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e L is a discrete aet of vectors in [R”
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|IX||g :=min{r >0 : x € rK}.

K is a symmetric convex body 0
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Shortest Vector Problem
(SVP)

o SVPk(L): output a shortest non-zero y € £
e V7-SVPK(L): Output y € L such that 0 < ||y]| < 7)\§K) (L)

. Hard for y < n!/loglogn

O O O O »
Interesting for 1 < ~ < 2%

For crypto, typically v = poly(n).

For this talk, mostly think of y = 1000.

[ @ e
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Closest Vector Problem
(CVP)

y-CVPg is at least as hard as y-SVPg [GMSS].

(For y 2 1 + € the algorithmic state of the two problems
IS similar-ish.)
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(See [ALS21, Table 1].)
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The World Before May 7, 2020
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(See [ALS21, Table 1].)
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Beat this to break

crypto in practice
- T o &P
Heuristic >'

gw algorithms. Beat this to bre
xL G complexity theory =4
[BGS17, AS18].
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(See [ALS21, Table 1].)
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The World Before May 7, 2020

List of Open Problems

¢ 1. Tight fine-grained hardness for exact CVP in the Euclidean norm?
*2 Hardness for polynomlal approximation factor?

or exact SVP in the Euclidean norm?

@4, Better algonthms inL p norms?

: pcaiivdense lattices?
T3} NP—hardness of nt/ Tog og -SVP?

M/¢ 7. Fine-grained hardness of approximation? (CVP/SVP)
m 8. Upper bound between n'/1°8l¢™ and y/n/logn?

® Easy
B Medium
4 Hard

Noah Stephens-Davidowitz Lattice Problems
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MAY 7, 2020!!

Faster algorithms for SVP_p/CVP_p (question at Simons) Inbox x S B

Venzin Moritz Andreas moritz.venzin@epfl.ch via gmail.com @& Thu, May 7,2020,4:28 PM Ty 4

to noahsd@gmail.com ~

Dear Noah
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Eisenbrand and Venzin

Friedrich Eisenbrand Moritz Venzin
Approximate CVP, in time 298027
Friedrich Eisenbrand * Moritz Venzin
EPFL EPFL
Switzerland Switzerland
friedrich.eisenbrand@epfl.ch moritz.venzin@epfl.ch
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Eisenbrand and Venzin

Friedrich Eisenbrand Moritz Venzin
Approximate CVP,, in ﬁmw Best known running
’ time for O(1)-SVP,
Friedricléllfli:slianbrand* Mori}; ;/Enzin [vaxz-l 1 | WLW 1 5’
Switzerland Switzerland AU\/‘] 9]
friedrich.eisenbrand@epfl.ch moritz.venzin@epfl.ch
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The World After May 7, 2020
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Algorithms below
. this line
Algorithms below ° break crypto in
this line - practice.
break SETH \

BGS17].
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The World After May 7, 2020
=t B

- LO wes DMM\J

Algorithms below
this line

Algorithms below break crypto in

this line —_— practice.
break SETH \
[BGS17].

Possible resolutions: .

1. A strangely wiggly line. \“~—%

2. SETH is false.
3. Lattice-based crypto is much less secure than we think.
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« Observation 1: The fastest algorithm for O(1)-SVP5 runs in
time 20-8027
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(for 7 )

« Observation 1: The fastest algorithm for O(1)-SVP5 runs in
time 20-8027

« Observation 2: It doesn’t only find one O(1)-approximate
¢ ,-shortest vector, it finds “exponentially many £’5-short

vectors.” (There are issues when there are only a few such points in the lattice,
but it works out.)

Noah Stephens-Davidowitz SVP in any norm



Eisenbrand and Venzin

(for 7 )

« Observation 1: The fastest algorithm for O(1)-SVP5 runs in
time 20-8027

« Observation 2: It doesn’t only find one O(1)-approximate
¢ ,-shortest vector, it finds “exponentially many £’5-short

vectors.” (There are issues when there are only a few such points in the lattice,
but it works out.)

. Observation 3: Many ¢, short vectors = an O(1)
-approximate ¢ ,-shortest vectors.
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Observation 3: Many ¢, short vectors = one
O(1)-approximate ¢ -shortest vectors.

