)}).$

Algorithm for the toric case

Proposition Let $F = (f_1, \ldots, f_m)$ be a generic system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. If $m \leq n$, there exists a probabilistic algorithm that computes a geometric resolution of $V^*(F)$ with complexity $O_{\log}(n^3(N+(n-m)n)\mathcal{D}(\mathcal{D}^2+(\mathcal{D}+\mathcal{E})\Upsilon)),$

where

- $N = \sum_{j=1}^n \# \mathcal{A}_j,$
- $\mathcal{D} = \mathcal{MV}_n(\mathcal{A}, \Delta^{(n-m)}),$
- $\mathcal{E} = \mathcal{MV}_{n+1}(\{0\} \times \Delta, \{0,1\} \times \mathcal{A}_1, \dots, \{0,1\} \times \mathcal{A}_m, (\{0,1\} \times \Delta)^{(n-m)}).$

Algorithm for the toric case

Proposition Let $F = (f_1, \ldots, f_m)$ be a generic system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. If $m \leq n$, there exists a probabilistic algorithm that computes a geometric resolution of $V^*(F)$ with complexity $O_{\log}(n^3(N + (n-m)n)\mathcal{D}(\mathcal{D}^2 + (\mathcal{D} + \mathcal{E})\Upsilon))$,

where

- $N = \sum_{j=1}^{n} \# \mathcal{A}_{j},$
- $\mathcal{D} = \mathcal{MV}_n(\mathcal{A}, \Delta^{(n-m)}),$
- $\mathcal{E} = \mathcal{MV}_{n+1}(\{0\} \times \Delta, \{0,1\} \times \mathcal{A}_1, \dots, \{0,1\} \times \mathcal{A}_m, (\{0,1\} \times \Delta)^{(n-m)}).$

Components in the affine space

For all $I \subset \{1, \ldots, n\}$, let

- F_I be obtained by evaluating F in $X_i = 0$ for all $i \in I$ and discarding the polynomials that vanish,
- $J_I \subset \{1, \ldots, m\}$ be the set of indices of F_I ,
- $\pi_I: \mathbb{C}^n \to \mathbb{C}^{n-\#I}$, such that $\pi_I(X_1, \dots, X_n) = (X_i)_{i \notin I}$.
- \mathcal{A}^{I} be the support set of F_{I} .

Lemma Let W be an irreducible component of V(F). Denote $I_W = \{i \in \{1, \dots, n\} \mid W \subset \{X_i = 0\}\}$. Then,

- dim $W = n \#I_W \#J_{I_W}$,
- $\pi_{I_W}(W)$ is an irreducible component of $V(F_{I_W}) \subset \mathbb{C}^{n-\#I_W}$ that intersects $(\mathbb{C}^*)^{n-\#I_W}$.

Components in the affine space

For all $I \subset \{1, \ldots, n\}$, let

- F_I be obtained by evaluating F in $X_i = 0$ for all $i \in I$ and discarding the polynomials that vanish,
- $J_I \subset \{1, \ldots, m\}$ be the set of indices of F_I ,
- $\pi_I: \mathbb{C}^n \to \mathbb{C}^{n-\#I}$, such that $\pi_I(X_1, \dots, X_n) = (X_i)_{i \notin I}$.
- \mathcal{A}^{I} be the support set of F_{I} .

Lemma Let W be an irreducible component of V(F). Denote $I_W = \{i \in \{1, ..., n\} \mid W \subset \{X_i = 0\}\}$. Then,

- dim $W = n \#I_W \#J_{I_W}$,
- $\pi_{I_W}(W)$ is an irreducible component of $V(F_{I_W}) \subset \mathbb{C}^{n-\#I_W}$ that intersects $(\mathbb{C}^*)^{n-\#I_W}$.

Combinatorial description of V(F)

Let $I \subset \{1, ..., n\}$. Then $V(F_I) \cap (\mathbb{C}^*)^{n-\#I} \neq \emptyset$ iff for all $J \subset J_I$, $\dim(\sum_{j \in J} A_j^I) \geq \#J$. In that case, $V^*(F_I)$ has dimension $n - \#I - \#J_I$.

