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Social network modeling

I G = (V, E)
I V: set of individuals [n] := {1, . . . , n}
I E : set of edges, assumed to be binary and undirected for simplicity

I Statistical problems: estimating community memberships, subgraph
counts, node covariates, ...

I Most of the current literature assumes either a global view of the
network or multiple subgraphs (Mukherjee et al. 2021) can be
sampled, from which information can be combined.
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How much does a person understand about the

connections in the full network?



Beyond friends?



A toy example of individual-centered partial information

networks

I An illustration of a network consisting of 6 individuals.

I The left panel is the full network.

I Suppose individual 1 is the person of interest.

I The left, middle and right panel show individual 1’s view of the
network when their knowledge depth is L = 3, 2, 1, respectively.

Key: Characterizing the amount of partial (local) information by path
length. We focus on L = 2.
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A toy example of individual-centered partial information

networks

I An illustration of a network consisting of 6 individuals.

I The left panel is the full network.

I Suppose individual 1 is the person of interest.

I The left, middle and right panel show individual 1’s view of the
network when their knowledge depth is L = 3, 2, 1, respectively.

Q: Can one learn the global community memberships based on their
partial knowledge of the full network?



Existing literature

I The structure of our partial network is related to existing network
sampling schemes, e.g., egocentric sampling, snowball sampling and
respondent driven sampling (RDS).

I Main di↵erences:

I We are interested in what one instance of partial network can o↵er,

which allows us to compare what network structure is visible to each

individual.

I Most RDS based methods are focused on estimating node covariates,

while we are interested in latent community structure.

I Multiple sampling may not be feasible in networks with restricted

access (e.g., a terrorist network)



Preliminaries

I Recall G = (V, E) is the full network of n individuals.

I G can be represented by a n ⇥ n binary, symmetric adjacency matrix

A = (aij), where aij =

(
1, (i , j) 2 E ,

0, (i , j) /2 E .

I Let B = (bij) be individual 1’s perceived adjacency matrix based on
knowledge depth L = 2.



How is B related to A?

In this toy example, for individual 1 with knowledge depth L = 2:

A =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

1

CCCCCCA
, B =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0

1

CCCCCCA
.

In general,
bij = aij(1� 1I(a1i = 0)1I(a1j = 0)) .

It follows that

B = �SAS+ AS+ SA, where S = diag(a11, . . . , a1n) .



How is B related to A?

In this toy example, for individual 1 with knowledge depth L = 2:

A =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

1

CCCCCCA
, B =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0

1

CCCCCCA
.

In general,
bij = aij(1� 1I(a1i = 0)1I(a1j = 0)) .

It follows that

B = �SAS+ AS+ SA, where S = diag(a11, . . . , a1n) .



How is B related to A?

In this toy example, for individual 1 with knowledge depth L = 2:

A =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

1

CCCCCCA
, B =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0

1

CCCCCCA
.

In general,
bij = aij(1� 1I(a1i = 0)1I(a1j = 0)) .

It follows that

B = �SAS+ AS+ SA, where S = diag(a11, . . . , a1n) .



A peak at the results

individual of interest H 2 3 A 20 32
degrees 16 9 10 17 3 6
fraction of edges .654 .513 .705 .641 .526 .654
detection accuracy .559 .706 .941 .706 .941 .794
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Preliminaries - low rank assumption

I We assume rank(IEA) = K and

I the eigen decomposition (reduced form) IEA = VDV>.

I D = diag(d1, . . . , dK ), in which di is the i-th largest eigenvalue (by
magnitude) of IEA,

I V = (v1, . . . , vK ) is the corresponding eigenvector matrix.

I Generate A as independent Bernoulli from IEA.

I Usually theoretical analysis usually proceeds by noting

A = IEA|{z}
signal

+(A� IEA)| {z }
noise

.
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Preliminaries - low rank assumption

What about B = �SAS+ AS+ SA? We can show that

BE = �S(IEA)S+ (IEA)S+ S(IEA)

is the “signal” term in the sense that

kB� BEk  smallest singular value of BE

.



Theoretical properties of BE

Theorem 1 (Informal, eigenvalues and eigenvectors)

Suppose that V>SV and I � V>SV are invertible. We have
rank (BE ) = 2K . Then for i = �K , . . . ,�1, 1, . . . ,K , (x�1

i ,qi ) is
an eigenvalue / eigenvector pair of BE , i↵

I xi is a solution of det (H(x)) = 0, where
H(x) = I� xDV>SV � x

2D(I� V>SV)DV>SV.

