Matrix Completion for the Independence Model

Kaie Kubjas joint work with Zvi Rosen arXiv:1407.3254

Aalto University

October 13, 2014

Main problem

Problem

Given some entries of a matrix, is it possible to add the missing entries so that the matrix has rank 1, its entries sum to one, and it is nonnegative?

Example

For example, the partial matrix

$$\begin{pmatrix}
0.16 & & & & \\
& 0.09 & & & \\
& & 0.04 & & \\
& & & 0.01
\end{pmatrix}$$

has a unique completion:

$$\begin{pmatrix} 0.16 & 0.12 & 0.08 & 0.04 \\ 0.12 & 0.09 & 0.06 & 0.03 \\ 0.08 & 0.06 & 0.04 & 0.02 \\ 0.04 & 0.03 & 0.02 & 0.01 \end{pmatrix}.$$

Example

For example, the partial matrix

$$\begin{pmatrix}
0.16 & & & & \\
& 0.09 & & & \\
& & 0.04 & & \\
& & & 0.01
\end{pmatrix}$$

has a unique completion:

$$\begin{pmatrix} 0.16 & 0.12 & 0.08 & 0.04 \\ 0.12 & 0.09 & 0.06 & 0.03 \\ 0.08 & 0.06 & 0.04 & 0.02 \\ 0.04 & 0.03 & 0.02 & 0.01 \end{pmatrix}.$$

On the other hand, perturbing any entry of the original matrix by $\epsilon>0$ makes the matrix have no eligible completions, and perturbing any entry by $\epsilon<0$ introduces an infinite number of completions.

Let X and Y be two independent discrete random variables with m and n states respectively, i.e.

$$Pr(X = i, Y = j) = Pr(X = i) \cdot Pr(Y = j)$$

for all i, j.

Let X and Y be two independent discrete random variables with m and n states respectively, i.e.

$$Pr(X = i, Y = j) = Pr(X = i) \cdot Pr(Y = j)$$

for all i, j. Their joint probabilities are recorded in the matrix

$$P = \begin{pmatrix} Pr(X=1) \\ Pr(X=2) \\ \vdots \\ Pr(X=m) \end{pmatrix} (Pr(Y=1) \quad Pr(Y=2) \quad \cdots \quad Pr(Y=n)),$$

which is rank 1, nonnegative, and its entries sum to one.

• Suppose that probabilities Pr(X = i, Y = j) are measurable only for certain pairs (i, j).

- Suppose that probabilities Pr(X = i, Y = j) are measurable only for certain pairs (i, j).
- A situation in which this might arise in applications is a pair of compounds in a laboratory that only react when in certain states.

- Suppose that probabilities Pr(X = i, Y = j) are measurable only for certain pairs (i, j).
- A situation in which this might arise in applications is a pair of compounds in a laboratory that only react when in certain states.
- A complete answer to our question will allow us to reject a hypothesis of independence of the events X and Y, based only on this collection of probabilities.

2 × 2 diagonal matrices

Example

Let M be the partial probability matrix given by:

$$M = \left(\begin{array}{cc} a & \\ & b \end{array}\right).$$

2 × 2 diagonal matrices

Example

Let M be the partial probability matrix given by:

$$M = \begin{pmatrix} a & \\ & b \end{pmatrix}$$
.

Set the off-diagonal entries to x and ab/x and set the sum of all entries a + ab/x + x + b equal to 1. The equivalent quadratic equation is $x^2 + (a + b - 1)x + ab = 0$.

2 × 2 diagonal matrices

Example

Let M be the partial probability matrix given by:

$$M = \begin{pmatrix} a & \\ & b \end{pmatrix}$$
.

Set the off-diagonal entries to x and ab/x and set the sum of all entries a+ab/x+x+b equal to 1. The equivalent quadratic equation is $x^2+(a+b-1)x+ab=0$. In order for a real solution for x to exist, the discriminant must be ≥ 0 , i.e.

$$(a+b-1)^2-4ab \ge 0.$$

This inequality, along with the requirement that $a+b \le 1$ and both a, b > 0, is sufficient to guarantee that x gives a completion of M.

Figure: The colored region corresponds to completable probability matrices of 2×2 matrices with diagonal entries a, b observed.

Diagonal partial matrices

Theorem (K.,Rosen)

Let M be an $n \times n$ partial probability matrix, where $n \ge 2$, with nonnegative observed entries along the diagonal:

$$M = \left(\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n \end{array} \right).$$

Then M is completable if and only if $\sum_{i=1}^n \sqrt{a_i} \leq 1$, or equivalently, $||(a_1,\ldots,a_n)||_{1/2} \leq 1$. In the special case $\sum_{i=1}^n \sqrt{a_i} = 1$, the partial matrix M has a unique completion.

