Lattice problems are (sort of) equivalent in all norms (and the mysterious wiggle) Frederick Eisenbrand Moritz Venzin Divesh Aggarwal Yanlin Chen Rajendra Kumar Zeyong Li Noah Stephens-Davidowitz Thomas Rothvoss Moritz Venzin • \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . • \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . - Specified by a basis b_1, \ldots, b_n , linearly independent vectors - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . - Specified by a basis b_1, \ldots, b_n , linearly independent vectors - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . - Specified by a basis b_1, \ldots, b_n , linearly independent vectors - $\mathcal{L} = \{a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n} \mid a_i \in \mathbb{Z}\}$ - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . - Specified by a basis b_1, \ldots, b_n , linearly independent vectors - $\mathcal{L} = \{a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n} \mid a_i \in \mathbb{Z}\}$ - $\lambda_1(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{y}\|$ - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n . - Specified by a basis b_1, \ldots, b_n , linearly independent vectors - $\mathcal{L} = \{a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n} \mid a_i \in \mathbb{Z}\}$ - $\lambda_1(\mathcal{L}) := \min_{\mathbf{y} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{y}\|$ • \mathcal{L} is a discrete set of vectors in \mathbb{R}^n Specified • $$\mathcal{L} = \{a_1 \mathbf{k}\}$$ • $\lambda_1(\mathcal{L}) :=$ Different norms of interest: $$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}.$$ $\|\mathbf{x}\|_{\infty} := \max_{i} |x_{i}|.$ ndent vectors - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n - Specified - $\mathcal{L} = \{a_1 \mathbf{k}\}$ - $\lambda_1(\mathcal{L}) :=$ Different norms of interest: $$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}.$$ $\|\mathbf{x}\|_{\infty} := \max_{i} |x_{i}|.$ ndent vectors $$\|\mathbf{x}\|_{K} := \min\{r \ge 0 : \mathbf{x} \in rK\}.$$ K is a symmetric convex body - \mathcal{L} is a discrete set of vectors in \mathbb{R}^n - Specified - $\mathcal{L} = \{a_1 \mathbf{k}\}$ - $\lambda_1(\mathcal{L}) :=$ Different norms of interest: $$\|\mathbf{x}\|_{p} := (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}.$$ $\|\mathbf{x}\|_{\infty} := \max_{i} |x_{i}|.$ ndent vectors $$\|\mathbf{x}\|_{K} := \min\{r \ge 0 : \mathbf{x} \in rK\}.$$ K is a symmetric convex body $$\lambda_1^{(2)}, \lambda_1^{(\infty)}, \lambda_1^{(K)}$$ • $SVP_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$ • $SVP_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$ - $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$ - γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$ - $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$ - γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$ - $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$ - γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$ - Hard for $\gamma \leq n^{1/\log \log n}$. - $\mathsf{SVP}_K(\mathcal{L})$: output a shortest non-zero $\mathbf{y} \in \mathcal{L}$ - γ -SVP_K(\mathcal{L}): Output $\mathbf{y} \in \mathcal{L}$ such that $0 < ||\mathbf{y}|| \le \gamma \lambda_1^{(K)}(\mathcal{L})$ - Hard for $\gamma \leq n^{1/\log \log n}$. For crypto, typically $\gamma = \text{poly}(n)$. For this talk, mostly think of $\gamma \approx 1000$. ### MAY 7, 2020!! ### MAY 7, 2020!! Faster algorithms for