• $\varphi_I: \mathbb{C}^{n-\#I} \to \mathbb{C}^n$, inserts zeros in the coordinates indexed by I.

Proposition If W is an irreducible component of $V^*(F_I)$, then $\varphi_I(W)$ is an irreducible component of V(F) if and only if for all $I' \subset I$, $\#I' + \#J_{I'} \geq \#I + \#J_{I}$.

Theorem Let
$$F = (f_1, \ldots, f_m)$$
 be a generic system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. Then,
$$V(F) = \bigcup_{I} \varphi_I(V^*(F_I)),$$

where the union is over all $I \subset \{1, ..., n\}$ that fulfill the previous conditions. Moreover, $\deg(V(F)) = \sum_{l} \mathcal{MV}_{n-\#l}(\mathcal{A}^{l}, \Delta^{(n-\#l-\#J_{l})})$.

Combinatorial description of V(F)

Let $I \subset \{1, ..., n\}$. Then $V(F_I) \cap (\mathbb{C}^*)^{n-\#I} \neq \emptyset$ iff for all $J \subset J_I$, $\dim(\sum_{j \in J} A_j^I) \geq \#J$. In that case, $V^*(F_I)$ has dimension $n - \#I - \#J_I$.

• $\varphi_I: \mathbb{C}^{n-\#I} \to \mathbb{C}^n$, inserts zeros in the coordinates indexed by I.

Proposition If W is an irreducible component of $V^*(F_I)$, then $\varphi_I(W)$ is an irreducible component of V(F) if and only if for all $I' \subset I$, $\#I' + \#J_{I'} \ge \#I + \#J_I$.

Theorem Let
$$F = (f_1, \ldots, f_m)$$
 be a generic system with supports $A = (A_1, \ldots, A_m)$ in $(\mathbb{Z}_{\geq 0})^n$. Then, $V(F) = \bigcup_I \varphi_I(V^*(F_I)),$

where the union is over all $I \subset \{1, ..., n\}$ that fulfill the previous conditions. Moreover, $\deg(V(F)) = \sum_{l} \mathcal{MV}_{n-\#l}(\mathcal{A}^{l}, \Delta^{(n-\#l-\#J_{l})})$.

Combinatorial description of V(F)

Let $I \subset \{1, ..., n\}$. Then $V(F_I) \cap (\mathbb{C}^*)^{n-\#I} \neq \emptyset$ iff for all $J \subset J_I$, $\dim(\sum_{j \in J} \mathcal{A}'_j) \geq \#J$. In that case, $V^*(F_I)$ has dimension $n - \#I - \#J_I$.

• $\varphi_I: \mathbb{C}^{n-\#I} \to \mathbb{C}^n$, inserts zeros in the coordinates indexed by I.

Proposition If W is an irreducible component of $V^*(F_I)$, then $\varphi_I(W)$ is an irreducible component of V(F) if and only if for all $I' \subset I$, $\#I' + \#J_{I'} \ge \#I + \#J_I$.

Theorem Let
$$F = (f_1, \ldots, f_m)$$
 be a generic system with supports $A = (A_1, \ldots, A_m)$ in $(\mathbb{Z}_{\geq 0})^n$. Then, $V(F) = \bigcup_i \varphi_I(V^*(F_I)),$

where the union is over all $I \subset \{1, ..., n\}$ that fulfill the previous conditions. Moreover, $\deg(V(F)) = \sum_{I} \mathcal{MV}_{n-\#I}(\mathcal{A}^{I}, \Delta^{(n-\#I-\#J_{I})})$.

Input: A generic system $F = (f_1, \ldots, f_m)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$.

- ① Find all $I \subset \{1, \ldots, n\}$ such that $\#I + \#J_I \leq n$ and for all $I' \subset I$, $\#I' + \#J_{I'} \geq \#I + \#J_I$.
- ② Find for every I in step 1 a geometric resolution R_I of $V^*(F_I)$.
- **Solution** Compute $\varphi_I(R_I)$ and group by dimensions

Input: A generic system $F = (f_1, \ldots, f_m)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$.