Diagonal partial matrices

Corollary

Let $\sum_{i=1}^{n} \sqrt{a_i} < 1$. For n = 2, the probability matrix M has exactly two completions. If n > 2, then the set of completions of M is (n-2)-dimensional.

Diagonal partial matrices

Corollary

Let $\sum_{i=1}^{n} \sqrt{a_i} < 1$. For n = 2, the probability matrix M has exactly two completions. If n > 2, then the set of completions of M is (n-2)-dimensional.

Figure: Each curve represents values of ${\bf u}$ that parametrize a completion of the 3×3 diagonal partial matrix with 1/9,1/10,1/16,1/36,1/64, and 1/150 on the diagonal.

The analysis of the previous theorem works to derive the constraint for the 2×2 diagonal probability matrix as in the example. Assuming $a, b \ge 0$:

$$\sqrt{a} + \sqrt{b} \le 1 \Leftrightarrow a + b + 2\sqrt{ab} \le 1 \Leftrightarrow 2\sqrt{ab} \le 1 - a - b$$

 $\Leftrightarrow 4ab \le (1 - a - b)^2 \text{ and } 0 \le 1 - a - b.$

The analysis of the previous theorem works to derive the constraint for the 2×2 diagonal probability matrix as in the example. Assuming $a, b \ge 0$:

$$\sqrt{a} + \sqrt{b} \le 1 \Leftrightarrow a + b + 2\sqrt{ab} \le 1 \Leftrightarrow 2\sqrt{ab} \le 1 - a - b$$

 $\Leftrightarrow 4ab \le (1 - a - b)^2 \text{ and } 0 \le 1 - a - b.$

The analysis of the previous theorem works to derive the constraint for the 2×2 diagonal probability matrix as in the example. Assuming $a, b \geq 0$:

$$\sqrt{a} + \sqrt{b} \le 1 \Leftrightarrow a + b + 2\sqrt{ab} \le 1 \Leftrightarrow 2\sqrt{ab} \le 1 - a - b$$

 $\Leftrightarrow 4ab \le (1 - a - b)^2 \text{ and } 0 \le 1 - a - b.$

$$\begin{pmatrix} * & * & * \\ .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix} \rightarrow \begin{pmatrix} .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix} \rightarrow \begin{pmatrix} .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} .06 & .09 & * \\ .08 & .12 & * \\ * & * & .15 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix} \rightarrow \begin{pmatrix} .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} .06 & .09 & * \\ .08 & .12 & * \\ * & * & .15 \end{pmatrix} \rightarrow \begin{pmatrix} .35 & * \\ * & .15 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix} \rightarrow \begin{pmatrix} .06 & .09 & * \\ .08 & * & * \\ * & * & .15 \end{pmatrix}$$

General partial matrices

Theorem

Let M be a feasible partial matrix such that after carefully removing zeros, it has s blocks. Let b_i be the sum of the entries in the i-th block after completing by 2×2 minors. If s = 1, then M is completable if and only if $b_1 = 1$. For s > 1, the partial matrix M is completable to a probability matrix if and only if:

$$\sum_{i=1}^{s} \sqrt{b_i} \le 1.$$

Example

The probability matrix

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & & \\ & & x_{33} \end{pmatrix}$$

with all observed entries nonnegative has a completion if and only if

$$\sqrt{x_{11} + x_{12} + x_{21} + x_{12}x_{21}/x_{11}} + \sqrt{x_{33}} \le 1.$$

Tensors

Theorem

Suppose we are given a partial probability tensor $T \in (\mathbb{R}^n)^{\otimes d}$ with nonnegative observed entries a_i along the diagonal, i. e. we have $t_{ii...i} = a_i$ for $1 \leq i \leq n$, and all other entries unobserved. Then T is completable if and only if

$$\sum_{i=1}^n a_i^{1/d} \le 1.$$

Semialgebraic sets

Proposition

Partial tensors of fixed type which can be completed to rank-1 probability tensors form a semialgebraic set.

Semialgebraic sets

Proposition[']

Partial tensors of fixed type which can be completed to rank-1 probability tensors form a semialgebraic set.

Proposition

There exists a unique irreducible polynomial f of degree d^{n-1} with constant term 1 that vanishes on the boundary of diagonal partial tensors which can be completed to rank-1 probability tensors. The semialgebraic description takes the form $f \geq 0$, coordinates ≥ 0 plus additional inequalities that separate our set from other chambers in the region defined by $f \geq 0$.

