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Machine learning in
atomic-scale simulations



Predictive accuracy for real materials

First-principles calculations promise quantitatively accurate simulations
that make no use of experimental data

Emergent physics from first principles: still a tremendous challenge

Machine learning to the rescue
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Grabowski et al., PRB (2009); Kapil, Engel, Rossi,MC, JCTC (2019)
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No regression without representation
Key step in any atomistic ML task: mapping an atomic structure to a
suitable mathematical representation
Features, distances, kernels, can largely be used interchangeably

*

* *

*

train set

inference

classifica�on

dimensionality
reduc�on
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Interpretable structural
representations



What do we want from a representation?
1 Be complete (injective)
2 Reflect basic physical symmetries
3 Be smooth, regular
4 Exploit additivity
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Musil et al., Chem. Rev. (2021)



Additivity, and locality

Additive ansatz for extensive properties↔ Additive models / features

Locality and nearsightedness→ divide et impera, transferability
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A phylogenetic tree of ML representations
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Universal feature construction
Most frameworks can be expressed in terms of n-body correlations of
atom positions. Only difference - the choice of basis
Extension to a fully equivariant framework (NICE)
... to features to describe long-range interactions (LODE)
... and to message-passing, N-center features (MP-ACDC)

* * *

10 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Introductory review:Musil et al., Chem. Rev. (2021)
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Latest & greatest: Nigam, Pozdnyakov, Fraux,MC, JCP (2022)

http://dx.doi.org/10.1063/5.0087042


A hierarchy of equivariant features

Neighbor density can be expanded in radial functions and Ym
l →

equivariant features

〈n1|ρ⊗1i ;λµ〉 ≡ 〈n1λ (−µ)|ρi〉

Recursive constructiono of N-body features based on sums of angular
momenta

〈. . . ; nν lνkν ; nlk|ρ⊗(ν+1)
i ;λµ〉 =∑

qm

〈n|ρ⊗1i ; lm〉 〈. . . ; nν lνkν |ρ⊗νi ; kq〉 〈lm; kq|λµ〉

All equivariant ν-neighbor features transform like angular momenta

〈q|R̂A; ρ⊗νi ;λµ〉 ∼
∑
µ′

Dλµµ′ (R) 〈q|A; ρ⊗νi ;λµ′〉

Can be used to compute efficiently invariant features |ρ⊗νi ;00〉
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Nigam, Pozdnyakov,MC, JCP (2020); https://github.com/cosmo-epfl/nice

http://dx.doi.org/10.1063/5.0021116
https://github.com/cosmo-epfl/nice


Features, models and introspection



Symmetrized correlations and potentials
Symmetrized correlations can be linked to body-ordered expansions

1 ν = 2 correlations: rotation-averaged tensor product of neighbor densities
2 This is equivalent to a function of two distances and one angle
3 In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors

tuples (rj1 i , rj2 i , r̂j1 i · r̂j2 i)
4 Linear model→ 3-body potential!
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Understanding the range of interactions
Representations are built for different cutoff radii
Dimensionality/accuracy tradeoff: a measure of the range of interactions
Multi-scale kernels K (A,B) =

∑
i wiKi (A,B) yield the best of all worlds

*

*
*
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Bartók, De, Poelking, Kermode, Bernstein, Csányi,MC, Science Advances (2017) [data: QM9, von Lilienfeld&C]

http://dx.doi.org/10.1126/sciadv.1701816
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Willatt, Musil,MC, PCCP (2018)

http://dx.doi.org/10.1039/C8CP05921G


Machine-learning the periodic table
How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartók
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Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)
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Maps, predictions and
interpretation



Structure-property maps

Representing databases of conformers, and the effect of perturbations
on stability and properties

Rationalizing structural patterns and motifs that contribute to stability

17 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Maksimov, Baldauf, Rossi, IJQC (2020)



Structure-property maps

Representing databases of conformers, and the effect of perturbations
on stability and properties