- Find all $I \subset \{1, ..., n\}$ such that $\#I + \#J_I \le n$ and for all $I' \subset I$, $\#I' + \#J_{I'} \ge \#I + \#J_I$.
- ② Find for every I in step 1 a geometric resolution R_I of $V^*(F_I)$
- **Solution** Compute $\varphi_I(R_I)$ and group by dimensions

Input: A generic system $F = (f_1, \ldots, f_m)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$.

- **1** Find all $I \subset \{1, \ldots, n\}$ such that $\#I + \#J_I \leq n$ and for all $I' \subset I$, $\#I' + \#J_{I'} \geq \#I + \#J_I$.
- ② Find for every I in step 1 a geometric resolution R_I of $V^*(F_I)$.
- **Solution** Compute $\varphi_I(R_I)$ and group by dimensions

Input: A generic system $F = (f_1, \ldots, f_m)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$.

- **1** Find all $I \subset \{1, \ldots, n\}$ such that $\#I + \#J_I \leq n$ and for all $I' \subset I$, $\#I' + \#J_{I'} \geq \#I + \#J_I$.
- ② Find for every I in step 1 a geometric resolution R_I of $V^*(F_I)$.
- **3** Compute $\varphi_I(R_I)$ and group by dimensions.

Input: A generic system $F = (f_1, \ldots, f_m)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$.

- **1** Find all $I \subset \{1, \ldots, n\}$ such that $\#I + \#J_I \leq n$ and for all $I' \subset I$, $\#I' + \#J_{I'} \geq \#I + \#J_I$.
- ② Find for every I in step 1 a geometric resolution R_I of $V^*(F_I)$.
- **3** Compute $\varphi_I(R_I)$ and group by dimensions.

The result for generic sparse systems

Theorem Let $F = (f_1, \ldots, f_m)$ be a generic system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. The probabilistic algorithm GenericAffineSolve computes a list of geometric resolutions that describe each equidimensional component of V(F) within complexity $O_{\log}(n2^nN + n^3(N + n^2)\mathcal{D}(\mathcal{D}^2 + (\mathcal{D} + \mathcal{E})\Upsilon))$,

$$O_{\log}(n2^{n}N + n^{3}(N + n^{2})\mathcal{D}(\mathcal{D}^{2} + (\mathcal{D} + \mathcal{E})\Upsilon))$$

Example Let F be the generic system of n polynomials in 2n variables

$$F = \begin{cases} f_1(X_1, \dots, X_{2n}) = a_{11}X_1X_2 + a_{12}X_3X_4 + \dots + a_{1n}X_{2n-1}X_{2n} \\ \vdots \\ f_n(X_1, \dots, X_{2n}) = a_{n1}X_1X_2 + a_{n2}X_3X_4 + \dots + a_{nn}X_{2n-1}X_{2n} \end{cases}.$$

V(F) has 2^n irreducible components of dimension n associated to the sets $I_S = \{2k-1 \mid k \in S\} \cup \{2k \mid k \in \{1,\ldots,n\} \setminus S\}$ for all $S \subset \{1,\ldots,n\}$.

The result for generic sparse systems

Theorem Let $F = (f_1, \ldots, f_m)$ be a generic system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. The probabilistic algorithm GenericAffineSolve computes a list of geometric resolutions that describe each equidimensional component of V(F) within complexity $O_{\log}(n2^nN + n^3(N + n^2)\mathcal{D}(\mathcal{D}^2 + (\mathcal{D} + \mathcal{E})\Upsilon))$.

Example Let F be the generic system of n polynomials in 2n variables

$$F = \begin{cases} f_1(X_1, \dots, X_{2n}) = a_{11}X_1X_2 + a_{12}X_3X_4 + \dots + a_{1n}X_{2n-1}X_{2n} \\ \vdots \\ f_n(X_1, \dots, X_{2n}) = a_{n1}X_1X_2 + a_{n2}X_3X_4 + \dots + a_{nn}X_{2n-1}X_{2n} \end{cases}$$

V(F) has 2^n irreducible components of dimension n associated to the sets $I_S = \{2k-1 \mid k \in S\} \cup \{2k \mid k \in \{1,\ldots,n\} \setminus S\}$ for all $S \subset \{1,\ldots,n\}$.

