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My first encounter of genomics bioinformatics (2007)
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Peter and Haiyan’s ENCODE team (2007-2013)

Simons Big Data workshop in honor of Peter Bickel



Our ENCODE fruits (2012-2014)

Berkeley statisticians help find function of
“junk’ DNA in human genome

4 4 A EEEXD | S reddit Email Print
By Robert Sanders, Media relations | SepTEMBER 6, 2012 - S | =)

UC Berkeley statisticians played a key role in the large ENCODE consortium that determined the
function of what was thought to be “junk” DNA in the human genomeThe consortium’s 440+

scientists reported their findings in 30 journal papers on Sept. 6.

Peter Bickel, professor of statistics, was the unofficial lead statistician for the group, which involved
scientists from around the world. Bickel and his UC Berkeley colleagues provided several of the tools

biologists needed to uncover the functional roles of DNA outside protein coding genes.
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Our ENCODE fruits (2012-2014)

Open Access | Published: 05 September 2012

Anintegrated encyclopedia of DNA
elementsin the human genome

The ENCODE Project Consortium

Nature 489, 57-74 (2012) | Cite this article
268k Accesses \ 10370 Citations \ 925 Altmetric | Metrics

Open Access \ Published: 27 August 2014

Comparative analysis of regulatory
information and circuits across distant
species

Alan P. Boyle, Carlos L. Araya, ... Michael Snyder =+ Show authors

Nature 512, 453-456 (2014) \ Cite this article
28k Accesses \ 120 Citations \ 134 Altmetric | Metrics
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Comparison of D. melanogaster and C.
elegans developmental stages, tissues, and
cells by modENCODE RNA-seq data

Jingyi Jessica Li1»3, Haiyan Huang 14, Peter J. Bickel1+4 and Steven E. Brenner2,4

Open Access \ Published: 27 August 2014

Comparative analysis of the transcriptome
across distant species

Mark B. Gerstein &, Joel Rozowsky, ... Robert Waterston =+ Show authors

Nature 512, 445-448 (2014) \ Cite this article
41k Accesses \ 182 Citations \ 180 Altmetric \ Metrics
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Some questions | had about bioinformatics methods

1. Are p-values valid?
2. Why not classical statistical methods?

3. What is the proper null hypothesis?
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Statistical rigor in multiple testing

Criteria need calibration

= p-values ~ (super-)uniform[0, 1] under the null hypotheses

» false discovery rate (FDR) = IE {% < the claimed level (e.g., 5%)
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Statistical rigor in multiple testing

Criteria need calibration

= p-values ~ (super-)uniform[0, 1] under the null hypotheses

» false discovery rate (FDR) = IE {% < the claimed level (e.g., 5%)

Three common causes of ill-posed p-values
1. Formulation of a two-sample test as a one-sample test
2. Specification of a parametric model that does not fit data well

3. Treatment of inferred covariates as observed
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1. Formulation of a two-sample test as a one-sample test

Example: peak calling from ChiIP-seq data

Experimental ‘ ‘ :
Background A L. Al d A A
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1. Formulation of a two-sample test as a one-sample test

Peak calling from ChiIP-seq data

= Popular software:

— MACS [Zhang et al., Genome Biol, 2008]; cited > 10K times
— HOMER [Heinz et al., Mol Cell, 2010]; cited ~ 8K times

= Formulation:

a region background count experimental count
random variable (hypothetical) X Y
random observation (data) X y

p-value = IP(Y > y), where Y ~ Poisson(x) — correct?
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1. Formulation of a two-sample test as a one-sample test

Peak calling from ChlP-seq data

= Formulation:

a region background count experimental count
random variable (hypothetical) X Y
random observation (data) X y

p-value = IP(Y > y), where Y ~ Poisson(x) — correct?

