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Symmetry Breaking — Example

I airline scheduling: have 4 aircraft
goal: assign which aircraft fly

I only need 2 (due to corona)

I aircraft are interchangeable
(encoding will be symmetric)

I idea: make scheduling easier
by removing symmetric assignments
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Symmetry Breaking

manual and automatic techniques used across combinatorial optimisation paradigms

I constraint programming (CP) [GSVW14]

I Boolean satisfiability (SAT) [BHvMW21]

I mixed-integer programming (MIP) [AW13]

How can we know we didn’t remove too many assignments?
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Software Verification — How to Ensure Software Behaves as Intended?

I Software testing
I run collection of test cases to check if software behaves as intended

- depends on quality of test cases, likely to miss non-trivial defects
- can’t show absence of bugs, only their presence

I Formal verification
I formally verify that implementation adheres to specification on all possible inputs

- out of reach for complex, performance-critical software

I Certifying algorithms, also known as proof logging (this talk)
I let algorithm output answer and proof that answer is correct
I proof: sequence of simple, efficiently machine-verifiable steps
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Detecting Bugs with Certifying Algorithms

problem
answer

41?

I verification of answer with external tool can detect bugs
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Guaranteeing Correctness with Certifying Algorithms

I successful verification of answer with external tool guarantees correct answer
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Why Certifying Algorithms?

I while solving
I increase trust in solution
I detect hardware errors

I after solving
I analyse certificate to understand and improve solving process
I could use certificate to audit solution afterwards

I during development
I simplifies testing: not necessary to know correct answer a priory
I find bugs even if result is correct
I locate first unsound step
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Requirements for Certifying Algorithms

I certificate verification
I should be efficiently machine-verifiable
I ideally so simple that proof checker can be formally verified
I want: simple, easy to verify steps / rules

I certificate production
I should be easy to implement in any solver
I should only incur small performance overhead
I want: expressive rules for concise reasoning

But how?
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SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability of propositional formulas in conjunctive normal form (CNF)

I SAT competition requires solver to produce certificate (aka proof logging)

I proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CMS17], LRAT
[CHH+17]; DRAT [WHH14] has become standard

I Can we use SAT technology?

CNF formula
Symmetry Breaking

(BreakID)
SAT solver

(Kissat)
result:

SAT / UNSAT
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. . . But Need for Further Research

I proof logging for symmetry breaking
I no implementation available
I approach based on DRAT proposed [HHW15]
I only for small symmetries which can interact only in simple ways

I without symmetry breaking ⇒ exponential loss in reasoning power / performance

I DRAT cannot support symmetry breaking ⇒ need to investigate other methods

I not the only reason to look for other methods, what about
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiability and optimization
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New Proof Systems are Being Developed

many new proof systems

I delete symmetry reverse unit propagation (DSRUP) [TD20]

I propagation redundancy (PR) [HKB17]

I branch and bound in integer programming [CGS17, EG21]

I practical polynomial calculus (PAC) [RBK18, KFB20, KFBK22]

I extensible RAT (FRAT) [BCH21]

I propagation redundancy for BDDs [BB21]

I pseudo-Boolean proofs [EGMN20, GN21, BGMN22]
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High Level Idea of Pseudo-Boolean Proofs

I use pseudo-Boolean constraints (0-1 linear inequalities) to describe problem
I e.g., x1 + x2 + x3 ≥ 1 or 2z + x1 + x2 + x3 ≥ 2
I solution is assignment satisfying all constraints
I NP-complete ⇒ very expressive, but in general difficult to find solution

I proof system is small set of rules that
I are easy to verify
I allow to add new constraints using previous constraints
I guarantee that at least one (optimal) solution satisfies all constraints

(given that original problem has solution)

I proof constructs sequence of constraints D1,D2,D3, . . . ,DL

I each constraint is derived by rule in proof system
I annotation can contain additional information necessary for efficient verification
I proves there is no solution if DL is 0 ≥ 1
I proves optimality if DL is bound on objective matching known solution
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Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)

I constraint programming, including all-different constraints [EGMN20, GMN22]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]
I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization

1https://gitlab.com/MIAOresearch/VeriPB
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Running Example

min: 4x1 + 2x2 + x3

s.t. x1 + x2 + x3 ≥ 2

I boolean variable x is 0 (false) or 1 (true)
(e.g. x1 = 1 means green aircraft flies)

I pseudo-Boolean constraint:
linear inequality over variables

I formula F : set of constraints

I objective function f to be minimized

Goal: find assignment minimizing objective
and satisfying all constraints
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Background — Symmetric Formulas