Unmixed case

When $A = (A_1, ..., A_m)$ is unmixed (i.e. $A_1 = ... = A_m$), then we can reformulate our characterization:

Proposition Let $F=(f_1,\ldots,f_m)$ be a generic system with unmixed supports $\mathcal{A}=(\mathcal{A}_1,\ldots,\mathcal{A}_m)$ in $(\mathbb{Z}_{\geq 0})^n$. For $k=0,\ldots,n-1$, let $V_k(F)$ be the equidimensional component of V(F) of dimension k. Then,

- if $k \neq n-m$, $V_k(F) = \bigcup_{I} \{x \in \mathbb{C}^n \mid x_i = 0 \text{ for all } i \in I\}$,
- if $m \le n$, $V_{n-m}(F) = V^*(F) \cup \bigcup_{I} \{x \in \mathbb{C}^n \mid x_i = 0 \text{ for all } i \in I\}$,

where for each dimension k the union is over all $I \subset \{0, ..., n\}$ such that #I = n - k, $\#J_I = 0$ and $\#J_{I'} = m$ for all $I' \subset I$.

Non-generic sparse systems

A bound for the degree of the variety

A bound for the degree (Krick-Pardo-Sombra'01):

Let $F = (f_1, \ldots, f_m)$ be a system of m polynomials in $\mathbb{C}[X_1, \ldots, X_n]$ with supports A_1, \ldots, A_m . The degree of the variety V(F) is bounded above by

$$\mathcal{MV}_n((\bigcup_{i=1}^m \mathcal{A}_i \cup \Delta)^{(n)}).$$

Proposition Let $F = (f_1, ..., f_n)$ be a system of n polynomials in $\mathbb{C}[x_1, ..., x_n]$ with supports $A_1, ..., A_n$. The degree of the variety $V(F) \subset \mathbb{C}^n$ is bounded above by $\mathcal{MV}_n(A_1 \cup \Delta, ..., A_n \cup \Delta)$.

Non-generic sparse systems

A bound for the degree of the variety

A bound for the degree (Krick-Pardo-Sombra'01):

Let $F = (f_1, \ldots, f_m)$ be a system of m polynomials in $\mathbb{C}[X_1, \ldots, X_n]$ with supports A_1, \ldots, A_m . The degree of the variety V(F) is bounded above by

$$\mathcal{MV}_n((\bigcup_{i=1}^m \mathcal{A}_i \cup \Delta)^{(n)}).$$

Proposition Let $F = (f_1, ..., f_n)$ be a system of n polynomials in $\mathbb{C}[x_1, ..., x_n]$ with supports $A_1, ..., A_n$. The degree of the variety $V(F) \subset \mathbb{C}^n$ is bounded above by $\mathcal{MV}_n(A_1 \cup \Delta, ..., A_n \cup \Delta)$.

Solving non-generic square sparse systems

Let $F = (f_1, \ldots, f_n)$ be an arbitrary sparse polynomial system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ in $(\mathbb{Z}_{\geq 0})^n$. By intersecting with r generic hyperplanes we obtain $\deg(W)$ points in each irreducible component W of V(F) with dimension r.

The idea is to represent each equidimensional component by this set of points, called witness points.

Let L_1, \ldots, L_n be n generic linear forms and, for each $r=0,1,\ldots,n$, take the system $F^{(r)}=(f_1,\ldots,f_n,L_1,\ldots,L_r)$. Taking generic coefficients (b_{ji}) , the isolated zeros of $F^{(r)}$ are isolated zeros of the system with n polynomials

 $H_r = (f_1(x) + \sum_{i=1}^r b_{1i}L_i, \dots, f_n(x) + \sum_{i=1}^r b_{ni}L_i).$

Solving non-generic square sparse systems

Let $F = (f_1, \ldots, f_n)$ be an arbitrary sparse polynomial system with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ in $(\mathbb{Z}_{\geq 0})^n$. By intersecting with r generic hyperplanes we obtain $\deg(W)$ points in each irreducible component W of V(F) with dimension r.

The idea is to represent each equidimensional component by this set of points, called witness points.

