
Certified Symmetry and Dominance Breaking
for Combinatorial Optimisation

Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, Jakob Nordström

February 2022



Symmetry Breaking — Example

I airline scheduling: have 4 aircraft
goal: assign which aircraft fly

I only need 2 (due to corona)

I aircraft are interchangeable
(encoding will be symmetric)

I idea: make scheduling easier
by removing symmetric assignments

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 2/ 25



Symmetry Breaking — Example

I airline scheduling: have 4 aircraft
goal: assign which aircraft fly

I only need 2 (due to corona)

I aircraft are interchangeable
(encoding will be symmetric)

I idea: make scheduling easier
by removing symmetric assignments

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 2/ 25



Symmetry Breaking — Example

I airline scheduling: have 4 aircraft
goal: assign which aircraft fly

I only need 2 (due to corona)

I aircraft are interchangeable
(encoding will be symmetric)

I idea: make scheduling easier
by removing symmetric assignments

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 2/ 25



Symmetry Breaking

manual and automatic techniques used across combinatorial optimisation paradigms

I constraint programming (CP) [GSVW14]

I Boolean satisfiability (SAT) [BHvMW21]

I mixed-integer programming (MIP) [AW13]

How can we know we didn’t remove too many assignments?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 3/ 25



Symmetry Breaking

manual and automatic techniques used across combinatorial optimisation paradigms

I constraint programming (CP) [GSVW14]

I Boolean satisfiability (SAT) [BHvMW21]

I mixed-integer programming (MIP) [AW13]

How can we know we didn’t remove too many assignments?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 3/ 25



Software Verification — How to Ensure Software Behaves as Intended?

I Software testing
I run collection of test cases to check if software behaves as intended

- depends on quality of test cases, likely to miss non-trivial defects
- can’t show absence of bugs, only their presence

I Formal verification
I formally verify that implementation adheres to specification on all possible inputs

- out of reach for complex, performance-critical software

I Certifying algorithms, also known as proof logging (this talk)
I let algorithm output answer and proof that answer is correct
I proof: sequence of simple, efficiently machine-verifiable steps

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 4/ 25



Software Verification — How to Ensure Software Behaves as Intended?

I Software testing
I run collection of test cases to check if software behaves as intended

- depends on quality of test cases, likely to miss non-trivial defects
- can’t show absence of bugs, only their presence

I Formal verification
I formally verify that implementation adheres to specification on all possible inputs

- out of reach for complex, performance-critical software

I Certifying algorithms, also known as proof logging (this talk)
I let algorithm output answer and proof that answer is correct
I proof: sequence of simple, efficiently machine-verifiable steps

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 4/ 25



Software Verification — How to Ensure Software Behaves as Intended?

I Software testing
I run collection of test cases to check if software behaves as intended

- depends on quality of test cases, likely to miss non-trivial defects
- can’t show absence of bugs, only their presence

I Formal verification
I formally verify that implementation adheres to specification on all possible inputs

- out of reach for complex, performance-critical software

I Certifying algorithms, also known as proof logging (this talk)
I let algorithm output answer and proof that answer is correct
I proof: sequence of simple, efficiently machine-verifiable steps

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 4/ 25



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I verification of answer with external tool can detect bugs

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 5/ 25



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

I verification of answer with external tool can detect bugs

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 5/ 25



Guaranteeing Correctness with Certifying Algorithms

I successful verification of answer with external tool guarantees correct answer

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 6/ 25



Why Certifying Algorithms?

I while solving
I increase trust in solution
I detect hardware errors

I after solving
I analyse certificate to understand and improve solving process
I could use certificate to audit solution afterwards

I during development
I simplifies testing: not necessary to know correct answer a priory
I find bugs even if result is correct
I locate first unsound step

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 7/ 25



Why Certifying Algorithms?

I while solving
I increase trust in solution
I detect hardware errors

I after solving
I analyse certificate to understand and improve solving process
I could use certificate to audit solution afterwards

I during development
I simplifies testing: not necessary to know correct answer a priory
I find bugs even if result is correct
I locate first unsound step

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 7/ 25



Why Certifying Algorithms?

