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Peter's Non-Sparse Influence on My Work

- Some theory for Fisher's LDA... when there are many more
variables than observations, 2004

— The prediction error in PLS and CLS, 05’
- Covariance Regularization by Thresholding, 08’
— Minimax bounds on sparse PCA,
- Simultaneous analysis of Lasso and Dantzig, 09’

Today's talk: Sparse Linear Regression
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Sparse Approximation / Best subset selection

Problem setup:

Observe
(i) nx d matrix A

(ii) response vector y € R”
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Sparse Approximation / Best subset selection

Problem setup:

Observe
(i) nx d matrix A

(ii) response vector y € R”

Given sparsity parameter k

solve

m)én |IAx — y|l2 subject to ||x|lo < k (PO)
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Sparse Approximation

m)én |IAx — y|l2 subject to ||x|lo < k (PO)

Signal/Image processing:
y =(y1,...,yn) are n samples of unknown function
A = dictionary, whose columns are basic signals / atoms

Seek best representation of y by at most k dictionary atoms.

Compressed sensing;:

Wish to recover unknown signal x € R9, from n noisy observations
yi =W x + 0§

Assume that x is (approximately) k-sparse
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Sparse Approximation

Statistics: sparse linear regression
given n observations (Xj, y;), assumed of the form

y=X"B+e

y is a response variable that we wish to predict from an
explanatory vector X € RY
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Sparse Approximation

Statistics: sparse linear regression
given n observations (Xj, y;), assumed of the form

y=X"B+e

y is a response variable that we wish to predict from an
explanatory vector X € RY

...using at most k explanatory variables.
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Sparsity parameter k

Often k is unknown and needs to be estimated
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Sparsity parameter k

Often k is unknown and needs to be estimated

A common approach: Solve (P0) for several values of k and apply:

- Cross validation

- Model selection criterion

In rest of talk: Assume k is given

Focus on solving (P0) for a given value of k
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Support Detection

The key challenge in solving (P0) is support detection, finding the
optimal k columns of A to include in the solution
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Support Detection

The key challenge in solving (P0) is support detection, finding the
optimal k columns of A to include in the solution

Once support has been found, problem reduces to solving least
squares on these k columns.

[Natarajan 95', Davis et al 97']
Unfortunately, this problem is NP-hard...

Yet, extensive prior work, on algorithms, theory, lower bounds, etc.

Over a hundred methods to approximately solve (PO)
lots of theoretical results, recovery guarantees, etc.
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(Almost) all prior work on (P0O) in 3 slides...
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Greedy methods:

o Matching Pursuit algorithms

- Orthogonal Matching Pursuit (OMP), CoSaMP [Needell,
Tropp, ACHA 2009] and more

o lterative Hard Thresholding [Blumensath, Davies, ACHA 2009]
o lterative Support Detection (ISD) [Wang, Yin, Im. Sc. 2010]

o Forward stepwise linear regression (1960's), etc.
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o lterative Hard Thresholding [Blumensath, Davies, ACHA 2009]
o lterative Support Detection (ISD) [Wang, Yin, Im. Sc. 2010]

o Forward stepwise linear regression (1960's), etc.

Advantages: Easy to program, run very fast.

Limitation: May vyield suboptimal solutions.
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Penalty Methods

Replace constraint ||x||, < k by a penalty p(x):

min 3| Ax — y|* + Ap(x).
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Exact / Approximate Mixed Integer Programming

o During optimization, calculate lower bound for objective

o If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS '16]
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Exact / Approximate Mixed Integer Programming

o During optimization, calculate lower bound for objective

o

If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS '16]

o MIP solves (P0) globally
o Applicable with d = O(100), much faster than exhaustive
search

Limitation: May be very slow
o On 30 x 180 matrix A and k = 15, may take several days
[Bertsimas, Van Parys, AoS '20]

Cutting plane method
globally solve d = 15000, n = 200, kK = 10 in minutes
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Approximate MIP

[Hazimeh & Mazumder, Oper. Res. '20]
Greedy coordinate descent + local combinatorial search

Boaz Nadler The Trimmed Lasso 12 /51



Approximate MIP

[Hazimeh & Mazumder, Oper. Res. '20]
Greedy coordinate descent + local combinatorial search

— No optimality certificate
— Extremely fast, can handle d = 10° in less than a minute

— state of the art performance
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Theoretical Guarantees

In addition to algorithm development, substantial body of
literature on conditions for perfect recovery (noiseless setting),
accurate and stable recovery in presence of noise.
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Theoretical Guarantees

In addition to algorithm development, substantial body of
literature on conditions for perfect recovery (noiseless setting),
accurate and stable recovery in presence of noise.