— No, because it assumes Y ~ Poisson()) and tests
Ho: A=x wvs. Hi:A>x,

which treats x as a fixed parameter and ignores its randomness
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1. Formulation of a two-sample test as a one-sample test

How to perform a two-sample test when the sample size is 1 vs. 1?7

— p-value calculation is difficult ...
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1. Formulation of a two-sample test as a one-sample test

How to perform a two-sample test when the sample size is 1 vs. 1?7

— p-value calculation is difficult ...
— but, p-values are just intermediates for FDR control in large-scale multiple testing
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1. Formulation of a two-sample test as a one-sample test

How to perform a two-sample test when the sample size is 1 vs. 1?7

— p-value calculation is difficult ...
— but, p-values are just intermediates for FDR control in large-scale multiple testing

Our solution: inspired by knockoffs [Barber and Candes, Ann Stat, 2015]
(to be elaborated)
Method | Open Access | Published: 11 October 2021
Clipper: p-value-free FDR control on high-throughput
data from two conditions

Xinzhou Ge, Yiling Elaine Chen, Dongyuan Song, MeiLu McDermott, Kyla Woyshner, Antigoni

Genome Biology 22, Article number: 288 (2021) \ Cite this article
6169 Accesses | 4 Citations \ 52 Altmetric | Metrics
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2. Specification of a parametric model that does not fit data well

Example: identifying differentially expressed genes (DEGs) from RNA-seq data
= Popular software (originally designed for small sample sizes):
— edgeR [Robinson et al., Bioinformatics, 2014]; cited ~ 24K times
— DESeq2 [Love et al., Genome Biol, 2014]; cited > 33K times
both assume a negative binomial distribution per gene and condition

genes
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® Condition 1 Condition 2 Condition 1 Condition 2 11
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. Specification of a parametric model that does not fit data well

Identifying differentially expressed genes (DEGs) from RNA-seq data

= Check of false discoveries: permute individuals between conditions (no true DEGs)

600

400
# of identified DEGs
from permuted data

200

+ # of identified DEGs from the original data
51 pre-nivolumab and 58 on-nivolumab anti-PD-1 therapy patients  [Li et al., Genome Biology, 2022]

® [Riaz et al., Cell, 2017] 12
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2. Specification of a parametric model that does not fit data well

Identifying differentially expressed genes (DEGs) from RNA-seq data

= Poor fit of negative binomial model «— false positive DEGs

edgeR DESeqg2
p=4.35e-261 1004 p=6.14e-38
404
75
304
-log(goodness-of-fit p-value) 54 501
10 25
0 0
Genes iéentiﬁed Genes iélenhfied Genes id'entiﬁed Genes \d'entified
as DEGs from <0.1% as DEGs from = 20% as DEGs from <0.1% as DEGs from = 20%
permuted datasets permuted datasets permuted datasets permuted datasets

51 pre-nivolumab and 58 on-nivolumab anti-PD-1 therapy patients [Li et al., Genome Biology, 2022]
[Riaz et al., Cell, 2017] 13
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2. Specification of a parametric model that does not fit data well

Identifying differentially expressed genes (DEGs) from RNA-seq data

= False discoveries may mislead scientific conclusions

DESeq2
hormone metabolic process | [ NN
comnification |
steroid metabolic process | - [ NN
humoral immune response | [
acute inflammatory response | [ N N
0 5 10 15 20
—log10(p.adjust)
edgeR
cell chemotaxis | - | NN
neutrophil mediated immunity
e ohne cesvanco 1 I
involved in immune response
neutrophil degranulation | N
neutrophil activation | | N
0 5 10 15 20
—log10(p.adjust)

® [Li et al., Genome Biology, 2022]
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2. Specification of a parametric model that does not fit data well

Method choice: popular bioinformatics tools vs. general statistical methods?
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2. Specification of a parametric model that does not fit data well

Method choice: popular bioinformatics tools vs. general statistical methods?