Rationalizing structural patterns and motifs that contribute to stability
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018);http://interactive.sketchmap.org

http://dx.doi.org/10.1039/C7SC04665K
http://interactive.sketchmap.org


Beyond unsupervised maps
Kernel PCA map of a dataset of carbon structures
KPCovR reveals more clearly structure/stability relations
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MC, Unsupervised machine learning in atomistic simulations, between predictions and understanding, JCP (2019)

https://www.materialscloud.org/discover/kpcovr/carbons-10
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Helfrecht, Cersonsky, Fraux,MC, MLST (2020); https://chemiscope.org

https://www.materialscloud.org/discover/kpcovr/carbons-05
http://dx.doi.org/10.1088/2632-2153/aba9ef


Building blocks of molecular materials

Using data analytics to identify the ‘‘synthons’’ contributing to stability in
molecular materials

Correlate by construction with contributions to cohesive energy

19 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Cersonsky,MC, in preparation
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Physical insights from knock-out ML models

Limiting accuracy of models built on ‘‘traditional’’ descriptors gives
objective criterion to rank their information content

Combination of ‘‘universal interpolators’’ and large datasets quantify the
significance of heuristic design rules
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Helfrecht et al., JCP (2019)

http://dx.doi.org/10.1063/1.5119751


A look into the zeolite sorting hat

A SVM classifier of known and hypothetical zeolites based on density
correlation features

Misclassified hypothetical structures have strong potential for synthesis

Identifying the structural correlations that contribute most to target
property by real-space projection of the SVM weights
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Helfrecht et al., arxiv:2110.13764
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Outlook

Physics vs data-driven modeling: porous divide at the atomic scale

Physics-based priors: when and up to which point are they useful?

‘‘Interpretability’’ is a loose concept: what we gain and what we lose?

PHYSICS

DATA
symmetries

locality

scaling/conservation laws

training targets

affordable
accuracy

flexibility
"beyond models"

advanced
analytics

integrated ML models

multiparadigm simulations

quantitative description
of emergent behavior

22 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Slides→ tinyurl.com/ceriotti-2022-berkeley
Review→ Musil et al. ChemRev (2021)

Code:→ github.com/lab-cosmo

https://tinyurl.com/ceriotti-2022-berkeley
https://doi.org/10.1021/acs.chemrev.1c00021
https://github.com/lab-cosmo/




A Dirac notation for ML

features 
index

representation
target & nature

radial indices

angular channels

structure

center
field

correlation
order parity

rot. 
symmetry

A representation maps a structure A (or one environment Ai ) to a vector
discretized by a feature index Q
Bra-ket notation 〈Q|A; rep.〉 indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction
of a kernel, or a linear model

〈Y |A〉 =

∫
dQ 〈Y |Q〉 〈Q|A〉

24 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Willatt, Musil,MC, JCP (2019); https://tinyurl.com/dirac-rep

https://tinyurl.com/dirac-rep
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Willatt, Musil,MC, JCP (2019); https://tinyurl.com/dirac-rep

https://tinyurl.com/dirac-rep


What you ask is what you get

Understanding what goes into a representation is key to achieve
meaningful results from automated data analytics

Example: you don’t alwayswant to have rotational invariance
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data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)
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Variations on a theme
Most of the existing density-based representations and kernels emerge
as special cases of this framework

Basis set choice - e.g. plane waves basis for |ρ⊗2
i 〉 (Ziletti et al. N.Comm 2018)

Projection on symmetry functions (Behler-Parrinello, DeepMD)

〈k|A; ρ⊗2〉 =
∑
ij∈A

eik·rij

26 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Willatt, Musil,MC, JCP (2019), https://arxiv.org/pdf/1807.00408
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Measuring feature spaces
Quantitative comparison of relative information content of different
features, metrics & kernels
Feature space Reconstruction Error (FRE): linearly-embeddable mutual
information

GFRE(F → F ′) = min
P∈RnF×nF′

‖XF ′ − XFP‖
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Density expansion and SOAP

What if we use radial functions and spherical harmonics?

Symmetrized tensor product→ SOAP power spectrum!