I while solving
I increase trust in solution
I detect hardware errors

I after solving
I analyse certificate to understand and improve solving process
I could use certificate to audit solution afterwards

I during development
I simplifies testing: not necessary to know correct answer a priory
I find bugs even if result is correct
I locate first unsound step

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 7/ 25



Requirements for Certifying Algorithms

I certificate verification
I should be efficiently machine-verifiable
I ideally so simple that proof checker can be formally verified
I want: simple, easy to verify steps / rules

I certificate production
I should be easy to implement in any solver
I should only incur small performance overhead
I want: expressive rules for concise reasoning

But how?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 8/ 25



Requirements for Certifying Algorithms

I certificate verification
I should be efficiently machine-verifiable
I ideally so simple that proof checker can be formally verified
I want: simple, easy to verify steps / rules

I certificate production
I should be easy to implement in any solver
I should only incur small performance overhead
I want: expressive rules for concise reasoning

But how?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 8/ 25



Requirements for Certifying Algorithms

I certificate verification
I should be efficiently machine-verifiable
I ideally so simple that proof checker can be formally verified
I want: simple, easy to verify steps / rules

I certificate production
I should be easy to implement in any solver
I should only incur small performance overhead
I want: expressive rules for concise reasoning

But how?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 8/ 25



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability of propositional formulas in conjunctive normal form (CNF)

I SAT competition requires solver to produce certificate (aka proof logging)

I proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CMS17], LRAT
[CHH+17]; DRAT [WHH14] has become standard

I Can we use SAT technology?

CNF formula
Symmetry Breaking

(BreakID)
SAT solver

(Kissat)
result:

SAT / UNSAT

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 9/ 25



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability of propositional formulas in conjunctive normal form (CNF)

I SAT competition requires solver to produce certificate (aka proof logging)

I proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CMS17], LRAT
[CHH+17]; DRAT [WHH14] has become standard

I Can we use SAT technology?

CNF formula
Symmetry Breaking

(BreakID)
SAT solver

(Kissat)
result:

SAT / UNSAT

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 9/ 25



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability of propositional formulas in conjunctive normal form (CNF)

I SAT competition requires solver to produce certificate (aka proof logging)

I proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CMS17], LRAT
[CHH+17]; DRAT [WHH14] has become standard

I Can we use SAT technology?

CNF formula
Symmetry Breaking

(BreakID)
SAT solver

(Kissat)
result:

SAT / UNSAT

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 9/ 25



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability of propositional formulas in conjunctive normal form (CNF)

I SAT competition requires solver to produce certificate (aka proof logging)

I proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CMS17], LRAT
[CHH+17]; DRAT [WHH14] has become standard

I Can we use SAT technology?

CNF formula
Symmetry Breaking

(BreakID)
SAT solver

(Kissat)
result:

SAT / UNSAT

verifier verification
of answer

DRAT proof /
solution

(DRATtrim)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 9/ 25



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability of propositional formulas in conjunctive normal form (CNF)

I SAT competition requires solver to produce certificate (aka proof logging)

I proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CMS17], LRAT
[CHH+17]; DRAT [WHH14] has become standard

I Can we use SAT technology?

CNF formula
Symmetry Breaking

(BreakID)
SAT solver

(Kissat)
result:

SAT / UNSAT

verifier verification
of answer

DRAT proof /
solution

(DRATtrim)

?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 9/ 25



. . . But Need for Further Research

I proof logging for symmetry breaking
I no implementation available
I approach based on DRAT proposed [HHW15]
I only for small symmetries which can interact only in simple ways

I without symmetry breaking ⇒ exponential loss in reasoning power / performance

I DRAT cannot support symmetry breaking ⇒ need to investigate other methods

I not the only reason to look for other methods, what about
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiability and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 10/ 25



. . . But Need for Further Research

I proof logging for symmetry breaking
I no implementation available
I approach based on DRAT proposed [HHW15]
I only for small symmetries which can interact only in simple ways

I without symmetry breaking ⇒ exponential loss in reasoning power / performance

I DRAT cannot support symmetry breaking ⇒ need to investigate other methods

I not the only reason to look for other methods, what about
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiability and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 10/ 25



. . . But Need for Further Research

I proof logging for symmetry breaking
I no implementation available
I approach based on DRAT proposed [HHW15]
I only for small symmetries which can interact only in simple ways

I without symmetry breaking ⇒ exponential loss in reasoning power / performance

I DRAT cannot support symmetry breaking ⇒ need to investigate other methods

I not the only reason to look for other methods, what about
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiability and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 10/ 25



. . . But Need for Further Research

I proof logging for symmetry breaking
I no implementation available
I approach based on DRAT proposed [HHW15]
I only for small symmetries which can interact only in simple ways