Key notions: Coherence of dictionary, restricted isometry
property, etc.

Under some conditions, current methods are optimal

Has the problem not been solved yet?
No !

Key limitation of above methods:

with few observations n < d,

higher values of k (not so sparse vectors)

nearly all prior methods either compute far from optimal solutions
or run essentially forever...
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Matrix A of size 100 x 800, random i.i.d. A/(0,1) entries followed
by column normalization.
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Matrix A of size 100 x 800, random i.i.d. A/(0,1) entries followed
by column normalization.

For various sparsity values k, generate random k-sparse vector xg.
Its non-zero entries are i.i.d. N(0,1).

Generate
y=Axp+e

where vector e ~ o\ (0, I,), with E||e[|?> = (0.05)? - E||Axol|?.
Measure of optimization success:

1A%~ yl|
|Axo— vl

If ratio < 1 then X is potentially accurate estimate of x
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An Example
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In our setting, /1 penalty (Lasso / Basis Pursuit) essentially works
only up to sparsity levels k < 16.
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IRLS and IRL-1 solve /4 penalized objectives with g < 1. Solved
with 10 values of g < 1 and took solution with minimal ||Ax — y||.
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ISD=lterative Support Detection [Wang & Yin 2010'].
Sophisticated greedy support-detection strategy.
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An Example
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GSM= our proposed method. Superior at the more challenging
settings with larger values of k and/or correlated dictionaries
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An Example

Successful optimization often (but not always) translates into
better recovery

1SD)

REL-ERROR(

0 I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

REL-ERROR(GSM)

Showing ||X — xoll1/[/xol|1
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Solving (P0) by a Penalized Objective

Desired properties for a penalty function:
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Solving (P0) by a Penalized Objective

Desired properties for a penalty function:

(i) A penalty p(x) = pk(x) that explicitly takes into account the
sparsity level k

(ii) For large A, solutions of
min [|Ax — yl|3 + Apk(x)

are close to those of (PO0).
o Better yet - they coincide
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Solving (P0) by a Penalized Objective

Desired properties for a penalty function:

(i) A penalty p(x) = pk(x) that explicitly takes into account the
sparsity level k

(ii) For large A, solutions of
min [|Ax — yl|3 + Apk(x)

are close to those of (PO0).
o Better yet - they coincide

(iii) Objective would be easy to optimize
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The Trimmed Lasso

A penalty that satisfies (i) and (ii) above: (Not our contribution)

d

m(x)= Y Ixl

Jj=k+1

where |x|(1) > [x|2) > ... > [x]|(q) are the entries of x in absolute
value, sorted in decreasing order
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A penalty that satisfies (i) and (ii) above: (Not our contribution)

d
m(x)= Y Ixl

Jj=k+1

where |x|(1) > [x|2) > ... > [x]|(q) are the entries of x in absolute
value, sorted in decreasing order

Penalize “tail” of x: the ¢; distance to the nearest k-sparse vector
Early related works:

- [Cohen, Dahmen, DeVore, JAMS '08]

- [Huang, Liu, Shi, Van Huffel, Suykens, Sig. Proc. '15]
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The Trimmed Lasso

A penalty that satisfies (i) and (ii) above: (Not our contribution)

d
m(x)= Y Ixl

Jj=k+1

where |x|(1) > [x|2) > ... > [x]|(q) are the entries of x in absolute
value, sorted in decreasing order
Penalize “tail” of x: the ¢; distance to the nearest k-sparse vector
Early related works:

- [Cohen, Dahmen, DeVore, JAMS '08]

- [Huang, Liu, Shi, Van Huffel, Suykens, Sig. Proc. '15]
Penalty studied by:

- [Gotoh, Takeda, Tono, Math. Prog. '18]

- [Bertsimas, Copenhaver, Mazumder, '17], who coined the
term trimmed Lasso
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The Trimmed Lasso
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j=k+1

Theoretical questions:
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3. Can we recover x using 7x(x)?