SVP_p/CVP_p (question at Simons) > Inbox × Venzin Moritz Andreas moritz.venzin@epfl.ch via gmail.com to noahsd@gmail.com ▼ Dear Noah Thu, May 7, 2020, 4:28 PM #### Eisenbrand and Venzin Friedrich Eisenbrand Moritz Venzin Approximate CVP_p in time $2^{0.802 n}$ Friedrich Eisenbrand * EPFL Switzerland friedrich.eisenbrand@epfl.ch Moritz Venzin EPFL Switzerland moritz.venzin@epfl.ch #### Eisenbrand and Venzin Friedrich Eisenbrand Moritz Venzin Approximate CVP_p in time $2^{0.802 n}$ Friedrich Eisenbrand* EPFL Switzerland friedrich.eisenbrand@epfl.ch Moritz Venzin EPFL Switzerland moritz.venzin@epfl.ch Best known running time for O(1)-SVP₂ [LWXZ11, WLW15, AUV19] ### The World After May 7, 2020 ### The World After May 7, 2020 ### The World After May 7, 2020 Algorithms below this line break crypto in practice. ### The World After May 7, 2020 Possible resolutions: - 1. A strangely wiggly line. - 2. SETH is false. - 3. Lattice-based crypto is <u>much</u> less secure than we think. • Observation 1: The fastest algorithm for O(1)-SVP $_2$ runs in time $2^{0.802n}$. - Observation 1: The fastest algorithm for O(1)-SVP₂ runs in time $2^{0.802n}$. - Observation 2: It doesn't only find one O(1)-approximate ℓ_2 -shortest vector, it finds "exponentially many ℓ_2 -short vectors." (There are issues when there are only a few such points in the lattice, but it works out.) - Observation 1: The fastest algorithm for O(1)-SVP₂ runs in time $2^{0.802n}$. - Observation 2: It doesn't only find one O(1)-approximate ℓ_2 -shortest vector, it finds "exponentially many ℓ_2 -short Vectors." (There are issues when there are only a few such points in the lattice, but it works out.) - Observation 3: Many ℓ_2 short vectors \Longrightarrow an O(1) -approximate ℓ_∞ -shortest vectors. Observation 3: Many ℓ_2 short vectors \Longrightarrow one O(1)-approximate ℓ_∞ -shortest vectors. $$\lambda_1^{(\infty)}(L) = 1 \qquad \lambda_1^{(2)}(L) \le \sqrt{n}$$ Observation 3: Many ℓ_2 short vectors \Longrightarrow one O(1)-approximate ℓ_∞ -shortest vectors. $$\lambda_1^{(\infty)}(L) = 1 \qquad \lambda_1^{(2)}(L) \le \sqrt{n}$$ Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \leq \sqrt{n}$ and $N \geq 2^{n/10}$. Then, there exists $i \neq j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \leq 1000$. Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \leq \sqrt{n}$ and $N \geq 2^{n/10}$. Then, there exists $i \neq j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \leq 1000$. Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \le \sqrt{n}$ and $N \ge 2^{n/10}$. Then, there exists $i \ne j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \le 1000$. Can cover the $\sqrt{n}B_2$ by $2^{n/10}$ cubes $500B_{\infty}$. Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \le \sqrt{n}$ and $N \ge 2^{n/10}$. Then, there exists $i \ne j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \le 1000$. Can cover the $\sqrt{n}B_2$ by $2^{n/10}$ cubes $500B_{\infty}$. Technical detail: The specific property of the ℓ_∞ ball B_∞ that we used here is that $\sqrt{n}B_2$ contains B_∞ but can be covered by $2^{n/10}$ copies of $500B_\infty$. Claim. Let $\mathbf{y}_1, ..., \mathbf{y}_N \in \mathbb{R}^n$ with $\|\mathbf{y}_i\| \le \sqrt{n}$ and $N \ge 2^{n/10}$. Then, there exists $i \ne j$ such that $\|\mathbf{y}_i - \mathbf{y}_j\|_{\infty} \le 1000$. Can cover the $\sqrt{n}B_2$ by $2^{n/10}$ cubes $500B_{\infty}$. Technical detail: The specific property of the ℓ_{∞} ball B_{∞} that