I without symmetry breaking ⇒ exponential loss in reasoning power / performance

I DRAT cannot support symmetry breaking ⇒ need to investigate other methods

I not the only reason to look for other methods, what about
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiability and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 10/ 25



New Proof Systems are Being Developed

many new proof systems

I delete symmetry reverse unit propagation (DSRUP) [TD20]

I propagation redundancy (PR) [HKB17]

I branch and bound in integer programming [CGS17, EG21]

I practical polynomial calculus (PAC) [RBK18, KFB20, KFBK22]

I extensible RAT (FRAT) [BCH21]

I propagation redundancy for BDDs [BB21]

I pseudo-Boolean proofs [EGMN20, GN21, BGMN22]

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 11/ 25



High Level Idea of Pseudo-Boolean Proofs

I use pseudo-Boolean constraints (0-1 linear inequalities) to describe problem
I e.g., x1 + x2 + x3 ≥ 1 or 2z + x1 + x2 + x3 ≥ 2
I solution is assignment satisfying all constraints
I NP-complete ⇒ very expressive, but in general difficult to find solution

I proof system is small set of rules that
I are easy to verify
I allow to add new constraints using previous constraints
I guarantee that at least one (optimal) solution satisfies all constraints

(given that original problem has solution)

I proof constructs sequence of constraints D1,D2,D3, . . . ,DL

I each constraint is derived by rule in proof system
I annotation can contain additional information necessary for efficient verification
I proves there is no solution if DL is 0 ≥ 1
I proves optimality if DL is bound on objective matching known solution

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 12/ 25



High Level Idea of Pseudo-Boolean Proofs

I use pseudo-Boolean constraints (0-1 linear inequalities) to describe problem
I e.g., x1 + x2 + x3 ≥ 1 or 2z + x1 + x2 + x3 ≥ 2
I solution is assignment satisfying all constraints
I NP-complete ⇒ very expressive, but in general difficult to find solution

I proof system is small set of rules that
I are easy to verify
I allow to add new constraints using previous constraints
I guarantee that at least one (optimal) solution satisfies all constraints

(given that original problem has solution)

I proof constructs sequence of constraints D1,D2,D3, . . . ,DL

I each constraint is derived by rule in proof system
I annotation can contain additional information necessary for efficient verification
I proves there is no solution if DL is 0 ≥ 1
I proves optimality if DL is bound on objective matching known solution

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 12/ 25



High Level Idea of Pseudo-Boolean Proofs

I use pseudo-Boolean constraints (0-1 linear inequalities) to describe problem
I e.g., x1 + x2 + x3 ≥ 1 or 2z + x1 + x2 + x3 ≥ 2
I solution is assignment satisfying all constraints
I NP-complete ⇒ very expressive, but in general difficult to find solution

I proof system is small set of rules that
I are easy to verify
I allow to add new constraints using previous constraints
I guarantee that at least one (optimal) solution satisfies all constraints

(given that original problem has solution)

I proof constructs sequence of constraints D1,D2,D3, . . . ,DL

I each constraint is derived by rule in proof system
I annotation can contain additional information necessary for efficient verification
I proves there is no solution if DL is 0 ≥ 1
I proves optimality if DL is bound on objective matching known solution

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 12/ 25



Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)

I constraint programming, including all-different constraints [EGMN20, GMN22]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]
I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization

1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 13/ 25

https://gitlab.com/MIAOresearch/VeriPB


Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)
I constraint programming, including all-different constraints [EGMN20, GMN22]

I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]
I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization

1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 13/ 25

https://gitlab.com/MIAOresearch/VeriPB


Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)
I constraint programming, including all-different constraints [EGMN20, GMN22]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]

I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]
I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization

1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 13/ 25

https://gitlab.com/MIAOresearch/VeriPB


Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)
I constraint programming, including all-different constraints [EGMN20, GMN22]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]

I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization

1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 13/ 25

https://gitlab.com/MIAOresearch/VeriPB


Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)
I constraint programming, including all-different constraints [EGMN20, GMN22]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]
I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization

1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 13/ 25

https://gitlab.com/MIAOresearch/VeriPB


Our Approach
I use pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I multi-purpose format: proof logging for wide range of problems / algorithms
I reasoning with 0-1 linear inequalities (by design)
I constraint programming, including all-different constraints [EGMN20, GMN22]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I SAT solving by generalizing DRAT [GN21]
I parity/ XOR reasoning [GN21]
I symmetry and dominance breaking (for SAT, PB, CP, clique) [BGMN22]
I pseudo-Boolean solving via translation to CNF [GMNO22]