Practical question: How to optimize an objective with 74(x)?
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The Trimmed Lasso

Tk(x Z |X’(J)

Jj=k+1

Theoretical questions:
1. Relation to original problem (P0)?
2. What value to use for \?
3. Can we recover x using 7x(x)?

Practical question: How to optimize an objective with 74(x)?

Our contribution:
1. Theoretical study of 74(x), addressing questions 1-3
— Tk(x) is a good candidate for solving (P0)
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The Trimmed Lasso

Tk(x) = Z Xy

Jj=k+1

Theoretical questions:
1. Relation to original problem (P0)?
2. What value to use for \?
3. Can we recover x using 7x(x)?

Practical question: How to optimize an objective with 74(x)?

Our contribution:
1. Theoretical study of 74(x), addressing questions 1-3
— Tk(x) is a good candidate for solving (P0)
2. Novel surrogate penalty that satisfies (i)-(iii)
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The Trimmed Lasso

Tk(x) = Z Xy

Jj=k+1

Theoretical questions:
1. Relation to original problem (P0)?
2. What value to use for \?
3. Can we recover x using 7x(x)?

Practical question: How to optimize an objective with 74(x)?

Our contribution:
1. Theoretical study of 74(x), addressing questions 1-3
— Tk(x) is a good candidate for solving (P0)
2. Novel surrogate penalty that satisfies (i)-(iii)
3. Practical optimization method, state-of-the-art results
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The Trimmed Lasso: Choosing A

min FA(x) = 5[|Ax = |3 + A7 (x) (P»)
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The Trimmed Lasso: Choosing A

Define = max;=1,. 4| ail|,, where a; are the columns of A.

If X\ > X = B||y|l,. then any local minimum of (Py) is k-sparse.
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The Trimmed Lasso: Choosing A

Define = max;=1,. 4| ail|,, where a; are the columns of A.

Lemma

If X\ > X = B||y|l,. then any local minimum of (Py) is k-sparse.

o For large enough A, optimal solutions of (P,) coincide with
those of (P0).
o Strategy: Solve with increasing values of A, until a k-sparse
solution is obtained.
— Guaranteed to happen when A surpasses the threshold.
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Sparse Signal Recovery Guarantees

Suppose that
y=Axo+ecR"

x0 € RY = unknown vector to be recovered
e = measurement error
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Sparse Signal Recovery Guarantees

Suppose that
y=Axo+ecR"

x0 € RY = unknown vector to be recovered
e = measurement error

Assumptions:
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Sparse Signal Recovery Guarantees

Suppose that
y=Axo+ecR"

x0 € RY = unknown vector to be recovered
e = measurement error

Assumptions:
Xo is approximately k-sparse (7x(x0) < ||xo|l1)

lle||2 is small

Goal: Recover xq given A,y and k.

Question:
Can one accurately recover xq by solving problem (P) ?
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Sparse Signal Recovery
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Sparse Signal Recovery

Without additional assumptions on A, this problem is ill posed

o Even in the absence of noise, to be able to recover xg, any 2k
columns of A must be linearly independent

Assumption

There exists a constant ap, > 0 such that for all x € R? with
Ix[lo < 2k,
[Ax(l2 > ok x]|1

Variant of the Restricted Isometry Property: One-sided, with
mixed norms

Notation:
For a vector x € RY, denote by MM, (x) the k-sparse projection of x,
namely the nearest k-sparse vector to x
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The Trimmed Lasso: Sparse Recovery Guarantees

Suppose that for some \ > 0, an optimization algorithm outputs a
solution X such that

Fx(%) < Fa(Mk(x0))-
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Theorem
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solution X such that

Fx(%) < Fa(Mk(x0))-

Let £ = |le||, + BTk(x0). Then,
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The Trimmed Lasso: Sparse Recovery Guarantees

Theorem

Suppose that for some \ > 0, an optimization algorithm outputs a
solution X such that

Fx(%) < FA(Mk(x0))-
Let £ = |le||, + BTk(x0). Then,

1. The projected solution M(X) is close to xq,

k(%) = xolly < 7i(x0) + 26 + z52—€>
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The Trimmed Lasso: Sparse Recovery Guarantees

Theorem

Suppose that for some \ > 0, an optimization algorithm outputs a
solution X such that

