Lattice problems are (sort of) equivalent in all norms (and the mysterious wiggle)

Frederick Eisenbrand

Moritz Venzin

Divesh Aggarwal

Yanlin Chen

Rajendra Kumar

Zeyong Li

Noah Stephens-Davidowitz

Thomas Rothvoss

Moritz Venzin

• \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .

• \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .
- Specified by a basis b_1, \ldots, b_n , linearly independent vectors

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .
- Specified by a basis b_1, \ldots, b_n , linearly independent vectors

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .
- Specified by a basis b_1, \ldots, b_n , linearly independent vectors
- $\mathcal{L} = \{a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n} \mid a_i \in \mathbb{Z}\}$

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .
- Specified by a basis b_1, \ldots, b_n , linearly independent vectors
- $\mathcal{L} = \{a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n} \mid a_i \in \mathbb{Z}\}$
- $\lambda_1(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{y}\|$

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n .
- Specified by a basis b_1, \ldots, b_n , linearly independent vectors
- $\mathcal{L} = \{a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n} \mid a_i \in \mathbb{Z}\}$
- $\lambda_1(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{y}\|$

• \mathcal{L} is a discrete set of vectors in \mathbb{R}^n

Specified

•
$$\mathcal{L} = \{a_1 \mathbf{k}\}$$

• $\lambda_1(\mathcal{L}) :=$

Different norms of interest:

$$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}.$$

 $\|\mathbf{x}\|_{\infty} := \max_{i} |x_{i}|.$

ndent vectors

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n
- Specified
- $\mathcal{L} = \{a_1 \mathbf{k}\}$
- $\lambda_1(\mathcal{L}) :=$

Different norms of interest:

$$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}.$$

 $\|\mathbf{x}\|_{\infty} := \max_{i} |x_{i}|.$

ndent vectors

$$\|\mathbf{x}\|_{K} := \min\{r \ge 0 : \mathbf{x} \in rK\}.$$

K is a symmetric convex body

- \mathcal{L} is a discrete set of vectors in \mathbb{R}^n
- Specified
- $\mathcal{L} = \{a_1 \mathbf{k}\}$
- $\lambda_1(\mathcal{L}) :=$

Different norms of interest:

$$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}.$$

 $\|\mathbf{x}\|_{\infty} := \max_{i} |x_{i}|.$

ndent vectors

$$\|\mathbf{x}\|_{K} := \min\{r \ge 0 : \mathbf{x} \in rK\}.$$

K is a symmetric convex body

$$\lambda_1^{(2)}, \lambda_1^{(\infty)}, \lambda_1^{(K)}$$

• $SVP_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$

• $SVP_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$

- $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$
- γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$

- $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$
- γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$

- $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$
- γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$
- Hard for $\gamma \leq n^{1/\log \log n}$.

- $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$
- γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$
- Hard for $\gamma \leq n^{1/\log \log n}$.

For crypto, typically $\gamma = \text{poly}(n)$.

For this talk, mostly think of $\gamma \approx 1000$.

MAY 7, 2020!!

MAY 7, 2020!!

Faster algorithms for SVP_p/CVP_p (question at Simons) > Inbox ×

Venzin Moritz Andreas moritz.venzin@epfl.ch via gmail.com

to noahsd@gmail.com ▼

Dear Noah

Thu, May 7, 2020, 4:28 PM

Eisenbrand and Venzin

Friedrich Eisenbrand

Moritz Venzin

Approximate CVP_p in time $2^{0.802 n}$

Friedrich Eisenbrand *
EPFL
Switzerland
friedrich.eisenbrand@epfl.ch

Moritz Venzin
EPFL
Switzerland
moritz.venzin@epfl.ch

Eisenbrand and Venzin

Friedrich Eisenbrand

Moritz Venzin

Approximate CVP_p in time $2^{0.802 n}$

Friedrich Eisenbrand*
EPFL
Switzerland
friedrich.eisenbrand@epfl.ch

Moritz Venzin
EPFL
Switzerland
moritz.venzin@epfl.ch

Best known running time for O(1)-SVP₂ [LWXZ11, WLW15, AUV19]

The World After May 7, 2020

The World After May 7, 2020

The World After May 7, 2020

Algorithms below this line break crypto in practice.

The World After May 7, 2020

Possible resolutions:

- 1. A strangely wiggly line.
- 2. SETH is false.
- 3. Lattice-based crypto is <u>much</u> less secure than we think.

• Observation 1: The fastest algorithm for O(1)-SVP $_2$ runs in time $2^{0.802n}$.

- Observation 1: The fastest algorithm for O(1)-SVP₂ runs in time $2^{0.802n}$.
- Observation 2: It doesn't only find one O(1)-approximate ℓ_2 -shortest vector, it finds "exponentially many ℓ_2 -short vectors." (There are issues when there are only a few such points in the lattice, but it works out.)