This Work

I proof logging for symmetry and dominance breaking

I applied to SAT, constraint programming and max clique solving

I support for optimization
1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 13/ 25

https://gitlab.com/MIAOresearch/VeriPB


Running Example

min: 4x1 + 2x2 + x3

s.t. x1 + x2 + x3 ≥ 2

I boolean variable x is 0 (false) or 1 (true)
(e.g. x1 = 1 means green aircraft flies)

I pseudo-Boolean constraint:
linear inequality over variables

I formula F : set of constraints

I objective function f to be minimized

Goal: find assignment minimizing objective
and satisfying all constraints

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 14/ 25



Background — Symmetric Formulas

I given permutation π

I formula F has (syntactic) symmetry if F = F�π

I example:
I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

(x1 + x2 + x3 ≥ 2)�π

≡ x2 + x3 + x1 ≥ 2

I constraint is same as before
⇒ formula is symmetric (ignoring objective)

x1

x2

x3

x1

x2

x3

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 15/ 25



Background — Symmetric Formulas

I given permutation π

I formula F has (syntactic) symmetry if F = F�π
I example:

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

(x1 + x2 + x3 ≥ 2)�π

≡ x2 + x3 + x1 ≥ 2

I constraint is same as before
⇒ formula is symmetric (ignoring objective)

x1

x2

x3

x1

x2

x3

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 15/ 25



Background — Symmetric Formulas

I given permutation π

I formula F has (syntactic) symmetry if F = F�π
I example:

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

(x1 + x2 + x3 ≥ 2)�π

≡ x2 + x3 + x1 ≥ 2

I constraint is same as before
⇒ formula is symmetric (ignoring objective)

x1

x2

x3

x1

x2

x3

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 15/ 25



Background — Symmetric Formulas

I given permutation π

I formula F has (syntactic) symmetry if F = F�π
I example:

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

(x1 + x2 + x3 ≥ 2)�π

≡ x2 + x3 + x1 ≥ 2

I constraint is same as before
⇒ formula is symmetric (ignoring objective)

x1

x2

x3

x1

x2

x3

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 15/ 25



Background — Symmetry Breaking

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

I add blocking constraint to remove symmetric assignments

I usually removing lexicographic larger assignments
viewing x1x2x3 as bitstring, e.g., 011 �lex 110

want to encode x1x2x3 �lex (x1x2x3)�π

same as x1x2x3 �lex x2x3x1

I alternative: view bitstring as binary number

I easy to encode using pseudo-Boolean constraint

4x1 + 2x2 + x3 ≤ 4x2 + 2x3 + x1

I can be simplified to 3x1 − 2x2 − x3 ≤ 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 16/ 25



Background — Symmetry Breaking

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I add blocking constraint to remove symmetric assignments

I usually removing lexicographic larger assignments
viewing x1x2x3 as bitstring, e.g., 011 �lex 110

want to encode x1x2x3 �lex (x1x2x3)�π

same as x1x2x3 �lex x2x3x1

I alternative: view bitstring as binary number

I easy to encode using pseudo-Boolean constraint

4x1 + 2x2 + x3 ≤ 4x2 + 2x3 + x1

I can be simplified to 3x1 − 2x2 − x3 ≤ 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 16/ 25



Background — Symmetry Breaking

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I add blocking constraint to remove symmetric assignments

I usually removing lexicographic larger assignments
viewing x1x2x3 as bitstring, e.g., 011 �lex 110

want to encode x1x2x3 �lex (x1x2x3)�π

same as x1x2x3 �lex x2x3x1

I alternative: view bitstring as binary number

I easy to encode using pseudo-Boolean constraint

4x1 + 2x2 + x3 ≤ 4x2 + 2x3 + x1

I can be simplified to 3x1 − 2x2 − x3 ≤ 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 16/ 25



Background — Symmetry Breaking

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I add blocking constraint to remove symmetric assignments

I usually removing lexicographic larger assignments
viewing x1x2x3 as bitstring, e.g., 011 �lex 110

want to encode x1x2x3 �lex (x1x2x3)�π

same as x1x2x3 �lex x2x3x1

I alternative: view bitstring as binary number

I easy to encode using pseudo-Boolean constraint

4x1 + 2x2 + x3 ≤ 4x2 + 2x3 + x1

I can be simplified to 3x1 − 2x2 − x3 ≤ 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 16/ 25



Background — Symmetry Breaking

I let π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I add blocking constraint to remove symmetric assignments