Easily generalized to higher body order.
δ-distribution limit→ atomic cluster expansion
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Two-neighbors descriptors
Construction of a three-body (ν = 2) invariant atomic descriptor

1 Define relative position of neighbors (translation-invariant)
2 Positions are transformed in a neighbor density (permutation invariant)
3 Symmetrize over rotations a tensor product of the neighbor densities
4 This is equivalent to a function of two distances and one angle
5 g → δ limit⇒ list of 2-neighbors tuples (rj1 i , rj2 i , r̂j1 i · r̂j2 i)
6 Linear model⇒ 3-body potential!
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Density trick in an 〈nlm| basis
The symmetrized correlations can be computed in closed form using a
discrete basis

The neighbor density can be expanded on a basis of radial functions
〈x|n〉 ≡ Rn(x) and spherical harmonics 〈x̂|lm〉 ≡ Ym

l (x̂)
Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices Dl

(
R̂
)

Orthogonality of Wigner matrices yields the SOAP powerspectrum
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A hierarchy of equivariant features

A generalization of the definition yields N-body features that transform
like angular momenta

〈X |ρ⊗νi ;σ;λµ〉

Recursive construction based on sums of angular momenta and an
expansion of the atom density

〈n1l1k1|ρ⊗1i ;λµ〉 ≡ 〈n1λ (−µ)|ρi〉 δl1λδk1λδσ1 ≡ 〈n1|ρ
⊗1
i ;λµ〉

〈. . . ; nν lνkν ; nlk|ρ⊗(ν+1)
i ;σ;λµ〉 = δσ((−1)l+k+λs)ckλ×∑

qm

〈lm; kq|λµ〉 〈n|ρ⊗1i ; lm〉 〈. . . ; nν lνkν |ρ⊗νi ; s; kq〉

Can be used to compute efficiently invariant features |ρ⊗νi ;0;00〉

31 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Nigam, Pozdnyakov,MC, JCP (2020)

http://dx.doi.org/10.1063/5.0021116


NICE features for ML
Problem: number of features grows exponentially with ν
Solution: an N-body iterative contraction of equivariants (NICE)
framework

After each body order increase, the most relevant features are selected and
used for the next iteration
Systematic convergence with ν and contraction truncation

body-order
iteration

contraction

10.1063/5.0021116
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NICE features for ML
Problem: number of features grows exponentially with ν
Solution: an N-body iterative contraction of equivariants (NICE)
framework

After each body order increase, the most relevant features are selected and
used for the next iteration
Systematic convergence with ν and contraction truncation
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Machine-learning the periodic table
How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)
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Recognizing active protein ligands

A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization

34 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Bartok, De, Poelking, Kermode, Bernstein, Csanyi,MC, Science Advances (2017) [data: DUD-E, Shoichet]

http://dx.doi.org/10.1126/sciadv.1701816


Structure-property landscapes

Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties (ex.:
azapentacene structure-energy-property landscape maps)

35 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018);http://interactive.sketchmap.org

http://dx.doi.org/10.1039/C7SC04665K
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Principal Covariates Regression
Very simple idea to combine PCA and latent-space LR to find a
dimensionality reduction that preserves variance and predicts well

` = α‖X− XPXTPTX‖2 + (1− α) ‖Y− XPXTPTY ‖2

Solution can be found working in sample space (looking for the
eigenvectors of a modified Grammatrix)

K̃ = αXXT + (1− α)XPXYPT
XYX

T

... or in feature space by diagonalizing a modified covariance

C̃ = αXTX + (1− α)
(
XTX

)−1/2
XTYYTX

(
XTX

)−1/2
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S. de Jong and HAL Kiers, Scandinavian Symposium on Chemometrics (1992)



Kernel PCovR
Kernel versions of PCovR can be obtained with a modified kernel
K̃ = αK + (1− α) ŶŶT , diagonalizing it and finding the projector

PKT =
(
αI + (1− α) (K + λI)−1 YŶ

)
UK̃Λ

1/2

K̃

Projection
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Where unsupervised meets supervised
Using KPCovR to reveal structure-property relations in databases of
materials structures
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Helfrecht, Cersonsky, Fraux,MC, MLST (2020)

http://dx.doi.org/10.1088/2632-2153/aba9ef


A Generalized Convex Hull Construction

39 Michele Ceriotti cosmo.epfl.ch Interpretable atomistic ML

Anelli, Engel, Pickard &MC, PRM (2019); Engel, Anelli,MC, Pickard & Needs, Nature Comm. (2018)

http://dx.doi.org/10.1038/s41467-018-04618-6