- Observation 1: The fastest algorithm for O(1)-SVP₂ runs in time $2^{0.802n}$.
- Observation 2: It doesn't only find one O(1)-approximate ℓ_2 -shortest vector, it finds "exponentially many ℓ_2 -short Vectors." (There are issues when there are only a few such points in the lattice, but it works out.)
- Observation 3: Many ℓ_2 short vectors \Longrightarrow an O(1) -approximate ℓ_∞ -shortest vectors.

Observation 3: Many ℓ_2 short vectors \Longrightarrow one O(1)-approximate ℓ_∞ -shortest vectors.

$$\lambda_1^{(\infty)}(L) = 1 \qquad \lambda_1^{(2)}(L) \le \sqrt{n}$$

Observation 3: Many ℓ_2 short vectors \Longrightarrow one O(1)-approximate ℓ_∞ -shortest vectors.

$$\lambda_1^{(\infty)}(L) = 1 \qquad \lambda_1^{(2)}(L) \le \sqrt{n}$$

Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \leq \sqrt{n}$ and $N \geq 2^{n/10}$. Then, there exists $i \neq j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \leq 1000$.

Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \leq \sqrt{n}$ and $N \geq 2^{n/10}$. Then, there exists $i \neq j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \leq 1000$.

Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \le \sqrt{n}$ and $N \ge 2^{n/10}$. Then, there exists $i \ne j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \le 1000$.

Can cover the $\sqrt{n}B_2$ by $2^{n/10}$ cubes $500B_{\infty}$.

Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \le \sqrt{n}$ and $N \ge 2^{n/10}$. Then, there exists $i \ne j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \le 1000$.

Can cover the $\sqrt{n}B_2$ by $2^{n/10}$ cubes $500B_{\infty}$.

Technical detail: The specific property of the ℓ_∞ ball B_∞ that we used here is that $\sqrt{n}B_2$ contains B_∞ but can be covered by $2^{n/10}$ copies of $500B_\infty$.

Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \le \sqrt{n}$ and $N \ge 2^{n/10}$. Then, there exists $i \ne j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \le 1000$.

Can cover the $\sqrt{n}B_2$ by $2^{n/10}$ cubes $500B_{\infty}$.

Technical detail: The specific property of the ℓ_{∞} ball B_{∞} that we used here is that $\sqrt{n}B_2$ contains B_{∞} but can be covered by $2^{n/10}$ copies of $500B_{\infty}$.

[EV20] show a similar algorithm for CVP in $Any \ell_p$ norm!

Divesh Aggarwal

Yanlin Chen

Rajendra Kumar

Zeyong Li

NSD

Dimension-Preserving Reductions Between SVP and CVP in Different p-Norms

Divesh Aggarwal
CQT, National University of Singapore
dcsdiva@nus.edu.sg

Rajendra Kumar Indian Institute of Technology, Kanpur and National University of Singapore rjndr2503@gmail.com Yanlin Chen
Centrum Wiskunde & Informatica
yanlin@cwi.nl

Zeyong Li CQT, National University of Singapore li.zeyong@u.nus.edu

Noah Stephens-Davidowitz Cornell University noahsd@gmail.com

Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.)

Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.)

Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.)

For any $q \ge p$, a $2^{\varepsilon n}$ -time dimension- and rank-preserving reduction from 1. $O_{\varepsilon}(\gamma)$ -SVP $_q$ to γ -SVP $_p$.

Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.)

- 1. $O_{\varepsilon}(\gamma)$ -SVP_q to γ -SVP_p.
- 2. $O_{\varepsilon}(\gamma)$ -CVP_p to γ -CVP_q.

Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.)

- 1. $O_{\varepsilon}(\gamma)$ -SVP_q to γ -SVP_p.
- 2. $O_{\varepsilon}(\gamma)$ -CVP_p to γ -CVP_q.
- 3. $O_{\varepsilon}(1)$ -CVP_q to $(1 + \varepsilon)$ -SVP_p.

Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.)

- 1. $O_{\varepsilon}(\gamma)$ -SVP_q to γ -SVP_p.
- 2. $O_{\varepsilon}(\gamma)$ -CVP_p to γ -CVP_q.
- 3. $O_{\varepsilon}(1)$ -CVP_q to $(1 + \varepsilon)$ -SVP_p.

Thomas Rothvoss

Moritz Venzin

Approximate CVP in time $2^{0.802 n}$ - now in any norm!

Thomas Rothvoss*
University of Washington
rothvoss@uw.edu

Moritz Venzin[†]
EPFL
moritz.venzin@epfl.ch

October 7, 2021

Theorem. There is a $2^{\varepsilon n}$ -time dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -approximate SVP_K to $\gamma\text{-}\mathsf{CVP}_2$ for any norm K.

Theorem. There is a $2^{\varepsilon n}$ -time dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -approximate SVP_K to $\gamma\text{-}\mathsf{CVP}_2$ for any norm K.

Theorem. There is a $2^{0.802n+o(n)}$ -time algorithm for O(1)-CVP_K for any K.