I usually removing lexicographic larger assignments
viewing x1x2x3 as bitstring, e.g., 011 �lex 110

want to encode x1x2x3 �lex (x1x2x3)�π

same as x1x2x3 �lex x2x3x1

I alternative: view bitstring as binary number

I easy to encode using pseudo-Boolean constraint

4x1 + 2x2 + x3 ≤ 4x2 + 2x3 + x1

I can be simplified to 3x1 − 2x2 − x3 ≤ 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 16/ 25



Output from Symmetry Breaking

I give formula x1 + x2 + x3 ≥ 2 to symmetry breaker
(falsified by red assignments)

I output:
I for permutation

π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I (syntactic) symmetry detected (ignoring objective)

(x1 + x2 + x3 ≥ 2)�π = x2 + x3 + x1 ≥ 2
I breaking constraint

3x1 − 2x2 − x3 ≤ 0 (falsified by purple assignments)

How prove adding constraint is OK?

Truth Table

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

π

π

Notation: C�π substitutes variables in C as specified by π

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 17/ 25



Output from Symmetry Breaking

I give formula x1 + x2 + x3 ≥ 2 to symmetry breaker
(falsified by red assignments)

I output:
I for permutation

π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }

I (syntactic) symmetry detected (ignoring objective)
(x1 + x2 + x3 ≥ 2)�π = x2 + x3 + x1 ≥ 2

I breaking constraint
3x1 − 2x2 − x3 ≤ 0 (falsified by purple assignments)

How prove adding constraint is OK?

Truth Table

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

π

π

Notation: C�π substitutes variables in C as specified by π

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 17/ 25



Output from Symmetry Breaking

I give formula x1 + x2 + x3 ≥ 2 to symmetry breaker
(falsified by red assignments)

I output:
I for permutation

π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I (syntactic) symmetry detected (ignoring objective)

(x1 + x2 + x3 ≥ 2)�π = x2 + x3 + x1 ≥ 2

I breaking constraint
3x1 − 2x2 − x3 ≤ 0 (falsified by purple assignments)

How prove adding constraint is OK?

Truth Table

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

π

π

Notation: C�π substitutes variables in C as specified by π

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 17/ 25



Output from Symmetry Breaking

I give formula x1 + x2 + x3 ≥ 2 to symmetry breaker
(falsified by red assignments)

I output:
I for permutation

π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I (syntactic) symmetry detected (ignoring objective)

(x1 + x2 + x3 ≥ 2)�π = x2 + x3 + x1 ≥ 2
I breaking constraint

3x1 − 2x2 − x3 ≤ 0 (falsified by purple assignments)

How prove adding constraint is OK?

Truth Table

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

π

π

Notation: C�π substitutes variables in C as specified by π

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 17/ 25



Output from Symmetry Breaking

I give formula x1 + x2 + x3 ≥ 2 to symmetry breaker
(falsified by red assignments)

I output:
I for permutation

π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I (syntactic) symmetry detected (ignoring objective)

(x1 + x2 + x3 ≥ 2)�π = x2 + x3 + x1 ≥ 2
I breaking constraint

3x1 − 2x2 − x3 ≤ 0 (falsified by purple assignments)

How prove adding constraint is OK?

Truth Table

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

π

π

Notation: C�π substitutes variables in C as specified by π

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 17/ 25



The Dominance Rule
Idea (From Dominance Breaking)

assignment is dominated if we find strictly better
assignment ⇒ can remove dominated assignments

I allow to add constraint C , e.g, 3x1 − 2x2 − x3 ≤ 0

I if for every ρ falsifying C but satisfying F (purple)

I we find ρ′ that satisfies F and f (ρ) > f (ρ′)

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

Notation: F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

In general not efficiently verifiable, however can provide explicit proof.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 18/ 25



The Dominance Rule
Idea (From Dominance Breaking)

assignment is dominated if we find strictly better
assignment ⇒ can remove dominated assignments

I allow to add constraint C , e.g, 3x1 − 2x2 − x3 ≤ 0

I if for every ρ falsifying C but satisfying F (purple)

I we find ρ′ that satisfies F and f (ρ) > f (ρ′)

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

Notation: F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

In general not efficiently verifiable, however can provide explicit proof.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 18/ 25



The Dominance Rule
Idea (From Dominance Breaking)

assignment is dominated if we find strictly better
assignment ⇒ can remove dominated assignments

I allow to add constraint C , e.g, 3x1 − 2x2 − x3 ≤ 0

I if for every ρ falsifying C but satisfying F (purple)