Fx(%) < Fa(Mk(x0))-

Let £ = ||e||, + BTk(x0). Then,
1. The projected solution M(X) is close to xq,

IMk(%) — xoll; < 7(x0) + Tz,ﬁ + 2)\a2k 3

2. If X itself is k-sparse, then the following tighter bound holds,

1% = xoll; < 7k(x0) + 53¢
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The Trimmed Lasso: Sparse Recovery Guarantees

Implication: We can well-approximate xg by solving (Py) with A
smaller than A
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The Trimmed Lasso: Sparse Recovery Guarantees

Implication: We can well-approximate xg by solving (Py) with A
smaller than A

o We don't need the optimal solutions of (P,) to coincide with
those of (P0)
o Potentially, solving (Py) with smaller \ is easier

o Recovery is stable w.r.t. measurement error ||e||, and
inexactness of sparsity 74(xo)
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The Trimmed Lasso: Sparse Recovery Guarantees

Note: Theoretical guarantee for Lasso has better dependence on

Tk(X0), by a factor of (’)(\/E)
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o However, it requires the RIP constant to be bounded away
from zero.
Even w/out noise, Lasso/BP requires apx to be bounded away
from zero for recovery guarantees.
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Note: Theoretical guarantee for Lasso has better dependence on
Tk(X0), by a factor of (’)(ﬁ)

o However, it requires the RIP constant to be bounded away

from zero.
Even w/out noise, Lasso/BP requires apx to be bounded away
from zero for recovery guarantees.

o Our guarantee only requires apy > 0.
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Note: Theoretical guarantee for Lasso has better dependence on
Tk(X0), by a factor of (’)(ﬁ)

o However, it requires the RIP constant to be bounded away
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Even w/out noise, Lasso/BP requires apx to be bounded away
from zero for recovery guarantees.
o Our guarantee only requires apy > 0.
— a necessary condition for successful recovery by any
algorithm
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The Trimmed Lasso: Sparse Recovery Guarantees

Note: Theoretical guarantee for Lasso has better dependence on
Tk(X0), by a factor of (’)(ﬁ)

o However, it requires the RIP constant to be bounded away
from zero.
Even w/out noise, Lasso/BP requires apx to be bounded away
from zero for recovery guarantees.
o Our guarantee only requires apy > 0.
— a necessary condition for successful recovery by any
algorithm

In conclusion:

Optimizing trimmed-lasso penalized objectives is a promising
approach to (P0).
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The Trimmed Lasso: Practical Optimization

Reminder:
() = X0 1 Xl
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The Trimmed Lasso: Practical Optimization

Reminder:
() = X0 1 Xl

Goal:

o1
min §HAX — y|3 + Ari(x)

Previous Optimization Methods:

o Difference of Convex Programming (DCP)
[Gotoh, Takeda, Tono, Math. Prog. '18]

o Alternating Direction Method of Multipliers (ADMM)
[Bertsimas, Copenhaver, Mazumder, '17]
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The Trimmed Lasso: Practical Optimization

Comparison to DC-programming
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The Trimmed Lasso: Practical Optimization

Comparison to ADMM
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The Trimmed Lasso: Practical Optimization

(%) = Z X107

Jj=k+1
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Trimmed Lasso as a hard minimum:
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f1-norm.
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The Trimmed Lasso: Practical Optimization

Alternative formula:

Trimmed Lasso as a hard minimum:

Out of all (Z) subsets of {1,...,d}, choose one with minimal
f1-norm.

Our Key Idea: Replace the hard minimum by a soft minimum.
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Surrogate for Trimmed Lasso

Let z € R™ with m = (‘Z) whose entries consist of the /;-norms of
all subvectors of x of size d — k. Formally:
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Surrogate for Trimmed Lasso

Let z € R™ with m = (‘Z) whose entries consist of the /;-norms of
all subvectors of x of size d — k. Formally:

z is indexed by subsets A C {1,...,d} of size d — k:

z=(zn). IN=d—k

Each entry of z is given by

=7 xi
ien
Note that

Tk(x) = \/\|r233/n—k Z5
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Surrogate for Trimmed Lasso

Let z € R™ with m = (‘Z) whose entries consist of the /;-norms of
all subvectors of x of size d — k. Formally:

z is indexed by subsets A C {1,...,d} of size d — k:

z=(zn). IN=d—k

Each entry of z is given by
2n =l
ien
We wish:

Xx) = soft min z
p(x) oft min 2
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Surrogate for Trimmed Lasso

Let z € R™ with m = (‘Z) whose entries consist of the /;-norms of
all subvectors of x of size d — k. Formally:

z is indexed by subsets A C {1,...,d} of size d — k:

z=(zn). IN=d—k

Each entry of z is given by
2n =l
ien
We wish:

Xx) = soft min z
p(x) oft min 2

- As in the softmax function in multi-class classification.
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Surrogate for Trimmed Lasso

Soft maximum of z = (z1, ..., zm):

m
log Z exp (zj)
j=1
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Surrogate for Trimmed Lasso

Soft minimum of z:

m
—log [ Y exp(—2)
j=1
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Surrogate for Trimmed Lasso

Add a smoothness parameter ~:

1 m
~ log > exp(—yz)

Jj=1
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Surrogate for Trimmed Lasso

Add averaging:

—= |og Zexp —7z))
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Surrogate for Trimmed Lasso

Plug in the original definition of z:

—ilog «,1,) > exp(—va!)

k) |N=d—k ien
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Surrogate for Trimmed Lasso

_llog C‘lI)MZ exp(—’yz \x,-|>

=d—k ieN

Boaz Nadler The Trimmed Lasso 35/51



Surrogate for Trimmed Lasso
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k) |N=d—k ien
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Surrogate for Trimmed Lasso

Tm(x):_ilog (‘1’) Z exp(—’YZ \Xi|>

k) |N=d—k ien

Generalized Soft-Min Penalty

o Infinitely differentiable as a function of |x|
- Parameter « controls level of smoothness
o Takes into account all possible (Z) sparsity patterns of x

o Significantly easier to optimize

Boaz Nadler The Trimmed Lasso 35/51



Generalized Soft-Min Properties

Lemma

For any x € RY, the function 7y ~(x) is monotone-decreasing with
respect to . Moreover,
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Generalized Soft-Min Properties

Lemma

For any x € RY, the function 7y ~(x) is monotone-decreasing with
respect to . Moreover,

. _ d—k
7'[)“0 Tk,v(x) = T||X||1

V'me Thy (X) = Th(x)
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A Homotopy Scheme

Instead of directly minimizing

31Ax = w3+ Ak(x)
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A Homotopy Scheme

Instead of directly minimizing
1 2
3I1Ax =yl + A7i(x)
Solve a sequence of problems
m)én FA,V(X) = %HAX - y“g + >\Tk,7(x)

with an increasing sequence 9 < 11 < ..., while tracing path of
solutions.
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A Homotopy Scheme

Instead of directly minimizing
1 2
3I1Ax =yl + A7i(x)
Solve a sequence of problems
m)én FA,V(X) = %HAX - Y||§ + >\7—k,7(x)

with an increasing sequence 9 < 11 < ..., while tracing path of
solutions.

o Start at v = 0: 74 o(x) is the convex ¢1 norm (Lasso problem).

o Slowly increase . At iteration t with v = ¢, initialize
optimization method with previous solution X;_1.
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Majorization Minimization Scheme

Problem: How to minimize each nonconvex objective

Faq(x) = %HAX - ,VH§ + ATk~ (x)?
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Majorization Minimization Scheme

Problem: How to minimize each nonconvex objective
2
Faqy(x) = %HAX = ¥l + ATk (x)?

Approach: Majorization-Minimization

Construct a function Gy ,(x, X) such that

G/\,’Y(x?)?) > F/\y’Y(x)ﬂ G)\,’Y(X,X) = FA,’Y(X)'

Iterate:
t H t—1
' :arngmGAﬁ(x,x )
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Majorization Minimization Scheme

Problem: How to minimize each nonconvex objective

Faq(x) = %HAX - ,VH§ + ATk~ (x)?

Approach: Majorization-Minimization
Construct a function Gy ,(x, X) such that
Gay (%, %) = Faq(x),  Gay(x,x) = Fay(x).

Iterate:
t H t—1
' :arngmGAﬁ(x,x )

o Objective is guaranteed to decrease monotonically.
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Majorization Minimization Scheme

Problem: How to minimize each nonconvex objective

Faq(x) = %HAX - ,VH§ + ATk~ (x)?

