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Peter’s Non-Sparse Influence on My Work

- Some theory for Fisher’s LDA... when there are many more
variables than observations, 2004’

→ The prediction error in PLS and CLS, 05’

- Covariance Regularization by Thresholding, 08’

→ Minimax bounds on sparse PCA,

- Simultaneous analysis of Lasso and Dantzig, 09’
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Sparse Approximation / Best subset selection

Problem setup:

Observe

(i) n × d matrix A

(ii) response vector y ∈ Rn

Given sparsity parameter k

solve
min
x

∥Ax − y∥2 subject to ∥x∥0 ≤ k (P0)
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Sparse Approximation

min
x

∥Ax − y∥2 subject to ∥x∥0 ≤ k (P0)

Signal/Image processing:
y = (y1, . . . , yn) are n samples of unknown function
A = dictionary, whose columns are basic signals / atoms

Seek best representation of y by at most k dictionary atoms.

Compressed sensing:

Wish to recover unknown signal x ∈ Rd , from n noisy observations

yi = w⊤
i x + σξi

Assume that x is (approximately) k-sparse

Boaz Nadler The Trimmed Lasso 4 / 51



Sparse Approximation

min
x

∥Ax − y∥2 subject to ∥x∥0 ≤ k (P0)

Signal/Image processing:
y = (y1, . . . , yn) are n samples of unknown function
A = dictionary, whose columns are basic signals / atoms

Seek best representation of y by at most k dictionary atoms.

Compressed sensing:

Wish to recover unknown signal x ∈ Rd , from n noisy observations

yi = w⊤
i x + σξi

Assume that x is (approximately) k-sparse

Boaz Nadler The Trimmed Lasso 4 / 51



Sparse Approximation

min
x

∥Ax − y∥2 subject to ∥x∥0 ≤ k (P0)

Signal/Image processing:
y = (y1, . . . , yn) are n samples of unknown function
A = dictionary, whose columns are basic signals / atoms

Seek best representation of y by at most k dictionary atoms.

Compressed sensing:

Wish to recover unknown signal x ∈ Rd , from n noisy observations

yi = w⊤
i x + σξi

Assume that x is (approximately) k-sparse

Boaz Nadler The Trimmed Lasso 4 / 51



Sparse Approximation

min
x

∥Ax − y∥2 subject to ∥x∥0 ≤ k (P0)

Signal/Image processing:
y = (y1, . . . , yn) are n samples of unknown function
A = dictionary, whose columns are basic signals / atoms

Seek best representation of y by at most k dictionary atoms.

Compressed sensing:

Wish to recover unknown signal x ∈ Rd , from n noisy observations

yi = w⊤
i x + σξi

Assume that x is (approximately) k-sparse

Boaz Nadler The Trimmed Lasso 4 / 51



Sparse Approximation

Statistics: sparse linear regression

given n observations (Xi , yi ), assumed of the form

y = X⊤β + ε

y is a response variable that we wish to predict from an
explanatory vector X ∈ Rd

...using at most k explanatory variables.
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Sparsity parameter k

Often k is unknown and needs to be estimated

A common approach: Solve (P0) for several values of k and apply:

- Cross validation

- Model selection criterion

In rest of talk: Assume k is given

Focus on solving (P0) for a given value of k
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Support Detection

The key challenge in solving (P0) is support detection, finding the
optimal k columns of A to include in the solution

Once support has been found, problem reduces to solving least
squares on these k columns.

[Natarajan 95’, Davis et al 97’]
Unfortunately, this problem is NP-hard...

Yet, extensive prior work, on algorithms, theory, lower bounds, etc.

Over a hundred methods to approximately solve (P0)
lots of theoretical results, recovery guarantees, etc.
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(Almost) all prior work on (P0) in 3 slides...
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Previous Work

Greedy methods:

◦ Matching Pursuit algorithms

- Orthogonal Matching Pursuit (OMP), CoSaMP [Needell,
Tropp, ACHA 2009] and more

◦ Iterative Hard Thresholding [Blumensath, Davies, ACHA 2009]

◦ Iterative Support Detection (ISD) [Wang, Yin, Im. Sc. 2010]

◦ Forward stepwise linear regression (1960’s), etc.