I qi = SVq1i + (I� S)Vq2i , where q1i is an eigenvector of
H(xi ) corresponding to the zero eigenvalue, and

q2i = xiDV>SVq1i .

Let Q = (qK , . . . ,q1,q�1, . . . ,q�K ) = SVQ1 + (I� S)VQ2.
We can choose qi ’s such that

Q>Q = I2K⇥2K .
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Theoretical properties of BE

Let pn = maxi,j IP(aij = 1), assume minj�2 IP(a1j = 1) ⇠ pn,
1� c > pn � log n/n for some constant c > 0.

Theorem 2 (Informal, form of eigenvalues)

With mild conditions on D, V, w.h.p., we have

I |xi |�1 ⇠ np
3/2
n for i 2 [±K ];

I if pn ! 0, with additional conditions, we obtain the high
probability expressions of x�1

i ;

I the expressions of x�1
i suggest �min = �K (V>SV)

determines the gap between the smallest eigenvalue (in
magnitude) and 0.



Theoretical properties of BE

Summary so far

I The eigenvectors take the form
Q = (qK , . . . ,q1,q�1, . . . ,q�K ) = SVQ1| {z }

neighbors of node 1

+(I� S)VQ2| {z }
non-neighbors

.

I Order of the eigenvalues, |xi |�1 ⇠ np
3/2
n w.h.p.

I �min = �K (V>SV) detemines the signal strength.

I �min influences the performance of spectral clustering ) measure of

how important individual 1 is ) centrality measure

I �min lies between 0 and 1.

I Can be estimated using empirical version of V from A.

I When K = 1, �min bears connections to both degree centrality and

eigenvector centrality.
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Introducing a concrete model

The stochastic block model (SBM, Holland et al. 1983)

I IEA = ⇧P⇧>, where P = (pkl) is a symmetric K ⇥ K matrix,
⇧ = (⇡1, . . . ,⇡n)> 2 IRn⇥K and individual i ’s membership vector
⇡i 2 {e1, . . . , eK}.

I In this model, when individual i belongs to community k and
individual j belongs to community l , we have

IP(aij = 1) = IEaij = ⇡>
i P⇡j = pkl .

I Idea: there are 2K types of rows in Q (eigenvectors of BE ); Q is
close to the empirical version W, whose columns are eigenvectors of
observed B.



Rationale behind our algorithm

Recall pn = maxi,j IP(aij = 1).

Condition

mink2[K ] p1k ⇠ pn. mink2[K ]
P

j2[n] 1I(⇡j = ek) � cn and �K (P) �
cpn. Moreover, 1� c � pn � (1/n)1/2.

Lemma 1 (2K di↵erent rows in Q)

For any 2K ⇥ 2K orthogonal matrix O, it holds w.h.p. that for
i , j 2 [n],

⇡i 6= ⇡j =)

������
Q(i)|{z}
1⇥2K

O� Q(j)|{z}
1⇥2K

O

������
2

�
r

2

cn
,

⇡i = ⇡j , a1i 6= a1j =) kQ(i)O�Q(j)Ok2 �
r

2

cn
,

⇡i = ⇡j , a1i = a1j =) kQ(i)O�Q(j)Ok2 = 0 .



Main algorithm for SBM

1. {W(i) : a1i = 1}| {z }
apply k�means

and {W(i) : a1i = 0}| {z }
apply k�means

! return 2K = K + K

clusters.

2. Merge the 2K clusters {c 01, . . . , c 0K} and {c 001 , . . . , c 00K} into K

communities.

Some intuition about the merging step: for i , j > 1 and i 6= j ,

IP(bij = 1|a1i = a1j = 1)
| {z }

!PS,S

= IP(bij = 1|a1i = 1, a1j = 0)
| {z }

!PS,I�S

= IP(aij = 1)
| {z }

!P

.

I Clusters are identifiable only up to label permutation.
I Find the ”best” permutation f0 : [K ] ! [K ] to match bPS,S and
bPS,I�S.

I Merge the 2K clusters according to f0.
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Consistency of algorithm

Theorem 3 (consistency under SBM)

Under some additional separation condition on P and pn �
(log n/n)1/4, w.h.p. ,

Proportion of misclustered nodes = O(
1

np2n
) .

That is, the algorithm has the almost exact recovery property.