Approach: Majorization-Minimization

Construct a function Gy ,(x, X) such that

G/\,’Y(x?)?) > F/\y’Y(x)ﬂ G)\,’Y(X,X) = FA,’Y(X)'

Iterate:

xt=arg mXin Gy (x, xtfl).

o Objective is guaranteed to decrease monotonically.

o Under some assumptions, guaranteed to converge to a
stationary point.
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Majorization Minimization Scheme

Constructing a majorizer for F) ,(x):
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Majorization Minimization Scheme

Constructing a majorizer for F) ,(x):
Define w, : RY — RY for 0 < v < oo by

; A [=d—k,ieh EXP ("Y D jen ’XJ|>
Wk,’y(x) =
szd_k exp <—7 > jen ’XJ|>
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; A [=d—k,ieh EXP ("Y D jen ’XJ|>
Wk,’y(x) =
szd_k exp <—7 > jen ’XJ|>

Lemma: The following function is a majorizer of F ,(x):

oy 1 < < <
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Majorization Minimization Scheme

Constructing a majorizer for F) ,(x):
Define w, : RY — RY for 0 < v < oo by

; A [=d—k,ieh EXP ("Y D jen ’XJ|>
Wk,’y(x) =
szd_k exp <—7 > jen ’XJ|>

Lemma: The following function is a majorizer of F ,(x):

oy 1 - < -
G (%, %) = S Ax =y + Ay (%) + Mwie (R), [ ]~ %])

constant w.r.t. x
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Majorization Minimization Scheme

MM scheme to minimize F) ,(x):
wh = wp, (x)

1
x' = argmin §||Ax — yH2 + AMw', |x])
X
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Majorization Minimization Scheme

MM scheme to minimize F) ,(x):
wh = wp, (x)
1
x' = argmin §||Ax —y|? + Awt, |x])
X

Each subproblem is a convex weighted ¢; problem.
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MM scheme to minimize F) ,(x):
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1
x' = argmin §||Ax — yH2 + AMw', |x])
X

Each subproblem is a convex weighted ¢; problem.
Similar to IRL1...
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Majorization Minimization Scheme

MM scheme to minimize F) ,(x):
wh = wy, (x*)
x'=arg min %HAX —y|? + Awt, |x])
Each subproblem is a convex weighted ¢; problem.

Similar to IRL1... with a key difference:

Lemma

For any x € RY, k, v,
1. All weights wj_(x) € [0,1]

2 YL wi (x)=d—k
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Majorization Minimization Scheme

MM scheme to minimize F) ,(x):
wh = wy, (x*)
x'=arg min %HAX —y|? + Awt, |x])
Each subproblem is a convex weighted ¢; problem.

Similar to IRL1... with a key difference:

Lemma

For any x € RY, k, v,
1. All weights wj_(x) € [0,1]

P
2. Ylica Wiy (x) =d —k
Since all weights are in [0,1], and their sum is constant, they do

not require regularization.
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Computing 7« and wy

Problem: How to compute 7 ,(x) and wy ,(x)?

Their formulas involve sums of (z) terms.
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and underflow, due to the log and exp operations.
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Computing 7« and wy

Problem: How to compute 7 ,(x) and wy ,(x)?
Their formulas involve sums of (z) terms.

Naive calculation would be...
o prohibitively slow.

o highly prone to numerical corruption by arithmetic overflow
and underflow, due to the log and exp operations.

Developed numerical scheme to accurately compute 74 ,(x) and
Wi (X)
o Recursive, takes O(kd) operations

Approach also relevant for top-k classification. Method to
compute similar functions for small k was proposed by [Berrada,
Zisserman, Kumar, /CLR '18].

Boaz Nadler The Trimmed Lasso 41 /51



Outline of our method

(a) We seek a solution of (P0) by solving
1 2
2l1Ax — y | + Ari(x)

for increasing values of A < ), till a k-sparse solution found.
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Outline of our method

(a) We seek a solution of (P0) by solving
1 2
2l1Ax — y | + Ari(x)

for increasing values of A < ), till a k-sparse solution found.
(b) Each such problem solved by homotopy: Minimize

1
SlIAx = Y1+ Ariy (%)

for increasing sequence of values of .