we used here is that $\sqrt{n}B_2$ contains B_{∞} but can be covered by $2^{n/10}$ copies of $500B_{\infty}$. [EV20] show a similar algorithm for CVP in $Any \ell_p$ norm! Divesh Aggarwal Yanlin Chen Rajendra Kumar Zeyong Li NSD Dimension-Preserving Reductions Between SVP and CVP in Different p-Norms Divesh Aggarwal CQT, National University of Singapore dcsdiva@nus.edu.sg Rajendra Kumar Indian Institute of Technology, Kanpur and National University of Singapore rjndr2503@gmail.com Yanlin Chen Centrum Wiskunde & Informatica yanlin@cwi.nl Zeyong Li CQT, National University of Singapore li.zeyong@u.nus.edu Noah Stephens-Davidowitz Cornell University noahsd@gmail.com Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.) Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.) Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.) For any $q \ge p$, a $2^{\varepsilon n}$ -time dimension- and rank-preserving reduction from 1. $O_{\varepsilon}(\gamma)$ -SVP $_q$ to γ -SVP $_p$. Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.) - 1. $O_{\varepsilon}(\gamma)$ -SVP_q to γ -SVP_p. - 2. $O_{\varepsilon}(\gamma)$ -CVP_p to γ -CVP_q. Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.) - 1. $O_{\varepsilon}(\gamma)$ -SVP_q to γ -SVP_p. - 2. $O_{\varepsilon}(\gamma)$ -CVP_p to γ -CVP_q. - 3. $O_{\varepsilon}(1)$ -CVP_q to $(1 + \varepsilon)$ -SVP_p. Any γ -SVP/CVP algorithm can be converted into an algorithm that samples "random lattice points" with bounded norm/distance. (Key word: sparsification.) - 1. $O_{\varepsilon}(\gamma)$ -SVP_q to γ -SVP_p. - 2. $O_{\varepsilon}(\gamma)$ -CVP_p to γ -CVP_q. - 3. $O_{\varepsilon}(1)$ -CVP_q to $(1 + \varepsilon)$ -SVP_p. Thomas Rothvoss Moritz Venzin Approximate CVP in time $2^{0.802 n}$ - now in any norm! Thomas Rothvoss* University of Washington rothvoss@uw.edu Moritz Venzin[†] EPFL moritz.venzin@epfl.ch October 7, 2021 **Theorem.** There is a $2^{\varepsilon n}$ -time dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -approximate SVP_K to $\gamma\text{-}\mathsf{CVP}_2$ for any norm K. **Theorem.** There is a $2^{\varepsilon n}$ -time dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -approximate SVP_K to $\gamma\text{-}\mathsf{CVP}_2$ for any norm K. **Theorem.** There is a $2^{0.802n+o(n)}$ -time algorithm for O(1)-CVP_K for any K. **Step 0:** Apply a linear transformation to K so that it "looks roughly like the scaled ℓ_2 ball $B_2/20$." **Step 1:** Sample $\mathbf{t} \sim K + B_2$. Step 1: Sample $\mathbf{t} \sim K + B_2$. **Step 1:** Sample $\mathbf{t} \sim K + B_2$. **Step 1:** Sample $\mathbf{t} \sim K + B_2$. Step 2: Given $\mathbf{t} \in \mathbb{R}^n$ with $\|\mathbf{t} - \mathbf{v}\|_2 \le 1$ for a K-shortest non-zero vector \mathbf{v} , use γ -CVP₂ oracle to find many "random" samples from $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$. Step 2: Given $\mathbf{t} \in \mathbb{R}^n$ with $\|\mathbf{t} - \mathbf{v}\|_2 \le 1$ for a K-shortest non-zero vector \mathbf{v} , use γ -CVP₂ oracle to find many "random" samples from $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$. Step 2: Given $\mathbf{t} \in \mathbb{R}^n$ with $\|\mathbf{t} - \mathbf{v}\|_2 \le 1$ for a K-shortest non-zero vector \mathbf{v} , use γ -CVP₂ oracle to find many "random" samples from $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$. **Step 3:** Given a bunch of "random" lattice vectors $\mathbf{y_1}, \dots, \mathbf{y_N} \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$, output