Advantages: Easy to program, run very fast.

Limitation: May yield suboptimal solutions.
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Penalty Methods

Replace constraint ∥x∥0 ≤ k by a penalty ρ(x):

min
x

1
2∥Ax − y∥2 + λρ(x).

- To obtain a k-sparse solution, λ needs to be tuned.

The most popular penalty is the convex lasso: ρ(x) = ∥x∥1
Lasso:

◦ Recovery guarantees under various conditions (Incoherence,
RIP, Restricted Eigenvalue, ...)

◦ Fast optimization schemes developed

◦ May yield suboptimal solutions
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Exact / Approximate Mixed Integer Programming

◦ During optimization, calculate lower bound for objective

◦ If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS ’16]

◦ MIP solves (P0) globally

◦ Applicable with d = O(100), much faster than exhaustive
search

Limitation: May be very slow

◦ On 30× 180 matrix A and k = 15, may take several days

[Bertsimas, Van Parys, AoS ’20]
Cutting plane method

globally solve d = 15000, n = 200, k = 10 in minutes

Boaz Nadler The Trimmed Lasso 11 / 51



Exact / Approximate Mixed Integer Programming

◦ During optimization, calculate lower bound for objective

◦ If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS ’16]

◦ MIP solves (P0) globally

◦ Applicable with d = O(100), much faster than exhaustive
search

Limitation: May be very slow

◦ On 30× 180 matrix A and k = 15, may take several days

[Bertsimas, Van Parys, AoS ’20]
Cutting plane method

globally solve d = 15000, n = 200, k = 10 in minutes

Boaz Nadler The Trimmed Lasso 11 / 51



Exact / Approximate Mixed Integer Programming

◦ During optimization, calculate lower bound for objective

◦ If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS ’16]

◦ MIP solves (P0) globally

◦ Applicable with d = O(100), much faster than exhaustive
search

Limitation: May be very slow

◦ On 30× 180 matrix A and k = 15, may take several days

[Bertsimas, Van Parys, AoS ’20]
Cutting plane method

globally solve d = 15000, n = 200, k = 10 in minutes

Boaz Nadler The Trimmed Lasso 11 / 51



Exact / Approximate Mixed Integer Programming

◦ During optimization, calculate lower bound for objective

◦ If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS ’16]

◦ MIP solves (P0) globally

◦ Applicable with d = O(100), much faster than exhaustive
search

Limitation: May be very slow

◦ On 30× 180 matrix A and k = 15, may take several days

[Bertsimas, Van Parys, AoS ’20]
Cutting plane method

globally solve d = 15000, n = 200, k = 10 in minutes

Boaz Nadler The Trimmed Lasso 11 / 51



Exact / Approximate Mixed Integer Programming

◦ During optimization, calculate lower bound for objective

◦ If current objective equals lower bound, terminate with a
global optimality certificate.

[Bertsimas, King, Mazumder, AoS ’16]

◦ MIP solves (P0) globally

◦ Applicable with d = O(100), much faster than exhaustive
search

Limitation: May be very slow

◦ On 30× 180 matrix A and k = 15, may take several days

[Bertsimas, Van Parys, AoS ’20]
Cutting plane method

globally solve d = 15000, n = 200, k = 10 in minutes

Boaz Nadler The Trimmed Lasso 11 / 51



Approximate MIP

[Hazimeh & Mazumder, Oper. Res. ’20]

Greedy coordinate descent + local combinatorial search

− No optimality certificate

− Extremely fast, can handle d = 106 in less than a minute

− state of the art performance
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Theoretical Guarantees

In addition to algorithm development, substantial body of
literature on conditions for perfect recovery (noiseless setting),
accurate and stable recovery in presence of noise.

Key notions: Coherence of dictionary, restricted isometry
property, etc.

Under some conditions, current methods are optimal

Has the problem not been solved yet?
No !

Key limitation of above methods:
with few observations n ≪ d ,
higher values of k (not so sparse vectors)
nearly all prior methods either compute far from optimal solutions
or run essentially forever...
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Example

Matrix A of size 100× 800, random i.i.d. N (0, 1) entries followed
by column normalization.

For various sparsity values k , generate random k-sparse vector x0.
Its non-zero entries are i.i.d. N (0, 1).