Boaz Nadler The Trimmed Lasso 42 /51



Outline of our method

(a) We seek a solution of (P0) by solving
1 2
S1Ax — y I3+ Am(x)

for increasing values of A < ), till a k-sparse solution found.
(b) Each such problem solved by homotopy: Minimize

1
SlIAx = Y1+ Ariy (%)

for increasing sequence of values of .

(c) Each such problem solved by MM, requiring solution
of several weighted ¢; problems.
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Outline of our method

(a) We seek a solution of (P0) by solving
1 2
S1Ax — y I3+ Am(x)

for increasing values of A < ), till a k-sparse solution found.
(b) Each such problem solved by homotopy: Minimize

1
SlIAx = Y1+ Ariy (%)

for increasing sequence of values of .

(c) Each such problem solved by MM, requiring solution
of several weighted ¢; problems.

Running time for one A: =~ 500x slower than single ¢; problem.
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Comparison to current state of the art

(As in [Bertsimas and Van Parys, 2020])
o Xqg € R is k-sparse, d = 15000, kK = 10, with entries 1
o A€ R"™9 with uncorrelated A/(0,1) entries
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(As in [Bertsimas and Van Parys, 2020])
o xg € R? is k-sparse, d = 15000, k = 10, with entries +1
o A€ R"™9 with uncorrelated A/(0,1) entries
o Observation: y = Axg + e, with 5% noise (SNR=400)

o True k is known to all methods
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Comparison to current state of the art

(As in [Bertsimas and Van Parys, 2020])
o xg € R? is k-sparse, d = 15000, k = 10, with entries +1
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Comparison to current state of the art

(As in [Bertsimas and Van Parys, 2020])

X0 € R is k-sparse, d = 15000, kK = 10, with entries 1
o A € R™d with uncorrelated A(0, 1) entries
Observation: y = Axg + e, with 5% noise (SNR=400)

o True k is known to all methods

(e]

(¢]

o

Coordinate descent returns multiple solutions

Chose the one whose support is closest to the true
support

Measure of success:

|5NSo |
o Support accuracy: —
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Comparison to current state of the art

(As in [Hazimeh, Mazumder 2020])
o k-sparse signal xog € R, k =50, d = 20000
o Entries £1
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Comparison to current state of the art

(As in [Hazimeh, Mazumder 2020])

o k-sparse signal xog € R, k =50, d = 20000
Entries £1
AcR™9 N(0,X%), T;; = 0.5/

Observation: y = Axg + €, varying noise levels
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e}

o

Each method chooses k using a separate validation set:
9 = AXO +é
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(As in [Hazimeh, Mazumder 2020])
o k-sparse signal xog € R, k =50, d = 20000
o Entries +1
o AcR™9 N(0,%), L;; = 0.5/
o Observation: y = Axg + e, varying noise levels
o Each method chooses k using a separate validation set:
y=Axy+é&
Measures of success:
|5nSo]
|5]+1Sol

o F-score: 2

IEA,y[HA)A(fyHﬂ

o Expected prediction error:
P P 5y [y
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Comparison to current state of the art
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Conclusion

o Problem (P0) plays a key role in multiple applications.

o Still room for improvements for challenging instances of (P0)
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o Problem (P0) plays a key role in multiple applications.
o Still room for improvements for challenging instances of (P0)

Trimmed Lasso - desirable theoretical properties to solve (PO0)

(e]

(¢]

Practical optimization method for Trimmed-Lasso penalty

- Novel surrogate penalty (GSM)

- Accurate numerical scheme

- Accompanying optimization algorithm
Approach potentially applicable to other sparse combinatorial
search problems
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Conclusion

o Problem (P0) plays a key role in multiple applications.

o Still room for improvements for challenging instances of (P0)

(e]

Trimmed Lasso - desirable theoretical properties to solve (PO0)

(¢]

Practical optimization method for Trimmed-Lasso penalty

- Novel surrogate penalty (GSM)

- Accurate numerical scheme

- Accompanying optimization algorithm
Approach potentially applicable to other sparse combinatorial
search problems

o}

code on GitHub.

Amir, T., Basri, R. and Nadler, B., The Trimmed Lasso: Sparse Recovery
Guarantees and Practical Optimization by the Generalized Soft-Min Penalty.
SIAM J. Math. Data Science, 2021
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Thank You

The End
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