Let L_1, \ldots, L_n be n generic linear forms and, for each $r = 0, 1, \ldots, n$, take the system $F^{(r)} = (f_1, \ldots, f_n, L_1, \ldots, L_r)$. Taking generic coefficients (b_{ji}) , the isolated zeros of $F^{(r)}$ are isolated zeros of the system with n polynomials $H = (f_i(x) + \sum_{j=1}^r b_{ij}) + \sum_{j=1}^r b_{ij} + \sum_$

 $H_r = (f_1(x) + \sum_{i=1}^r b_{1i}L_i, \dots, f_n(x) + \sum_{i=1}^r b_{ni}L_i).$

Input: A system $F = (f_1, \ldots, f_n)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$, and the mixed cells in a fine mixed subdivision $S_{\omega}(\mathcal{A}_1 \cup \Delta, \ldots, \mathcal{A}_n \cup \Delta)$.

- ① Choose G with supports $\mathcal{A}_1 \cup \Delta, \ldots, \mathcal{A}_n \cup \Delta$ and random integer coefficients
- ② Find the zeros of G in \mathbb{C}^n using $S_{\omega}(A_1 \cup \Delta, \dots, A_n \cup \Delta)$
- ③ Choose L_1, \ldots, L_n linear forms and random coefficients b_{ji}
- ① For each $0 \le r \le n-1$:
 - From the zeros of G, find a geometric resolution of a finite set of points \mathcal{P}_r containing the isolated zeros of

$$H_r = (f_1(x) + \sum_{1 \le j \le r} b_{1j}L_j, \dots, f_n(x) + \sum_{1 \le j \le r} b_{nj}L_j) \text{ in } \mathbb{C}^n.$$

• Find a geometric resolution $R^{(r)}$ of $\mathcal{P}_r \cap V(F)$.

Input: A system $F = (f_1, \ldots, f_n)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$, and the mixed cells in a fine mixed subdivision $S_{\omega}(\mathcal{A}_1 \cup \Delta, \ldots, \mathcal{A}_n \cup \Delta)$.

- **①** Choose G with supports $A_1 \cup \Delta, \ldots, A_n \cup \Delta$ and random integer coefficients.
- ② Find the zeros of G in \mathbb{C}^n using $S_{\omega}(A_1 \cup \Delta, \dots, A_n \cup \Delta)$.
- 3 Choose L_1, \ldots, L_n linear forms and random coefficients b_{ji}
- ① For each $0 \le r \le n-1$:
 - From the zeros of G, find a geometric resolution of a finite set of points \mathcal{P}_r containing the isolated zeros of

$$H_r = (f_1(x) + \sum_{1 \le j \le r} b_{1j}L_j, \dots, f_n(x) + \sum_{1 \le j \le r} b_{nj}L_j)$$
 in \mathbb{C}^n

• Find a geometric resolution $R^{(r)}$ of $\mathcal{P}_r \cap V(F)$.

Input: A system $F = (f_1, \ldots, f_n)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$, and the mixed cells in a fine mixed subdivision $S_{\omega}(\mathcal{A}_1 \cup \Delta, \ldots, \mathcal{A}_n \cup \Delta)$.

- **①** Choose G with supports $A_1 \cup \Delta, \ldots, A_n \cup \Delta$ and random integer coefficients.
- ② Find the zeros of G in \mathbb{C}^n using $S_{\omega}(A_1 \cup \Delta, \dots, A_n \cup \Delta)$.
- **3** Choose L_1, \ldots, L_n linear forms and random coefficients b_{ji} .
- **4** For each $0 \le r \le n-1$:
 - From the zeros of G, find a geometric resolution of a finite set of points \mathcal{P}_r containing the isolated zeros of

$$H_r = (f_1(x) + \sum_{1 \le j \le r} b_{1j}L_j, \dots, f_n(x) + \sum_{1 \le j \le r} b_{nj}L_j)$$
 in \mathbb{C}^n .

• Find a geometric resolution $R^{(r)}$ of $\mathcal{P}_r \cap V(F)$.

Input: A system $F = (f_1, \ldots, f_n)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$, and the mixed cells in a fine mixed subdivision $S_{\omega}(\mathcal{A}_1 \cup \Delta, \ldots, \mathcal{A}_n \cup \Delta)$.