3 × 3 diagonal matrices

The region defined by

$$\sqrt{a} + \sqrt{b} + \sqrt{c} \le 1$$

is the same as

$$((1-S_1)^2-4S_2)^2-64S_3\geq 0$$

together with

$$a, b, c \ge 0,$$

 $1 - S_1 \ge 0,$
 $(1 - S_1)^2 - 4S_2 \ge 0,$

where $S_1 = a + b + c$, $S_2 = ab + bc + ca$ and $S_3 = abc$.

3 × 3 diagonal matrices

Figure: The colored region corresponds to completable probability matrices of 3×3 matrices with diagonal entries observed.

Consider the partial matrix

Consider the partial matrix

Step 1: Add in the missing entries using 2×2 minors:

Consider the partial matrix

Step 1: Add in the missing entries using 2×2 minors:

Step 2: Add in *X* and the rest of entries:

$$\begin{pmatrix} .06 & .08 & X \\ .09 & .12 & 1.5X \\ .009/X & .012/X & .15 \end{pmatrix}$$

Step 3: Set $\sum p_{ij} = 1$ and solve for X:

$$(.06 + .08 + .09 + .12 + .15) + X + 1.5X + .009/X + .012/X = 1$$
$$\Rightarrow .5 + 2.5X + .021/X = 1 \Rightarrow 2.5X^{2} - .5X + .021 = 0$$

Step 3: Set $\sum p_{ij} = 1$ and solve for X:

$$(.06 + .08 + .09 + .12 + .15) + X + 1.5X + .009/X + .012/X = 1$$
$$\Rightarrow .5 + 2.5X + .021/X = 1 \Rightarrow 2.5X^{2} - .5X + .021 = 0$$

The two solutions for X yield the following two completions:

$$\begin{pmatrix}
.06 & .08 & .06 \\
.09 & .12 & .09 \\
.15 & .2 & .15
\end{pmatrix}$$

$$\begin{pmatrix}
.06 & .08 & .14 \\
.09 & .12 & .21 \\
.06 & .09 & .15
\end{pmatrix}$$

Proposition

Let $A = \text{diag}(a_1, ..., a_n)$, such that n > 2 and $S = \sum \sqrt{a_i} < 1$. Then, a completion of the matrix is given by:

$$\mathbf{u} = \left(\frac{\sqrt{a_1}}{S} + t, \frac{\sqrt{a_2}}{S} - t, \frac{\sqrt{a_3}}{S}, \dots, \frac{\sqrt{a_n}}{S}\right),\,$$

where t is one of the solutions to the following quadratic equation:

$$\left(\frac{\sqrt{a_1} + \sqrt{a_2}}{S} \right) t^2 + \left(a_2 - a_1 - \left(\frac{\sqrt{a_1} + \sqrt{a_2}}{S} \right)^2 \right) t$$

$$+ \left(\frac{a_1 \sqrt{a_2} + a_2 \sqrt{a_1}}{S} - \frac{\sqrt{a_1 a_2} (\sqrt{a_1} + \sqrt{a_2})}{S^3} \right) = 0,$$

both of which lie in the interval $[-\sqrt{a_1}/S, \sqrt{a_2}/S]$.

Example

We want to find a completion of A = diag(1/4, 1/25, 1/36) that minimizes the Pearson χ^2 distance from the uniform distribution:

$$d = \frac{1}{n^2} \sum_{i,j} \left(p_{ij} - \frac{1}{n^2} \right)^2 = \frac{1}{n^2} \sum_{i,j} \left(u_i v_j - \frac{1}{n^2} \right)^2.$$

This can be done using Lagrange multipliers. The minimum is achieved at

$$M = \begin{pmatrix} 0.250 & 0.049 & 0.215 \\ 0.204 & 0.040 & 0.176 \\ 0.032 & 0.006 & 0.028 \end{pmatrix} \text{ and } M^T.$$

The Pearson χ^2 distance from the uniform distribution is 0.683.

$2 \times 2 \times 2$ tensors

- **1** (Size 1) Any singleton, e.g. p_{000} . The only condition is $p_{000} \le 1$.
- (Size 2) Three orbits of pairs:
 - **1** p_{000}, p_{001} : $p_{000} + p_{001} \le 1$.
 - $p_{000}, p_{011}: \sqrt{p_{000}} + \sqrt{p_{011}} \le 1.$
 - $9_{000}, p_{111}: \sqrt[3]{p_{000}} + \sqrt[3]{p_{111}} \le 1.$
- (Size 3) Three orbits of triples:

 - **9** $p_{000}, p_{101}, p_{011}$: The tensor is completable if and only if the equation

$$x^{3} + (p_{000} + p_{101} + p_{011} - 1)x^{2} + (p_{000}p_{101} + p_{000}p_{011} + p_{101}p_{011})x + p_{000}p_{101}p_{011} = 0$$
 has a root in the interval [0, 1].

Thank you!