I we find ρ′ that satisfies F and f (ρ) > f (ρ′)

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

Notation: F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

In general not efficiently verifiable, however can provide explicit proof.
Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 18/ 25



The Dominance Rule
Idea (From Dominance Breaking)

assignment is dominated if we find strictly better
assignment ⇒ can remove dominated assignments

I allow to add constraint C , e.g, 3x1 − 2x2 − x3 ≤ 0

I if for every ρ falsifying C but satisfying F (purple)

I we find ρ′ that satisfies F and f (ρ) > f (ρ′)

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

Notation: F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

In general not efficiently verifiable, however can provide explicit proof.
Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 18/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Example

I want to add C : 3x1 − 2x2 − x3 ≤ 0

I choose ω = π = { x1 7→ x2, x2 7→ x3, x3 7→ x1 }
I have to prove:

F ∪ {¬C } |= F�ω ∪ { f > f�ω }, i.e.,

I given F : x1 + x2 + x3 ≥ 2
and ¬C : 3x1 − 2x2 − x3 > 0

I derive F�ω ≡ (x1 + x2 + x3 ≥ 2)�ω

≡ x2 + x3 + x1 ≥ 2

I and
f > f�ω ≡ 4x1 + 2x2 + x3 > (4x1 + 2x2 + x3)�ω

≡ 4x1 + 2x2 + x3 > 4x2 + 2x3 + x1

≡ 3x1 − 2x2 − x3 > 0

Dominance Rule (simplified)

Add C if there is witnessing
substitution ω s.t.

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 19/ 25



The Dominance Rule — Further Remarks

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

I “|=” replaced by efficiently machine-verifiable
proof system (cutting planes)

I in paper: any strict order instead of f > f�ω

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 20/ 25



The Dominance Rule — Further Remarks

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

I “|=” replaced by efficiently machine-verifiable
proof system (cutting planes)

I in paper: any strict order instead of f > f�ω

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 20/ 25



The Dominance Rule — Further Remarks

Dominance Rule (simplified)

Can derive constraint C from formula F if a witnessing
substitution ω is provided such that

F ∪ {¬C } |= F�ω ∪ { f > f�ω }

I “|=” replaced by efficiently machine-verifiable
proof system (cutting planes)

I in paper: any strict order instead of f > f�ω

objective
value x1 x2 x3

0 0 0 0
1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

ω
ω

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 20/ 25



Supported Applications – Symmetry Breaking

I SAT
challenge: translate breaking constraint from PB to CNF

I Constraint Programming
challenge: integer domains instead of 0-1

A B

C D E F

G H

example: The Crystal Maze puzzle. Place numbers 1 to 8 without repetition, so
that adjacent circles do not have consecutive numbers. Puzzle can be mirrored
horizontally. Without loss of generality number in A smaller than number in G .

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 21/ 25



Supported Applications – Dominance Breaking

I maximum clique solving (find largest fully connected component)
challenge: lazy breaking

example: consider green but not blue node (every neighbour of blue is also
neighbour of green)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 22/ 25



Experiments

I evaluated on SAT competition benchmarks

I used BreakID2 to find and break symmetries

1

10

100

1000

10000

1 10 100 1000 10000
BreakID + proof logging (time in s)

B
re

ak
ID

 (
tim

e 
in

 s
)

1MB

1GB

proof size

1

10

100

1000

10000

1 10 100 1000 10000
VeriPB (verification time in s)

B
re

ak
ID

 +
 p

ro
of

 lo
gg

in
g 

(t
im

e 
in

 s
)

Requires Breaking no unsolved yes

I proof logging overhead negligible

I verification at most 20 times slower than solving for 95 % of instance

2https://bitbucket.org/krr/breakid/

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 23/ 25

https://bitbucket.org/krr/breakid/


Future Work

understand power of dominance rule:

I can we simulate dominance rule with redundance rule or extended cutting planes?

improve performance:

I binary format / on-the-fly compression

I trimming proof while verifying (as for DRAT [HHW13])

increase trustworthiness:

I formally verified verifier

proof logging for more algorithms and problems:

I symmetric explanation learning [DBB17]

I MaxSAT

I more propagators in constraint programming

I integer programming

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 24/ 25



Future Work

understand power of dominance rule:

I can we simulate dominance rule with redundance rule or extended cutting planes?

improve performance:

I binary format / on-the-fly compression

I trimming proof while verifying (as for DRAT [HHW13])

increase trustworthiness:

I formally verified verifier

proof logging for more algorithms and problems:

I symmetric explanation learning [DBB17]

I MaxSAT

I more propagators in constraint programming

I integer programming

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 24/ 25



Future Work

understand power of dominance rule:

I can we simulate dominance rule with redundance rule or extended cutting planes?

improve performance:

I binary format / on-the-fly compression

I trimming proof while verifying (as for DRAT [HHW13])

increase trustworthiness:

I formally verified verifier

proof logging for more algorithms and problems:

I symmetric explanation learning [DBB17]

I MaxSAT

I more propagators in constraint programming

I integer programming

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 24/ 25



Future Work

understand power of dominance rule:

I can we simulate dominance rule with redundance rule or extended cutting planes?

improve performance:

I binary format / on-the-fly compression

I trimming proof while verifying (as for DRAT [HHW13])

increase trustworthiness:

I formally verified verifier

proof logging for more algorithms and problems:

I symmetric explanation learning [DBB17]

I MaxSAT

I more propagators in constraint programming

I integer programming
Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 24/ 25



Conclusion
I proof logging is well-established standard for SAT solving

I not sufficient for all techniques used in SAT (e.g. symmetry breaking)

our work: proof logging for symmetry breaking (BreakID3) + verification (VeriPB4)

I simple to implement + efficient proof checking

I fully evaluated for symmetry breaking on SAT competition benchmarks
I proof of concept for

I symmetry breaking in constraint programming
I dynamic dominance breaking for maximum clique

future work: understand power of dominance rule, improve performance, increase
trustworthiness, proof logging for more algorithms and problems

3

https://bitbucket.org/krr/breakid/

4

https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 25/ 25

https://bitbucket.org/krr/breakid/
https://gitlab.com/MIAOresearch/VeriPB


Conclusion
I proof logging is well-established standard for SAT solving

I not sufficient for all techniques used in SAT (e.g. symmetry breaking)

our work: proof logging for symmetry breaking (BreakID3) + verification (VeriPB4)

I simple to implement + efficient proof checking

I fully evaluated for symmetry breaking on SAT competition benchmarks
I proof of concept for

I symmetry breaking in constraint programming
I dynamic dominance breaking for maximum clique

future work: understand power of dominance rule, improve performance, increase
trustworthiness, proof logging for more algorithms and problems

3https://bitbucket.org/krr/breakid/
4https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 25/ 25

https://bitbucket.org/krr/breakid/
https://gitlab.com/MIAOresearch/VeriPB


Conclusion
I proof logging is well-established standard for SAT solving

I not sufficient for all techniques used in SAT (e.g. symmetry breaking)

our work: proof logging for symmetry breaking (BreakID3) + verification (VeriPB4)

I simple to implement + efficient proof checking

I fully evaluated for symmetry breaking on SAT competition benchmarks
I proof of concept for

I symmetry breaking in constraint programming
I dynamic dominance breaking for maximum clique

future work: understand power of dominance rule, improve performance, increase
trustworthiness, proof logging for more algorithms and problems

3https://bitbucket.org/krr/breakid/
4https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 25/ 25

https://bitbucket.org/krr/breakid/
https://gitlab.com/MIAOresearch/VeriPB


Strengthening Rules (simplified)

I for formula F , objective f , and sequence of derived constraints D1,D2, . . .

I let Gi , be set of constraints added so far (Gi = F ∪ {D1, . . . ,Di−1 })
I redundance based strengthening:

(generalize redundancy from SAT [HKB17, BT19] to PB and optimization)

Gi ∪ {¬Di } |= (Gi ∪ Di )�ω ∪ { f�ω ≤ f }
Di

I dominance based strengthening:

Gi ∪ {¬Di } |= F�ω ∪ { f�ω < f }
Di

I rules are annotated by:
I used substitution ω
I explicit proof for “|=”

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 1/ 8



References I

[AW13] Tobias Achterberg and Roland Wunderling.
Mixed Integer Programming: Analyzing 12 Years of Progress.
In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages
449–481. Springer, 2013.

[BB21] Lee A. Barnett and Armin Biere.
Non-clausal Redundancy Properties.
In André Platzer and Geoff Sutcliffe, editors, Proceedings of the 28th International Conference on
Automated Deduction (CADE 28), volume 12699 of Lecture Notes in Computer Science, pages
252–272, 2021.