Extension to the degree-corrected SBM

Adding degree heterogeneity, the degree-corrected stochastic block model
(DCSBM, Karrer and Newman 2011)

I IE(A|⇥) = ⇥⇧P⇧>⇥ , where ⇥ = diag(✓1, . . . , ✓n) is the set of
degree parameters associated with the nodes.

I When individual i belongs to community k and individual j belongs
to community l , we have

IP(aij = 1|⇥) = ✓i✓jpkl .

I Assume ✓i 2 (0, 1], i 2 [n] are i.i.d. random variables with
IE(✓i ) = ✓ ⇠ 1.



Main algorithm for DCSBM

1. {W(i) : a1i = 1}| {z }
apply spherical k�median

and {W(i) : a1i = 0}| {z }
apply spherical k�median

! return 2K = K + K

clusters.
Spherical k-median (Lei and Rinaldo 2015): e.g., for
{i 2 [n] : a1i = 1},

argmin⇢xi :xi is 2K -dimensional row vector
with a1i=r and |{xi}a1i=1|K

�
X

i :a1i=1,W(i) 6=0

���
W(i)

kW(i)k2
� xi

���
2

2. Merge the 2K clusters {c 01, . . . , c 0K} and {c 001 , . . . , c 00K} into K

communities, accounting for degree heterogeneity.

3. The consistency result for SBM can be extended to the DCSBM
setting.
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A conditional setting emphasizing individual di↵erences

I Can the clustering error bound reflect neighborhood features of
individual 1? Consider conditioning on the neighborhood S.

I ✓i generated from a two-component mixture with CDF
yF1(x) + (1� y)F2(x), y 2 (0, 1). µ2 ⇠ 1 and µ1  µ2. (non-hub
vs. hub nodes)

I Let

njk = |{i : a1i = 1, ✓i generated from Fj , and i 2 Community k}|

for k = 1, . . . ,K and j = 1, 2.



Consistency of algorithm, conditional setting

Theorem 4 (consistency under DCSBM)

For S and ⇥ satisfying some constraints, and

µ�1
1 n

s
1

pn mink2[K ] n
2
2k(n2kµ

2
2 + n1kµ2

1)
⌧ pn ,

conditioned on S and ⇥ w.h.p.,

Proportion of misclustered nodes

=O

 
µ�1
1

s
1

pnmink2[K ](n2kµ2
2 + n1kµ2

1)

!
.

I Knowing more powerful neighbors across all communities helps.

I As a centrality measure for individual, �min behaves like

mink2[K ]
n1kµ

2
1+n2kµ

2
2

n .
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Simulation with DCSBM

Setting: P =

✓
3q q

q 3q

◆
. K = 2 groups have equal sizes.

✓i ⇠ i.i.d. Unif(0.5,1.5)



Simulation with DCSBM

Setting: P =

✓
3q q

q 3q

◆
. K = 2 groups have equal sizes.

✓i ⇠ i.i.d. mixture, F1 ⇠Unif(0.5, 0.75), F2 ⇠Unif(0.8, 1.05) with
proportions (0.85, 0.15).

Table: Correlations between centrality measures and clustering accuracy



Simulation with DCSBM

Correlations between centrality measures
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Microfinance in Indian villages

Banerjee et al. Science (2013)

I Modeling the spread of information about a microfinance program in
Indian villages.

I Social network in each village: households as nodes, each edge is
undirected and binary representing any of the 12 relationships
collected in the survey (e.g., borrowing / lending money or material
goods).

I Caste information as community labels

I Each village has a few predefined leaders serving as “injection”
points for information.

I We analyze 39 villages, with the number of households varying
between 24-155 and K between 2-4.



Microfinance in Indian villages

Mean clustering accuracy in each village, leaders vs. non-leaders
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Microfinance in Indian villages

Correlations between centrality measures and clustering accuracy



Microfinance in Indian villages

Program participation rate as a function of (left) �̂min with p-value 0.022;
(right) di↵usion centrality with p-value 0.003.
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Summary and future work

We have introduced an individual-centered partial information framework
to study social networks.

I Theoretical properties of the main signal term in the partial
adjacency matrix

I Consistent community detection under SBM and DCSBM

I Centrality measure based on eigen gap

Many interesting problems ahead:

I Including only individuals reached by the partial network

I mixed membership block models

I L = 3

I Determining K

I Imprecise knowledge about neighbors’ neighbors

I Multiple individuals’ partial information

I .....
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