Generate
y = Ax0 + e

where vector e ∼ σN (0, In), with E∥e∥2 = (0.05)2 · E∥Ax0∥2.

Measure of optimization success:

∥Ax̂ − y∥
∥Ax0 − y∥

.

If ratio ≤ 1 then x̂ is potentially accurate estimate of x0
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An Example

20 25 30 35 40 45

0.5

1

1.5

2

2.5

In our setting, ℓ1 penalty (Lasso / Basis Pursuit) essentially works
only up to sparsity levels k ≤ 16.
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An Example

20 25 30 35 40 45

0.5

1

1.5

2

2.5

IRLS and IRL-1 solve ℓq penalized objectives with q < 1. Solved
with 10 values of q < 1 and took solution with minimal ∥Ax − y∥.
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An Example

20 25 30 35 40 45

0.5

1

1.5

2

2.5

ISD=Iterative Support Detection [Wang & Yin 2010’].
Sophisticated greedy support-detection strategy.
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An Example

20 25 30 35 40 45

0.5

1

1.5

2

2.5

GSM= our proposed method. Superior at the more challenging
settings with larger values of k and/or correlated dictionaries
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An Example

Successful optimization often (but not always) translates into
better recovery

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

REL-ERROR(GSM)
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k = 36

Showing ∥x̂ − x0∥1/∥x0∥1

Boaz Nadler The Trimmed Lasso 19 / 51



Solving (P0) by a Penalized Objective

Desired properties for a penalty function:

(i) A penalty ρ(x) = ρk(x) that explicitly takes into account the
sparsity level k

(ii) For large λ, solutions of

min ∥Ax − y∥22 + λρk(x)

are close to those of (P0).

◦ Better yet - they coincide

(iii) Objective would be easy to optimize
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The Trimmed Lasso

A penalty that satisfies (i) and (ii) above: (Not our contribution)

τk(x) =
d∑

j=k+1

|x |(j)

where |x |(1) ≥ |x |(2) ≥ . . . ≥ |x |(d) are the entries of x in absolute
value, sorted in decreasing order

Penalize “tail” of x : the ℓ1 distance to the nearest k-sparse vector

Early related works:

- [Cohen, Dahmen, DeVore, JAMS ’08]

- [Huang, Liu, Shi, Van Huffel, Suykens, Sig. Proc. ’15]

Penalty studied by:

- [Gotoh, Takeda, Tono, Math. Prog. ’18]

- [Bertsimas, Copenhaver, Mazumder, ’17], who coined the
term trimmed Lasso

Boaz Nadler The Trimmed Lasso 21 / 51



The Trimmed Lasso

A penalty that satisfies (i) and (ii) above: (Not our contribution)

τk(x) =
d∑

j=k+1

|x |(j)

where |x |(1) ≥ |x |(2) ≥ . . . ≥ |x |(d) are the entries of x in absolute
value, sorted in decreasing order

Penalize “tail” of x : the ℓ1 distance to the nearest k-sparse vector

Early related works:

- [Cohen, Dahmen, DeVore, JAMS ’08]

- [Huang, Liu, Shi, Van Huffel, Suykens, Sig. Proc. ’15]

Penalty studied by:

- [Gotoh, Takeda, Tono, Math. Prog. ’18]

- [Bertsimas, Copenhaver, Mazumder, ’17], who coined the
term trimmed Lasso

Boaz Nadler The Trimmed Lasso 21 / 51



The Trimmed Lasso

A penalty that satisfies (i) and (ii) above: (Not our contribution)

τk(x) =
d∑

j=k+1

|x |(j)

where |x |(1) ≥ |x |(2) ≥ . . . ≥ |x |(d) are the entries of x in absolute
value, sorted in decreasing order

Penalize “tail” of x : the ℓ1 distance to the nearest k-sparse vector

Early related works:

- [Cohen, Dahmen, DeVore, JAMS ’08]

- [Huang, Liu, Shi, Van Huffel, Suykens, Sig. Proc. ’15]

Penalty studied by:

- [Gotoh, Takeda, Tono, Math. Prog. ’18]