Our recommendations for large-sample-sized data:
— sanity check: permutation
— consider non-parametric tests (e.g., Wilcoxon rank-sum test)

Short Report | Open Access | Published: 156 March 2022

Exaggerated false positives by popular differential
expression methods when analyzing human
population samples

Yumei Li, Xinzhou Ge, Fanglue Peng, Wei Li & & Jingyi Jessica Li

Genome Biology 23, Article number: 79 (2022) | Cite this article
14k Accesses | 185 Altmetric | Metrics

— collaboration with Dr. Yumei Li in Dr. Wei Li's lab (UC Irvine)
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. Specification of a parametric model that does not fit data well

Method choice: popular bioinformatics tools vs. general statistical methods?

Our recommendations for large-sample-sized data:
— sanity check: permutation
— consider non-parametric tests (e.g., Wilcoxon rank-sum test)

Short Report | Open Access | Published: 156 March 2022

Exaggerated false positives by popular differential
expression methods when analyzing human
population samples

Yumei Li, Xinzhou Ge, Fanglue Peng, Wei Li & & Jingyi Jessica Li

Genome Biology 23, Article number: 79 (2022) | Cite this article
14k Accesses | 185 Altmetric | Metrics

— collaboration with Dr. Yumei Li in Dr. Wei Li's lab (UC Irvine)
— What if sample sizes are small?

® Clipper is a non-parametric option (to be elaborated) 15
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3. Treatment of inferred covariates as observed

Example: identifying DEGs along pseudotime from single-cell RNA-seq data

= Cell pseudotime: a latent “temporal” variable that reflects a cell’s relative status
among all cells

= Pseudotime inference: estimate the pseudotime of cells, i.e., order cells along a
trajectory based on cells' high-dimensional gene expression vectors

= Popular software:
— Monocle3 [Trapnell et al., Nat Biotechnol, 2014]; cited > 2.8K times
— Slingshot [Street et al., BMC Bioinform, 2018]; cited 700 times

oo -
PO LYY 4
o
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

= Cell pseudotime is inferred from the same data and thus random

Cells

_50|
-25 0 25 50 000 025 050 075  1.00
PC1 Pseudotimes in subsamples
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

= However, existing methods treat cell pseudotime as an observed covariate

19
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data
= However, existing methods treat cell pseudotime as an observed covariate
= Our solution: PseudotimeDE considers the uncertainty of pseudotime inference

Method | Open Access | Published: 29 April 2021

PseudotimeDE: inference of differential gene
expression along cell pseudotime with well-calibrated
p-values from single-cell RNA sequencing data

Dongyuan Song & Jingyi Jessica Li

Genome Biology 22, Article number: 124 (2021) | Cite this article
7705 Accesses | 4 Citations | 29 Altmetric | Metrics
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

= PseudotimeDE generates well-calibrated p-values for FDR control
& uses a generalized additive model (GAM) to achieve good power

Pseudotime /\ Permutation ; NB/ZINB-GAM
inference on cells . fitted to gene j
- a BT r'vry
. :‘\,\ \f\
. e
Subsampling Null distribution
cells of §
Pseudotime NB/ZINB-GAM
inference fitted to gene j
®g Test statistic S, p-value of gene j
L

® 20



3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

= PseudotimeDE generates well-calibrated p-values for FDR control
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

PseudotimeDE limitations

= computational time: high-resolution p-values require > 103 rounds of
(subsampling + pseudotime inference + permutation)
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

PseudotimeDE limitations

= computational time: high-resolution p-values require > 103 rounds of
(subsampling + pseudotime inference + permutation)

Q: how to reduce the number of rounds while still achieving FDR control?
A: Clipper
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

PseudotimeDE limitations

= computational time: high-resolution p-values require > 103 rounds of

(subsampling + pseudotime inference + permutation)

Q: how to reduce the number of rounds while still achieving FDR control?
A: Clipper

= complete null: what if cells do not follow a trajectory
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

PseudotimeDE limitations

= computational time: high-resolution p-values require > 103 rounds of

(subsampling + pseudotime inference + permutation)

Q: how to reduce the number of rounds while still achieving FDR control?
A: Clipper

= complete null: what if cells do not follow a trajectory
Q: how to generate the null cells?