I given permutation π

I formula F has (syntactic) symmetry if F = F�π

I example:
I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

(x1 + x2 + x3 ≥ 2)�π

≡ x2 + x3 + x1 ≥ 2

I constraint is same as before
⇒ formula is symmetric (ignoring objective)

x1

x2

x3

x1

x2

x3
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Background — Symmetry Breaking

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

I add blocking constraint to remove symmetric assignments

I usually removing lexicographic larger assignments
viewing x1x2x3 as bitstring, e.g., 011 �lex 110

want to encode x1x2x3 �lex (x1x2x3)�π

same as x1x2x3 �lex x2x3x1

I alternative: view bitstring as binary number

I easy to encode using pseudo-Boolean constraint

4x1 + 2x2 + x3 ≤ 4x2 + 2x3 + x1

I can be simplified to 3x1 − 2x2 − x3 ≤ 0
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Output from Symmetry Breaking

I give formula x1 + x2 + x3 ≥ 2 to symmetry breaker
(falsified by red assignments)

I output:
I for permutation

π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I (syntactic) symmetry detected (ignoring objective)

(x1 + x2 + x3 ≥ 2)�π = x2 + x3 + x1 ≥ 2
I breaking constraint

3x1 − 2x2 − x3 ≤ 0 (falsified by purple assignments)

How prove adding constraint is OK?

Truth Table

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

π

π

Notation: C�π substitutes variables in C as specified by π
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The Dominance Rule
Idea (From Dominance Breaking)

assignment is dominated if we find strictly better
assignment ⇒ can remove dominated assignments

I allow to add constraint C , e.g, 3x1 − 2x2 − x3 ≤ 0

I if for every ρ falsifying C but satisfying F (purple)

I we find ρ′ that satisfies F and f (ρ) > f (ρ′)

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

Notation: F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

In general not efficiently verifiable, however can provide explicit proof.
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The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Further Remarks

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

I “|=” replaced by efficiently machine-verifiable
proof system (cutting planes)

I in paper: any strict order instead of f > f�ω

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω
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Supported Applications – Symmetry Breaking

I SAT
challenge: translate breaking constraint from PB to CNF

I Constraint Programming
challenge: integer domains instead of 0-1

A B

C D E F

G H

example: The Crystal Maze puzzle. Place numbers 1 to 8 without repetition, so
that adjacent circles do not have consecutive numbers. Puzzle can be mirrored
horizontally. Without loss of generality number in A smaller than number in G .
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Supported Applications – Dominance Breaking

I maximum clique solving (find largest fully connected component)
challenge: lazy breaking

example: consider green but not blue node (every neighbour of blue is also
neighbour of green)
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Experiments

I evaluated on SAT competition benchmarks

I used BreakID2 to find and break symmetries

1
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I proof logging overhead negligible

I verification at most 20 times slower than solving for 95 % of instance

2https://bitbucket.org/krr/breakid/
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Future Work

understand power of dominance rule:

I can we simulate dominance rule with redundance rule or extended cutting planes?

improve performance:

I binary format / on-the-fly compression

I trimming proof while verifying (as for DRAT [HHW13])

increase trustworthiness:

I formally verified verifier

proof logging for more algorithms and problems:

I symmetric explanation learning [DBB17]

I MaxSAT

I more propagators in constraint programming

I integer programming
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Conclusion
I proof logging is well-established standard for SAT solving

I not sufficient for all techniques used in SAT (e.g. symmetry breaking)

our work: proof logging for symmetry breaking (BreakID3) + verification (VeriPB4)

I simple to implement + efficient proof checking

I fully evaluated for symmetry breaking on SAT competition benchmarks
I proof of concept for

I symmetry breaking in constraint programming
I dynamic dominance breaking for maximum clique

future work: understand power of dominance rule, improve performance, increase
trustworthiness, proof logging for more algorithms and problems

3

https://bitbucket.org/krr/breakid/

4

https://gitlab.com/MIAOresearch/VeriPB
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Strengthening Rules (simplified)

I for formula F , objective f , and sequence of derived constraints D1,D2, . . .

I let Gi , be set of constraints added so far (Gi = F ∪ {D1, . . . ,Di−1 })
I redundance based strengthening:

(generalize redundancy from SAT [HKB17, BT19] to PB and optimization)

Gi ∪ {¬Di } |= (Gi ∪ Di )�ω ∪ { f�ω ≤ f }
Di

I dominance based strengthening:

Gi ∪ {¬Di } |= F�ω ∪ { f�ω < f }
Di

I rules are annotated by:
I used substitution ω
I explicit proof for “|=”
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