A(L) = 1 A(L) <+/n
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Eisenbrand and Venzin

Observation 3: Many ¢, short vectors = one
O(1)-approximate ¢ -shortest vectors.

A(L) = 1 A(L) <+/n

Claim. Letyy,...,yy € R" with ||y;|| < \/Z and N > 210
Then, there exists i # j such that ||y; — y;ll . < 1000.
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Claim. Lety,, ...,yy € R with ||y;]| <4/ and N > 2710 Then,
there exists i # j such that ||y; — ¥l , < 1000.
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Claim. Letyy,...,yy € R" with |y;|| < \/Z and N > 210 Then,
there exists i # j such that ||y; — ¥l , < 1000.

Can cover the \/EBZ by 219 cubes 5008, .

1000
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Claim. Letyy,...,yy € R" with |y;|| < \/Z and N > 210 Then,
there exists i # j such that ||y; — ¥l , < 1000.

Can cover the \/EBZ by 219 cubes 5008, .

Technical detail: The specific property of the £ ball B_ that

we used here is that \/EBZ contains B, but can be covered
by 219 copies of 500B...

1000| |
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Claim. Letyy,...,yy € R" with |y;|| < \/Z and N > 210 Then,
there exists i # j such that ||y; — ¥l , < 1000.

Can cover the \/EBZ by 219 cubes 5008, .

Technical detail: The specific property of the £ ball B_ that

we used here is that \/EBZ contains B, but can be covered
by 219 copies of 500B...

1000 If——w

[EV20] show a similar algorithm for CVP in any L”p norm!

—"—v*
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[ACKLS '21]

Any y-SVP/CVP algorithm can be converted into an algorithm that samples
“‘random lattice points” with bounded norm/distance. (Key word: sparsification.)
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[ACKLS '21]

Any y-SVP/CVP algorithm can be converted into an algorithm that samples
“‘random lattice points” with bounded norm/distance. (Key word: sparsification.)

For any g > p, a 2°"'-time dimension- and rank-preserving reduction from
1. Oy)-SVP,to y-SVP,
2. OJy)-CVP,t0y-CVP,,.
3. O,(1)-CVP,to (1 + &)-SVP,.

p<gq
v O(1/e/P) -y

v-SVP, & v-SVP,

I |

I I

 /  J

O(1/&1/7) .
+-CVP, v O/e™) +-CVP,
y = o<1/e>i l y=0(1/e)
(14 ¢€)-uSVP, / (14 ¢€)-uSVP,

1 =00/ /) 1 =00/e+1/7)
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Rothvoss and Venzin

Thomas Rothvoss Moritz Venzin
Approximate CVP in time 2%-%%” - now in any norm!
Thomas Rothvoss® Moritz Venzin'
University of Washington EPFL
rothvoss@uw.edu moritz.venzin@epfl.ch

October 7, 2021
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Rothvoss and Venzin

Theorem. There is a 2°"-time dimension-preserving reduction from
O (v)-approximate SVP i to v-CVPy for any norm K.
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Rothvoss and Venzin

Theorem. There is a 2°"-time dimension-preserving reduction from
O (v)-approximate SVP i to v-CVPy for any norm K.

Theorem. There is a 2089270 _time algorithm for O(1)-CVPg for any K .
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Rothvoss and Venzin

Step 0: Apply a linear transformation to K so that it
“looks roughly like the scaled &, ball B,/20.”
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Rothvoss and Venzin

Step 1: Samplet ~ K + B,.

Pray that ||t — v||2 <1 for a K-shortest non-zero vector.

Noah Stephens-Davidowitz SVP in any norm



Rothvoss and Venzin

Step 1: Samplet ~ K + B,.

Pray that ||t — v||2 <1 for a K-shortest non-zero vector.

Noah Stephens-Davidowitz SVP in any norm



Rothvoss and Venzin

Step 1: Samplet ~ K + B,.

Pray that ||t — v||2 <1 for a K-shortest non-zero vector.

Noah Stephens-Davidowitz SVP in any norm



Rothvoss and Venzin

Step 1: Samplet ~ K + B,.

Pray that ||t — v||2 <1 for a K-shortest non-zero vector.