A: simulator scDesign3

22
® Simons Big Data workshop in honor of Peter Bickel



3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data
= PseudotimeDE
Identifying DEGs between inferred cell clusters from single-cell RNA-seq data

= ClusterDE (cell clustering + DEG identification between cell clusters)
— existing methods assume Gaussian distributions
TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, arXiv, 2020]
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data
= PseudotimeDE

Identifying DEGs between inferred cell clusters from single-cell RNA-seq data

= ClusterDE (cell clustering + DEG identification between cell clusters)
— existing methods assume Gaussian distributions
TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, arXiv, 2020]

Our proposal: Clipper 4+ scDesign3
— inspired by

gap statistic [Hastie, Tibshirani, and Walther, JRSSB, 2002]
knockoffs [Barber and Candes, Ann Stat, 2015]

@
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Halftime summary

Three common causes of ill-posed p-values
1. Formulation of a two-sample test as a one-sample test
2. Specification of a parametric model that does not fit data well

3. Treatment of inferred covariates as observed

24
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Halftime summary

two-sample test
parametric model
inferred

Clipper: p-value-free FDR control for genomics feature screening
— using FDR control procedure from [Barber and Candeés, Ann Stat, 2015]
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Clipper: p-value-free FDR control for genomics feature screening

= NO requirement of = Foundation: knockoffs
— high-resolution p-values
— parametric distributions

— large sample sizes

= Two components

— contrast scores

— cutoff
Goal: marginal screening for interesting features
d features FDR threshold g
Contrast scores Contrast score cutoff
inft e flc.l:c. = ol 1+#{j;c,-s—t}<
‘. minft e {lc;|:¢; % 0): e dy
Ca

0
Distribution of C,...,Cy
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Clipper: p-value-free FDR control for genomics feature screening

Key: contrast score construction

example ‘ target data null data
ChlP-seq peak calling (1 vs. 1) | experimental condition background condition
RNA-seq DEG identification actual data permuted data
PseudotimeDE & ClusterDE actual data scDesign3 simulated data
Contrast score of feature j =1,...,d, the

C; := t(target data) — t(null data),

where t(-) is a summary statistic — can be a complex pipeline

26
® Simons Big Data workshop in honor of Peter Bickel



Clipper rectifies FDR control

Actual FDR (%)
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Clipper rectifies FDR control

ChlIP-seq peaking calling RNA-seq DEG identification
100 100 L
75 75
50 50
75 75
g = g® -
o S5 @ S5
2 10 g 50 2 10 g 50
S s & ER £
Q Q
< 6 < 6
25 25
4 4
2 2
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Target FDR (%) Target FDR (%) Target FDR (%) Target FDR (%)
HOMER MACS2 DESeq2 edgeR

—4— HOMER + Clipper = MACS2 + Clipper —— DESeq2 + Clipper —+ edgeR + Clipper

Q: how to generate null data to construct contrast scores for PseudotimeDE and ClusterDE?
S :
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The last piece

two-sample test
parametric model
inferred
Clipper
scDesign3: an omnibus single-cell omics simulator

28
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scDesign2: a probabilistic single-cell gene expression data simulator

A multi-gene probabilistic model per cell type

= Each gene ~ count distribution € {Poisson, negative binomial, ZIP, ZINB}
= Gene correlations estimated via Gaussian copula

Method | Open Access | Published: 25 May 2021

scDesign2: a transparent simulator that generates
high-fidelity single-cell gene expression count data
with gene correlations captured