Step 0: Apply a linear transformation to K so that it "looks roughly like the scaled ℓ_2 ball $B_2/20$."

Step 1: Sample $\mathbf{t} \sim K + B_2$.

Step 1: Sample $\mathbf{t} \sim K + B_2$.

Step 1: Sample $\mathbf{t} \sim K + B_2$.

Step 1: Sample $\mathbf{t} \sim K + B_2$.

Step 2: Given $\mathbf{t} \in \mathbb{R}^n$ with $\|\mathbf{t} - \mathbf{v}\|_2 \le 1$ for a K-shortest non-zero vector \mathbf{v} , use γ -CVP₂ oracle to find many "random" samples from $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$.

Step 2: Given $\mathbf{t} \in \mathbb{R}^n$ with $\|\mathbf{t} - \mathbf{v}\|_2 \le 1$ for a K-shortest non-zero vector \mathbf{v} , use γ -CVP₂ oracle to find many "random" samples from $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$.

Step 2: Given $\mathbf{t} \in \mathbb{R}^n$ with $\|\mathbf{t} - \mathbf{v}\|_2 \le 1$ for a K-shortest non-zero vector \mathbf{v} , use γ -CVP₂ oracle to find many "random" samples from $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$.

Step 3: Given a bunch of "random" lattice vectors $\mathbf{y_1}, \dots, \mathbf{y_N} \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$, output non-zero $\mathbf{y_i} - \mathbf{y_j}$ minimizing $\|\mathbf{y_i} - \mathbf{y_j}\|_K$ (or output $\mathbf{y_i}$ itself).

Step 3: Given a bunch of "random" lattice vectors $\mathbf{y_1}, \dots, \mathbf{y_N} \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$, output non-zero $\mathbf{y_i} - \mathbf{y_j}$ minimizing $\|\mathbf{y_i} - \mathbf{y_j}\|_K$ (or output $\mathbf{y_i}$ itself).

Step 1: Sample $\mathbf{t} \sim K + B_2$. Pray that $\|\mathbf{t} - \mathbf{y}\|_2 < 1$ for a K-shortest non-zero vector.

Step 2: ...

Step 3: Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself).

Step 1: Sample $\mathbf{t} \sim K + B_2$. Pray that $\|\mathbf{t} - \mathbf{y}\|_2 < 1$ for a K-shortest non-zero vector.

Step 2: ...

Step 3: Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself).

Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$.

Step 1: Sample $\mathbf{t} \sim K + B_2$. Pray that $\|\mathbf{t} - \mathbf{y}\|_2 < 1$ for a K-shortest non-zero vector.

Step 2: ...

Step 3: Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself).

Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$.

Need for step 3: B_2 can be covered by $2^{n/10}$ copies of 1000K.

Step 1: Sample $\mathbf{t} \sim K + B_2$.

Provided III $\sim 1 \text{ for a } K \text{ shortest non } 7910$

If $K \approx B_2/20$, this works.

Step 2: ..

Step 3: Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself).

Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$.

Need for step 3: B_2 can be covered by $2^{n/10}$ copies of 1000K.

Step 1: Sample $\mathbf{t} \sim K + B_2$.

Provided lift will a 1 for a K shortest non zero if $K \approx B_2/20$, this works.

Step 2: ...

Step 3: Given a bunch of random lattice vectors

Rothvoss and Venzin show how to find a linear transformation of any convex body so that the transformed body has these properties.

(Closely related to M-position. M = Milman)

Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$.

Need for step 3: B_2 can be covered by $2^{n/10}$ copies of 1000K.

Summary

- The fastest algorithms for O(1)-CVP $_K/O(1)$ -SVP $_K$ for any norm is $2^{0.802n}$!!
- We can reduce $O_{\varepsilon}(\gamma)$ -SVP_K to γ -CVP₂ in $2^{\varepsilon n}$ time for any K!!
- "Morally, lattice problems in any norm are equivalent up to a constant in the approximation factor!!"

Open Questions?

- 1. Is there a dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -SVP_K in any norm to γ -SVP₂ in $2^{\varepsilon n}$ time? (Currently have to reduce to γ -CVP₂ or from γ -SVP_p for $p \geq 2$.)
- $^{-}$ 2. What is the best running time for γ -SVP $_{\infty}$ for small constant γ ?!!
 - What's going on with that wiggle?
- 3. More generally, what about γ -SVP_K??!
- lacktriangle 4. Is there a norm K for which sieving algorithms work particularly well...
 - Easy
 - Medium
 - ♦ Hard

Open Questions?

- 1. Is there a dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -SVP_K in any norm to γ -SVP₂ in $2^{\varepsilon n}$ time? (Currently have to reduce to γ -CVP₂ or from γ -SVP_p for $p \geq 2$.)
- $^{-}$ 2. What is the best running time for γ -SVP $_{\infty}$ for small constant γ ?!!
 - What's going on with that wiggle?
- 3. More generally, what about γ -SVP_K??!
- lacktriangle 4. Is there a norm K for which sieving algorithms work particularly well...