- [Bertsimas, Copenhaver, Mazumder, ’17], who coined the
term trimmed Lasso

Boaz Nadler The Trimmed Lasso 21 / 51



The Trimmed Lasso

A penalty that satisfies (i) and (ii) above: (Not our contribution)

τk(x) =
d∑

j=k+1

|x |(j)

where |x |(1) ≥ |x |(2) ≥ . . . ≥ |x |(d) are the entries of x in absolute
value, sorted in decreasing order

Penalize “tail” of x : the ℓ1 distance to the nearest k-sparse vector

Early related works:

- [Cohen, Dahmen, DeVore, JAMS ’08]

- [Huang, Liu, Shi, Van Huffel, Suykens, Sig. Proc. ’15]

Penalty studied by:

- [Gotoh, Takeda, Tono, Math. Prog. ’18]

- [Bertsimas, Copenhaver, Mazumder, ’17], who coined the
term trimmed Lasso

Boaz Nadler The Trimmed Lasso 21 / 51



The Trimmed Lasso

τk(x) =
d∑

j=k+1

|x |(j)

Theoretical questions:

1. Relation to original problem (P0)?

2. What value to use for λ?

3. Can we recover x using τk(x)?

Practical question: How to optimize an objective with τk(x)?

Our contribution:

1. Theoretical study of τk(x), addressing questions 1-3

→ τk(x) is a good candidate for solving (P0)

2. Novel surrogate penalty that satisfies (i)-(iii)

3. Practical optimization method, state-of-the-art results
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The Trimmed Lasso: Choosing λ

min
x

Fλ(x) :=
1
2∥Ax − y∥22 + λτk(x) (Pλ)

How to choose λ?
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The Trimmed Lasso: Choosing λ

Define β = maxi=1,...,d ∥ai∥2, where ai are the columns of A.

Lemma

If λ > λ̄ = β∥y∥2, then any local minimum of (Pλ) is k-sparse.

◦ For large enough λ, optimal solutions of (Pλ) coincide with
those of (P0).

◦ Strategy: Solve with increasing values of λ, until a k-sparse
solution is obtained.

→ Guaranteed to happen when λ surpasses the threshold.
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Sparse Signal Recovery Guarantees

Suppose that
y = Ax0 + e ∈ Rn

x0 ∈ Rd = unknown vector to be recovered
e = measurement error

Assumptions:

x0 is approximately k-sparse (τk(x0) ≪ ∥x0∥1)
∥e∥2 is small

Goal: Recover x0 given A, y and k .

Question:

Can one accurately recover x0 by solving problem (Pλ) ?
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Sparse Signal Recovery

Without additional assumptions on A, this problem is ill posed

◦ Even in the absence of noise, to be able to recover x0, any 2k
columns of A must be linearly independent

Assumption

There exists a constant α2k > 0 such that for all x ∈ Rd with
∥x∥0 ≤ 2k,

∥Ax∥2 ≥ α2k∥x∥1

Variant of the Restricted Isometry Property: One-sided, with
mixed norms

Notation:
For a vector x ∈ Rd , denote by Πk(x) the k-sparse projection of x ,
namely the nearest k-sparse vector to x
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The Trimmed Lasso: Sparse Recovery Guarantees

Theorem

Suppose that for some λ > 0, an optimization algorithm outputs a
solution x̂ such that

Fλ(x̂) ≤ Fλ(Πk(x0)).

Let ξ = ∥e∥2 + βτk(x0). Then,

1. The projected solution Πk(x̂) is close to x0,

∥Πk (x̂)− x0∥1 ≤ τk (x0) +
2

α2k
ξ + 1

2λα2k
ξ2

2. If x̂ itself is k-sparse, then the following tighter bound holds,

∥x̂ − x0∥1 ≤ τk(x0) +
2

α2k
ξ
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The Trimmed Lasso: Sparse Recovery Guarantees

Implication: We can well-approximate x0 by solving (Pλ) with λ
smaller than λ̄

◦ We don’t need the optimal solutions of (Pλ) to coincide with
those of (P0)

◦ Potentially, solving (Pλ) with smaller λ is easier

◦ Recovery is stable w.r.t. measurement error ∥e∥2 and
inexactness of sparsity τk(x0)
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The Trimmed Lasso: Sparse Recovery Guarantees

Note: Theoretical guarantee for Lasso has better dependence on

τk(x0), by a factor of O
(√

k
)
.