Tianyi Sun, Dongyuan Song, Wei Vivian Li & & Jingyi Jessica Li

Genome Biology 22, Article number: 163 (2021) | Cite this article
5144 Accesses | 8 Citations | 31 Altmetric | Metrics
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scDesign2: a probabilistic single-cell gene expression data simulator

A multi-gene probabilistic model per cell type

= Each gene ~ count distribution € {Poisson, negative binomial, ZIP, ZINB}
= Gene correlations estimated via Gaussian copula

training data scDesign2 (fvig‘zzig&i) ZINB-WaVE SPARSIm

40

30

2 cell type

10 Stem

o B Goblet
N < R A | | = Tuft
E_) -10 ® TAEarly
. test + scDesign2 . EP

2 test + scDesign2 test + ZINB-WaVE test + SPARSIm
5 test data [miLIS| = 1.860] (w/o copula) [miLISI = 1.596] [MILISI = 1.605] ® EPEarly
o [miLISI = 1.023]
B a0 .

30 . data type

20 ® synthetic data

10 ® testdata

g R :
10l A % " & "
50 25 0 25 50 25 0 25 50 25 0 25
test data PC 1 [Haber et al., Nature, 2017]
® : . . _ 30
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scDesign3: an omnibus single-cell & spatial omics simulator

= Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka's book, 2011]

Example: continuous trajectory (pancreatic cell differentiation)

Test data scDesign2 (cell type) scDesign3 (pseudotime)

&
x %
s
=
4l
miLISI=1.98 miLISI=1.82 miLISI=1.96
8 ! ! ! ! ! } } ! ! ; ! !
25 0.0 25 50 25 00 25 50 25 00 25 50
UMAP1 .
[Bastidas-Ponce et al., Development, 2019]
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scDesign3: an omnibus single-cell & spatial omics simulator

= Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka's book, 2011]

Example: spatial data (brain region measured by 10X Visium)
Gene Olfm1

Real Data Simulated Data

7500 Expression
5

5000

4
3
2
1
0

2500

® 4000 6000 8000 10000 4000 6000 8000 10000 31
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scDesign3: an omnibus single-cell & spatial omics simulator

= Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka's book, 2011]

Example: bone marrow single-cell ATAC-seq data (+ scReadSim)

Test data

Cell type ‘ ‘ H
B cells !
Collisions

Dendritic cells
Erythroblasts

Hematopoietic progenitors
Immature B cells

Macrophages scDesign3

UMAP2

Monocytes
NK cells
o Regulatory T cells
T cells
Unknown

mLISI=1.71
UMAP1

Peak region ]
Gene .
® Fam174a by Guan'ao Yan 31
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ClusterDE: scDesign3 for null data generation (preliminary)

Real Data Null Data by scDesign3

8_
4_

Al Al

o o

< <

= = 0

5 5
—4 4

—2I.5 0:0 275 5:0 7f5 —2I.5 OTO 2:5 5:0 775
UMAP1 UMAP1

Cell_Type naive.cytotoxic regulatory.t
[Zheng et al., Nat Commun, 2017]
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ClusterDE: Clipper + scDesign3 (preliminary)

Complete null case: no cell clusters

Real Data Seurat Clustering Kmeans Clustering Null Data by scDesign3
4 44 4 4
& o 2 o g o g o
< < < <
= = = =
=) =) =) =)
-4 -4 -4 -4
-8 -84 -8 -8
f2l.5 OTO 275 5‘0 fZl,S OTO ZTS 5?0 f2l.5 OTO 2?5 5‘0 72. 5 OTO 2‘5 STO
UMAP1 UMAP1 UMAP1 UMAP1
Cell_Type naive.cytotoxic Seurat_Clusters 0 1 Kmeans_Clusters 001

[Zheng et al., Nat Commun, 2017]
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ClusterDE: Clipper + scDesign3 (preliminary)

Complete null case: no cell clusters

Actual FDR
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[Zheng et al., Nat Commun, 2017]
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Summary: p-values are easily ill-posed in genomics data analysis

Q: should a scientific question be formulated as multiple testing?