- **①** Choose G with supports $A_1 \cup \Delta, \ldots, A_n \cup \Delta$ and random integer coefficients.
- ② Find the zeros of G in \mathbb{C}^n using $S_{\omega}(A_1 \cup \Delta, \dots, A_n \cup \Delta)$.
- **3** Choose L_1, \ldots, L_n linear forms and random coefficients b_{ji} .
- **4** For each $0 \le r \le n-1$:
 - From the zeros of G, find a geometric resolution of a finite set of points \mathcal{P}_r containing the isolated zeros of

$$H_r = (f_1(x) + \sum_{1 \le j \le r} b_{1j}L_j, \dots, f_n(x) + \sum_{1 \le j \le r} b_{nj}L_j) \text{ in } \mathbb{C}^n.$$

• Find a geometric resolution $R^{(r)}$ of $\mathcal{P}_r \cap V(F)$.

Input: A system $F = (f_1, \ldots, f_n)$ with supports \mathcal{A} in $(\mathbb{Z}_{\geq 0})^n$, and the mixed cells in a fine mixed subdivision $S_{\omega}(\mathcal{A}_1 \cup \Delta, \ldots, \mathcal{A}_n \cup \Delta)$.

- **①** Choose G with supports $A_1 \cup \Delta, \ldots, A_n \cup \Delta$ and random integer coefficients.
- ② Find the zeros of G in \mathbb{C}^n using $S_{\omega}(A_1 \cup \Delta, \dots, A_n \cup \Delta)$.
- **3** Choose L_1, \ldots, L_n linear forms and random coefficients b_{ji} .
- **4** For each $0 \le r \le n-1$:
 - From the zeros of G, find a geometric resolution of a finite set of points \mathcal{P}_r containing the isolated zeros of

$$H_r = (f_1(x) + \sum_{1 \le j \le r} b_{1j}L_j, \dots, f_n(x) + \sum_{1 \le j \le r} b_{nj}L_j) \text{ in } \mathbb{C}^n.$$

• Find a geometric resolution $R^{(r)}$ of $\mathcal{P}_r \cap V(F)$.

The result for non-generic square sparse systems

Theorem Let $F = (f_1, \ldots, f_n)$ be a system of polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$ with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ in $(\mathbb{Z}_{\geq 0})^n$. The probabilistic algorithm PointsInEquidComps computes a family $(R^{(0)}, \ldots, R^{(n-1)})$ of geometric resolutions of finite sets of points containing a set of witness points of every equidimensional component of V(F). The order of complexity is

$$O_{\log}(n^4N_{\Delta}d\mathcal{D}_{\Delta}^2\Upsilon_{\Delta})$$

where

- $N_{\Delta} = \sum_{j=1}^{n} \#(A_j \cup \Delta),$
- $\bullet d = \max_{1 \leq j \leq n} \{ \deg(f_j) \},$
- $\mathcal{D}_{\Delta} = \mathcal{MV}_n(\mathcal{A}_1 \cup \Delta, \dots, \mathcal{A}_n \cup \Delta).$

The result for non-generic square sparse systems

Theorem Let $F = (f_1, \ldots, f_n)$ be a system of polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$ with supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ in $(\mathbb{Z}_{\geq 0})^n$. The probabilistic algorithm PointsInEquidComps computes a family $(R^{(0)}, \ldots, R^{(n-1)})$ of geometric resolutions of finite sets of points containing a set of witness points of every equidimensional component of V(F). The order of complexity is

$$O_{\log}(n^4N_{\Delta}d\mathcal{D}_{\Delta}^2\Upsilon_{\Delta})$$

where

$$N_{\Delta} = \sum_{j=1}^{n} \#(\mathcal{A}_{j} \cup \Delta),$$

- $\bullet \ d = \max_{1 \leq j \leq n} \{ \deg(f_j) \},$
- $\mathcal{D}_{\Delta} = \mathcal{MV}_n(\mathcal{A}_1 \cup \Delta, \dots, \mathcal{A}_n \cup \Delta).$

Thanks!!!