non-zero $\mathbf{y_i} - \mathbf{y_j}$ minimizing $\|\mathbf{y_i} - \mathbf{y_j}\|_K$ (or output $\mathbf{y_i}$ itself). **Step 3:** Given a bunch of "random" lattice vectors $\mathbf{y_1}, \dots, \mathbf{y_N} \in \mathcal{L} \cap (\gamma B_2 + \mathbf{t})$, output non-zero $\mathbf{y_i} - \mathbf{y_j}$ minimizing $\|\mathbf{y_i} - \mathbf{y_j}\|_K$ (or output $\mathbf{y_i}$ itself). **Step 1:** Sample $\mathbf{t} \sim K + B_2$. Pray that $\|\mathbf{t} - \mathbf{y}\|_2 < 1$ for a K-shortest non-zero vector. Step 2: ... **Step 3:** Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself). **Step 1:** Sample $\mathbf{t} \sim K + B_2$. Pray that $\|\mathbf{t} - \mathbf{y}\|_2 < 1$ for a K-shortest non-zero vector. Step 2: ... **Step 3:** Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself). Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$. **Step 1:** Sample $\mathbf{t} \sim K + B_2$. Pray that $\|\mathbf{t} - \mathbf{y}\|_2 < 1$ for a K-shortest non-zero vector. Step 2: ... **Step 3:** Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself). Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$. Need for step 3: B_2 can be covered by $2^{n/10}$ copies of 1000K. Step 1: Sample $\mathbf{t} \sim K + B_2$. Provided III $\sim 1 \text{ for a } K \text{ shortest non } 7910$ If $K \approx B_2/20$, this works. Step 2: .. **Step 3:** Given a bunch of random lattice vectors within ℓ_2 distance γ of \mathbf{t} , output non-zero $\mathbf{y}_i - \mathbf{y}_j$ minimizing $\|\mathbf{y}_i - \mathbf{y}_i\|_K$ (or output \mathbf{y}_i itself). Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$. Need for step 3: B_2 can be covered by $2^{n/10}$ copies of 1000K. Step 1: Sample $\mathbf{t} \sim K + B_2$. Provided lift will a 1 for a K shortest non zero if $K \approx B_2/20$, this works. Step 2: ... Step 3: Given a bunch of random lattice vectors Rothvoss and Venzin show how to find a linear transformation of any convex body so that the transformed body has these properties. (Closely related to M-position. M = Milman) Need for step 1: $vol(K + B_2) \le 2^{n/10} vol(B_2)$. Need for step 3: B_2 can be covered by $2^{n/10}$ copies of 1000K. #### Summary - The fastest algorithms for O(1)-CVP $_K/O(1)$ -SVP $_K$ for any norm is $2^{0.802n}$!! - We can reduce $O_{\varepsilon}(\gamma)$ -SVP_K to γ -CVP₂ in $2^{\varepsilon n}$ time for any K!! - "Morally, lattice problems in any norm are equivalent up to a constant in the approximation factor!!" #### Open Questions? - 1. Is there a dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -SVP_K in any norm to γ -SVP₂ in $2^{\varepsilon n}$ time? (Currently have to reduce to γ -CVP₂ or from γ -SVP_p for $p \geq 2$.) - $^{-}$ 2. What is the best running time for γ -SVP $_{\infty}$ for small constant γ ?!! - What's going on with that wiggle? - 3. More generally, what about γ -SVP_K??! - lacktriangle 4. Is there a norm K for which sieving algorithms work particularly well... - Easy - Medium - ♦ Hard #### Open Questions? - 1. Is there a dimension-preserving reduction from $O_{\varepsilon}(\gamma)$ -SVP_K in any norm to γ -SVP₂ in $2^{\varepsilon n}$ time? (Currently have to reduce to γ -CVP₂ or from γ -SVP_p for $p \geq 2$.) - $^{-}$ 2. What is the best running time for γ -SVP $_{\infty}$ for small constant γ ?!! - What's going on with that wiggle? - 3. More generally, what about γ -SVP_K??! - lacktriangle 4. Is there a norm K for which sieving algorithms work particularly well...