Assistive Teaching of Motor Control Tasks to Humans

Megha Srivastava, Erdem Biyik, Suvir Mirchandani, Noah Goodman, Dorsa Sadigh

Motor control tasks are everywhere...

Motor control tasks are everywhere...

and are challenging to learn!

Motor control tasks are everywhere...

and are challenging to **teach others**!

There will always be new motor control tasks to teach

Requires specialized instructors

Requires specialized instructors Individual student variations

Requires specialized instructors Individual student variations Diverse physical conditions

Can AI-assistance help teach humans motor control tasks?

Can we leverage expert knowledge of a motor control task to help any human learn the task themselves?

AI-Assistance has helped bring more accessible, uniform teaching for simpler domains

Verbs: Gerund Weakest words faisant, disant, agissant, ayant, étant **STRENGTHEN**

Practice Weak Skills

Practice Weak Skills

Verbs: Gerund

Skill identification

Weakest words

faisant, disant, agissant, ayant, étant

STRENGTHEN

17

Weakest words faisant, disant, agissant, ayant, étant **STRENGTHEN**

Skill identification

Individualization

Practice Weak Skills

Verbs: Gerund

Weakest words

faisant, disant, agissant, ayant, étant

STRENGTHEN

Skill identification

Individualization

Curricula creation ("drills")

	ete the chat		
Alors où tu aujou	, tu as aimé le bistrot as déjeuné rd'hui ?		
	Franchement, nourriture était dégoûtante.	. La	}
	quel endroit génial		
	c'était horrible c'était délicieux		

Prior work: common education domains (e.g. math, language learning)

Skills in these domains are standardized & easy to detect!

Key complexity of motor control tasks: **trajectories over time**

WRITING

Reward: Overlap w/ Goal Sequence

WRITING

Scenario: ξ : (s_0, r) initial state and reward pair (e.g. goal character sequence) **Trajectory:** τ : $(s_0, a_0)...(s_T, a_T)$ sequence for a particular scenario ξ : (s_0, r)

WRITING

Skill identification

Individualization

Curricula creation ("drills")

WRITING

Skill identification

How do we identify motor control skills from motion trajectories?

Unsupervised Skill Discovery: CompILE [Kipf et. al. '19]

Re-construction Loss Function (across set *C* of segments in trajectory):

$$-\mathbb{E}_{q_{\phi}(b,z|a,s)} \sum_{i=1:|C|} [P(t \in C_i) * \log p_{\theta}(a|s,z_i)]$$

Unsupervised Skill Discovery: CompILE [Kipf et. al. '19]

Unsupervised Skill Discovery: CompILE [Kipf et. al. '19]

Key idea: Use expert demos + unsupervised skill discovery

WRITING

Individualization

How do we identify individual expertise from *student* motion trajectories?

Novice Student Demonstration

Novice Student Demonstration

Penalize Skill 2 more than Skill 3 and Skill 4? temporal decay term j

Skill 1: 0 Skill 2: r/j Skill 3: r/2j Skill 4: r/3j

Reward r =

Skill Scores

 $-\alpha *$ (pixel dist. between student and expert)

 $+\beta *$ (highest x value of trajectory)

Skill 1: 0 Skill 2: -12 Skill 3: -6 Skill 4: -4

Reward r = -12

Penalty j = 1

Skill Scores

. . .

 Skill 1: 0
 Skill 1: -12

 Skill 2: -12
 Skill 2: -6

 Skill 3: -6
 Skill 3: -4

 Skill 4: -4
 Skill 4: -3

Diverse Scenarios

Maximum Set-Coverage
over expert demonstrations / skills

→

Skill 1: -9 Skill 2: -8 Skill 3: -5 Skill 4: -3

Individual's Most Challenging Skills

Skill 1: -1 Skill 2: -4 Skill 3: -1 Skill 4: 0

Skill 1: -1 Skill 2: -10 Skill 3: -5 Skill 4: -7

Skill 1: -9 Skill 2: -8 Skill 3: -5 Skill 4: -3

WRITING

Curricula creation ("drills")

How do we create novel drills that improve learning from motion trajectories?

Drills: Repetitive sequences that targets skills in their **most common contexts**

Drills: Repetitive sequences that targets skills in their **most common contexts**

Drills: Repetitive sequences that targets skills in their **most common contexts**

1. Extract Skills from
Expert Demonstrations
$$\tau_1^e: \mathcal{I}^{\mathcal{I}}\mathcal$$

2. Select Scenarios with Diverse Skills

 $\tau_1^e: \text{MAD}$ $\tau_2^e: \text{MAD}$

3. Identify Individual Student Skill Expertise

BLARD

4. Automatically Create Individualized Drills

Experiments: Parking & Writing

PARKING

Writing Task

Goal: Trace Balinese characters

Writing Task

Parking Task

Parking Task

Are skills returned from CompILE useful for learning?

Are skills returned from CompILE useful for learning?

49

Are skills returned from CompILE useful for learning?

PARKING

WRITING

- Prolific user study (n=20 parking, n=25 writing)

- Reward Improvement: $\frac{\sum_{\xi_i^{\text{eval}}} r_i}{n_{\text{eval}}} - \frac{\sum_{\xi_i^{\text{pretest}}} r_i}{n_{\text{pretest}}}$

- CompILE Skills outperform Full Trajectory, Time Heuristic inconsistent!

Skills Only

RUTUNUS

Randomly Chosen Drills

Individualized Drills

52

Distribution of hardest skills across individuals

Individualized drills generally improves student performance

WRITING

Participants significantly prefer ind. drills for Writing

Participants significantly prefer skills over ind. drills for Parking *despite performing better w/ drills!* WRITING

Participants significantly prefer ind. drills for Writing

Optimal Expert Action: Reverse (tricky!)

No Individualization: 27% of students try to reverse

Individualization: 53% of students try to reverse but find it hard!

Students learn to more closely follow expert

Key Take-Aways

- AI-Assistance for skill discovery, individualization, and drill-creation
- Easier to "do" than "teach" \rightarrow expert demonstrations can come from anyone!
- Participants benefited from AI-Assistance for two different control tasks

Future Directions

Stronger models of student motor learning

Half-Trained Student

Reversing Difficulty Student

Future Directions

Risks of expert-student mismatch & accounting for preferences

"I hope this becomes a learning tool for writing new scripts. Really cool concept just hard to get to grips with when I have a disability." - User Study Participant