Noah Stephens-Davidowitz SVP in any norm



Rothvoss and Venzin




Rothvoss and Venzin

Step 2: Given t € R" with ||t — v||2 <1 for a K-shortest non-zero vector v, use
y-CVP, oracle to find many “random” samples from ¥1,---»¥n € LN (B2 + t),
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"- ------ ...~
" ~
T @y, T
IS
o* Y1 "
P -
P N
¢ L
¢ A Y
¢ ‘.
¢ .
¢ )}
¢ )

' )
’ )
’
’ 1
$ 1
. 1
. 1
: [
- 1
' |
‘ |
‘  }
' /'
' q
‘. 4
‘ Y 4
‘. Y 4
: 4
. L 4
W Y74 YN ¢
. P
* P
A PN
LI e
~ -

- -

Sa e

SVP in any norm

Noah Stephens-Davidowitz



Rothvoss and Venzin

Step 3: Given a bunch of “random” lattice vectors Y1s---> YN € LN (yBz + t),
output non-zero Yi — Yj minimizing ||yi: — ¥;|| x (or output Yi itself).
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Step 3: Given a bunch of “random” lattice vectors Y1s---> YN € LN (yB2 + t),
output non-zero Yi — Yj minimizing ||yi: — ¥;|| x (or output Yi itself).
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Rothvoss and Venzin

Step 1: Sample t ~ K + B,.
Pray that ||t — y||, < 1 for a K-shortest non-zero
vector.

Step 2: ...

Step 3: Given a bunch of random lattice vectors
within &, distance y of t, output non-zero y; — \f

minimizing ||y; — ¥;llx (or output y; itself).
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Pray that ||t — y||, < 1 for a K-shortest non-zero
vector.

Step 2: ...

Step 3: Given a bunch of random lattice vectors
within &, distance y of t, output non-zero y; — \f

minimizing ||y; — ¥;llx (or output y; itself).

Need for step 1: vol(K + B,) < pi 1Ovol(Bz).
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Step 1: Sample t ~ K + B,.

Prn\l that I 4 ved | 1 fAvr A K alhAviAact nAan —igro
>

i f K =~ B,/20, this works.
S ———

Step 3: Given a bunch of random lattice vectors
within &, distance y of t, output non-zero y; — \f

minimizing ||y; — ¥;llx (or output y; itself).

Need for step 1: vol(K + B,) < pi 1Ovol(Bz).

Need for step 3: B, can be covered by 210 copies of 1000K.
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Step 1: Sample t ~ K + B,.

Prr\\l that I 4 ved | 1 fAvr A E AlhAviAanct ~nAn —igro
>

i f K =~ B,/20, this works.
ST ——

Step 3: Given a bunch of random lattice vectors

Rothvoss and Venzin show how to find a linear transformation of any
convex body so that the transformed body has these properties.

(Closely related to M-position. M = Milman)

Need for step 1: vol(K + B,) < pi 1Ovol(Bz).

Need for step 3: B, can be covered by 210 copies of 1000K.
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summary

e The fastest algorithms for O(1)-CVPx/O(1)-SVPy for any norm is 29802711
e We can reduce O, (y)-SVPg to y-CVP; in 2" time for any K!!

e “Morally, lattice problems in any norm are equivalent up to a constant in the
approximation factor!!”
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Open Questions?

. Is there a dimension-preserving reduction from O,(y)-SVPg in any

norm to y-SVP, in 2" time? (Currently have to reduce to y-CVP, or
from y-SVP, forp > 2.)

. What is the best running time for y-SVP, for small constant y?!!

- What's going on with that wiggle? ‘___ .

s

More generally, what about y-SVPg?7?!

s there a norm K for which sieving algorithms work particularly well...

® Easy
B Medium
4 Hard
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Open Questions?

. Is there a dimension-preserving reduction from O,(y)-SVPg in any

norm to y-SVP, in 2" time? (Currently have to reduce to y-CVP, or
from y-SVP, forp > 2.)

. What is the best running time for y-SVP, for small constant y?!!

- What's going on with that wiggle? ‘___ .

s

More generally, what about y-SVPg?7?!

s there a norm K for which sieving algorithms work particularly well...

® Facv

Thanks!
m
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