Patterns o CelPress

OPEN ACCESS

Statistical Hypothesis Testing
versus Machine Learning Binary
Classification: Distinctions and Guidelines

Jingyi Jessica Li"-* and Xin Tong?

1Department of Statistics, University of California, Los Angeles, CA 90095-1554, USA

2Department of Data Sciences and Operations, Marshall School of Business, University of Southern California, Los Angeles, CA 90089, USA
*Correspondence: jli@stat.ucla.edu

https://doi.org/10.1016/j.patter.2020.100115
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www.scrna-tools.org

Summary: p-values are easily ill-posed in genomics data analysis

Q: should a scientific question be formulated as multiple testing?
If YES, three common causes of ill-posed p-values

1. Formulation of a two-sample test as a one-sample test
— ChlIP-seq peak calling

2. Specification of a parametric model that does not fit data well
— RNA-seq DEG identification

3. Treatment of inferred covariates as observed
— single-cell RNA-seq PseudotimeDE & ClusterDE
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Summary: p-values are easily ill-posed in genomics data analysis

Q: should a scientific question be formulated as multiple testing?
If YES, three common causes of ill-posed p-values

1. Formulation of a two-sample test as a one-sample test
— ChlIP-seq peak calling

2. Specification of a parametric model that does not fit data well
— RNA-seq DEG identification

3. Treatment of inferred covariates as observed
— single-cell RNA-seq PseudotimeDE & ClusterDE

Clipper: a p-value-free FDR control framework

scDesign3: an omnibus single-cell & spatial omics simulator
— fair benchmarking of computational tools (> 1000 at www.scrna-tools.org)
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Summary: relevant publications

Short Report | Open Access ‘ Published: 15 March 2022

Exaggerated false positives by popular differential
expression methods when analyzing human
population samples

Yumei Li, Xinzhou Ge, Fanglue Peng, Wei Li & & Jingyi Jessica Li

Genome Biology 23, Article number: 79 (2022) | Cite this article
14k Accesses | 185 Altmetric | Metrics

Method | Open Access | Published: 29 April 2021
PseudotimeDE: inference of differential gene
expression along cell pseudotime with well-calibrated
p-values from single-cell RNA sequencing data
Dongyuan Song & Jingyi Jessica Li &

Genome Biology 22, Article number: 124 (2021) | Cite this article

7705 Accesses | 4 Citations | 29 Altmetric | Metrics

Method | Open Access ‘ Published: 11 October 2021
Clipper: p-value-free FDR control on high-throughput
data from two conditions

Xinzhou Ge, Yiling Elaine Chen, Dongyuan Song, MeiLu McDermott, Kyla Woyshner, Antigoni
Manot Ning Wang, W

Leo D. Wang & Jingyi Jessica Li

Genome Biology 22, Article number: 288 (2021) | Cite this article
6169 Accesses | 4 Citations | 52 Altmetric | Metrics

Method | Open Access | Published: 26 May 2021

scDesign2: a transparent simulator that generates
high-fidelity single-cell gene expression count data
with gene correlations captured

Tianyi Sun, Dongyuan Song, Wei Vivian Li & & Jingyi Jessica Li

Genome Biology 22, Article number: 163 (2021) | Cite this article
5144 Accesses | 8 Citations | 31 Altmetric | Metrics
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A reviewer’s quote

PCA outperforms popular hidden variable inference methods for QTL mapping

Heather |. Zhou, © Lei Li, “2 Yumei Li, “= Wei Li, "2/ Jingyi Jessica Li
doi: https://doi.org/10.1101/2022.03.09.48366 |

“These results may come as a surprise to some, given the nearly uncontestable status

that method A has achieved within the community, but sadly they reflect the fact that

computational biology methods can rise to fame almost by accident rather than by
sound statistical arguments.”
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