[BCH21] Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule.
A Flexible Proof Format for SAT Solver-Elaborator Communication.
In Proceedings of the 27th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’21), volume 12651 of Lecture Notes in Computer Science,
pages 59–75. Springer, March-April 2021.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Certified Symmetry and Dominance Breaking for Combinatorial Optimisation.
In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI ’22), February 2022.
To appear.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 2/ 8



References II

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2nd edition, February 2021.

[Bie06] Armin Biere.
TraceCheck.
http://fmv.jku.at/tracecheck/, 2006.

[BT19] Samuel R. Buss and Neil Thapen.
DRAT Proofs, Propagation Redundancy, and Extended Resolution.
In Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability
Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer,
July 2019.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy.
Verifying Integer Programming Results.
In Proceedings of the 19th International Conference on Integer Programming and Combinatorial
Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science, pages 148–160.
Springer, June 2017.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 3/ 8

http://fmv.jku.at/tracecheck/


References III

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp.
Efficient Certified RAT Verification.
In Proceedings of the 26th International Conference on Automated Deduction (CADE-26),
volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer, August 2017.

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp.
Efficient Certified Resolution Proof Checking.
In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in Computer Science,
pages 118–135. Springer, April 2017.

[DBB17] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe.
Symmetric Explanation Learning: Effective Dynamic Symmetry Handling for SAT.
In Proceedings of the 20th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’17), volume 10491 of Lecture Notes in Computer Science, pages 83–100. Springer,
August 2017.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 4/ 8



References IV

[EG21] Leon Eifler and Ambros Gleixner.
A Computational Status Update for Exact Rational Mixed Integer Programming.
In Proceedings of the 22nd International Conference on Integer Programming and Combinatorial
Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer Science, pages 163–177.
Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying All Differences Using Pseudo-Boolean Reasoning.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI ’20), volume 34, pages
1486–1494. AAAI Press, 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble.
Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems.
In Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
(IJCAI ’20), pages 1134–1140, 2020.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 5/ 8



References V

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
An Auditable Constraint Programming Solver.
In Proceedings of the 28th International Conference on Principles and Practice of Constraint
Programming (CP ’22), 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.
Certified CNF Translations for Pseudo-Boolean Solving.
In Proceedings of the 25nd International Conference on Theory and Applications of Satisfiability
Testing (SAT ’22), 2022.

[GN03] Evgueni Goldberg and Yakov Novikov.
Verification of Proofs of Unsatisfiability for CNF Formulas.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’03), pages
886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström.
Certifying Parity Reasoning Efficiently Using Pseudo-Boolean Proofs.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI ’21), volume 35, pages
3768–3777, 2021.

[GSVW14] Maria Garcia de la Banda, Peter J. Stuckey, Pascal Van Hentenryck, and Mark Wallace.
The future of optimization technology.
Constraints, 19(2):126–138, April 2014.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 6/ 8



References VI

[HHW13] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler.
Trimming While Checking Clausal Proofs.
In Proceedings of the 13th International Conference on Formal Methods in Computer-Aided
Design (FMCAD ’13), pages 181–188, October 2013.

[HHW15] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler.
Expressing Symmetry Breaking in DRAT Proofs.
In Proceedings of the 25th International Conference on Automated Deduction (CADE-25),
volume 9195 of Lecture Notes in Computer Science, pages 591–606. Springer, August 2015.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Short Proofs Without New Variables.
In Proceedings of the 26th International Conference on Automated Deduction (CADE-26),
volume 10395 of Lecture Notes in Computer Science, pages 130–147. Springer, August 2017.

[KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere.
The Proof Checkers Pacheck and Pastèque for the Practical Algebraic Calculus.
In Proceedings of Formal Methods in Computer Aided Design, FMCAD 2020, pages 264–269,
2020.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 7/ 8



References VII

[KFBK22] Daniela Kaufmann, Mathias Fleury, Armin Biere, and Manuel Kauers.
Practical algebraic calculus and Nullstellensatz with the checkers Pacheck and Pastèque and
Nuss-Checker.
Formal Methods in System Design, 2022.

[RBK18] Daniela Ritirc, Armin Biere, and Manuel Kauers.
A practical polynomial calculus for arithmetic circuit verification.
In Proceedings of the 3rd International Workshop on Satisfiability Checking and Symbolic
Computation (SC2’18), pages 61–76, 2018.

[TD20] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni.
On certifying the UNSAT result of dynamic symmetry-handling-based SAT solvers.
Constraints, 25(3-4):251–279, 2020.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr.
DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs.
In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
July 2014.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Symmetry and Dominance 8/ 8


	Appendix