◦ However, it requires the RIP constant to be bounded away
from zero.
Even w/out noise, Lasso/BP requires α2k to be bounded away
from zero for recovery guarantees.

◦ Our guarantee only requires α2k > 0.

→ a necessary condition for successful recovery by any
algorithm

In conclusion:

Optimizing trimmed-lasso penalized objectives is a promising
approach to (P0).
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The Trimmed Lasso: Practical Optimization

Reminder:
τk(x) =

∑d
j=k+1 |x |(j)

Goal:

min
x

1

2
∥Ax − y∥22 + λτk(x)

Previous Optimization Methods:

◦ Difference of Convex Programming (DCP)
[Gotoh, Takeda, Tono, Math. Prog. ’18]

◦ Alternating Direction Method of Multipliers (ADMM)
[Bertsimas, Copenhaver, Mazumder, ’17]
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The Trimmed Lasso: Practical Optimization
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The Trimmed Lasso: Practical Optimization

τk(x) =
d∑

j=k+1

|x |(j)

Alternative formula:

τk(x) = min
|Λ|=d−k

∑
i∈Λ

|xi |

Trimmed Lasso as a hard minimum:

Out of all
(d
k

)
subsets of {1, . . . , d}, choose one with minimal

ℓ1-norm.

Our Key Idea: Replace the hard minimum by a soft minimum.
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Surrogate for Trimmed Lasso

Let z ∈ Rm with m =
(d
k

)
, whose entries consist of the ℓ1-norms of

all subvectors of x of size d − k. Formally:

z is indexed by subsets Λ ⊂ {1, . . . , d} of size d − k :

z = (zΛ), |Λ| = d − k

Each entry of z is given by

zΛ =
∑
i∈Λ

|xi |

- As in the softmax function in multi-class classification.
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Surrogate for Trimmed Lasso

Soft maximum of z = (z1, . . . , zm):

log

 m∑
j=1

exp (zj)



◦ Infinitely differentiable as a function of |x |

- Parameter γ controls level of smoothness

◦ Takes into account all possible
(d
k

)
sparsity patterns of x

◦ Significantly easier to optimize
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Surrogate for Trimmed Lasso

Add a smoothness parameter γ:

−1

γ
log
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Surrogate for Trimmed Lasso
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Surrogate for Trimmed Lasso

Plug in the original definition of z :

τk,γ(x) =− 1

γ
log

 1(d
k

) ∑
|Λ|=d−k
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− γ
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Generalized Soft-Min Properties

Lemma

For any x ∈ Rd , the function τk,γ(x) is monotone-decreasing with
respect to γ. Moreover,

lim
γ→0

τk,γ(x) =
d−k
d ∥x∥1

lim
γ→∞

τk,γ(x) = τk(x)
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A Homotopy Scheme

Instead of directly minimizing

1
2∥Ax − y∥22 + λτk(x)

Solve a sequence of problems

min
x

Fλ,γ(x) =
1
2∥Ax − y∥22 + λτk,γ(x)

with an increasing sequence γ0 < γ1 < . . ., while tracing path of
solutions.

◦ Start at γ = 0: τk,0(x) is the convex ℓ1 norm (Lasso problem).

◦ Slowly increase γ. At iteration t with γ = γt , initialize
optimization method with previous solution x̂ t−1.
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Majorization Minimization Scheme

Problem: How to minimize each nonconvex objective

Fλ,γ(x) =
1
2∥Ax − y∥22 + λτk,γ(x)?

Approach: Majorization-Minimization

Construct a function Gλ,γ(x , x̃) such that

Gλ,γ(x , x̃) ≥ Fλ,γ(x), Gλ,γ(x , x) = Fλ,γ(x).

Iterate:
x
t = argmin

x
Gλ,γ

(
x , x t−1

)
.

◦ Objective is guaranteed to decrease monotonically.

◦ Under some assumptions, guaranteed to converge to a
stationary point.
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Majorization Minimization Scheme

Constructing a majorizer for Fλ,γ(x):

Define wk,γ : Rd → Rd for 0 ≤ γ < ∞ by

w i
k,γ(x) =

∑
|Λ|=d−k,i∈Λ exp

(
−γ

∑
j∈Λ |xj |

)
∑

|Λ|=d−k exp
(
−γ

∑
j∈Λ |xj |

)
Lemma: The following function is a majorizer of Fλ,γ(x):
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1
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∥Ax − y∥2 + λτk,γ(x̃) + λ⟨wk,γ(x̃), |x |−|x̃ |⟩

constant w.r.t. x
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Majorization Minimization Scheme

MM scheme to minimize Fλ,γ(x):

wt = wk,γ(x
t−1)

x
t = argmin

x

1

2
∥Ax − y∥2 + λ⟨wt , |x |⟩

Each subproblem is a convex weighted ℓ1 problem.

Lemma

For any x ∈ Rd , k, γ,

1. All weights w i
k,γ(x) ∈ [0, 1]

2.
∑d

i=1 w
i
k,γ(x) = d − k

Since all weights are in [0,1], and their sum is constant, they do
not require regularization.
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Computing τk,γ and wk ,γ

Problem: How to compute τk,γ(x) and wk,γ(x)?

Their formulas involve sums of
(d
k

)
terms.

Näıve calculation would be...

◦ prohibitively slow.

◦ highly prone to numerical corruption by arithmetic overflow
and underflow, due to the log and exp operations.

Developed numerical scheme to accurately compute τk,γ(x) and
wk,γ(x)

◦ Recursive, takes O(kd) operations

Approach also relevant for top-k classification. Method to
compute similar functions for small k was proposed by [Berrada,
Zisserman, Kumar, ICLR ’18].
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◦ Recursive, takes O(kd) operations

Approach also relevant for top-k classification. Method to
compute similar functions for small k was proposed by [Berrada,
Zisserman, Kumar, ICLR ’18].
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Näıve calculation would be...

◦ prohibitively slow.

◦ highly prone to numerical corruption by arithmetic overflow
and underflow, due to the log and exp operations.

Developed numerical scheme to accurately compute τk,γ(x) and
wk,γ(x)

◦ Recursive, takes O(kd) operations

Approach also relevant for top-k classification. Method to
compute similar functions for small k was proposed by [Berrada,
Zisserman, Kumar, ICLR ’18].

Boaz Nadler The Trimmed Lasso 41 / 51



Computing τk,γ and wk ,γ

Problem: How to compute τk,γ(x) and wk,γ(x)?

Their formulas involve sums of
(d
k

)
terms.
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Outline of our method

(a) We seek a solution of (P0) by solving

1

2
∥Ax − y∥22 + λτk(x)

for increasing values of λ < λ̄, till a k-sparse solution found.

(b) Each such problem solved by homotopy: Minimize

1

2
∥Ax − y∥22 + λτk,γ(x)

for increasing sequence of values of γ.

(c) Each such problem solved by MM, requiring solution
of several weighted ℓ1 problems.

Running time for one λ: ≈ 500× slower than single ℓ1 problem.
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Comparison to current state of the art

(As in [Bertsimas and Van Parys, 2020])

◦ x0 ∈ Rd is k-sparse, d = 15000, k = 10, with entries ±1

◦ A ∈ Rn×d with uncorrelated N (0, 1) entries

◦ Observation: y = Ax0 + e, with 5% noise (SNR=400)

◦ True k is known to all methods

◦ Coordinate descent returns multiple solutions

Chose the one whose support is closest to the true
support

Measure of success:

◦ Support accuracy:
|Ŝ∩S0|

k
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Comparison to current state of the art
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Comparison to current state of the art

(As in [Hazimeh, Mazumder 2020])

◦ k-sparse signal x0 ∈ Rd , k = 50, d = 20000

◦ Entries ±1

◦ A ∈ Rn×d , N (0,Σ), Σi ,j = 0.5|i−j |

◦ Observation: y = Ax0 + e, varying noise levels

◦ Each method chooses k using a separate validation set:
ỹ = Ãx0 + ẽ

Measures of success:

◦ F-score: 2
|Ŝ∩S0|
|Ŝ|+|S0|

◦ Expected prediction error:

√
EA,y

[
∥Ax̂−y∥2

]
Ey[∥y∥2]
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Comparison to current state of the art
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Conclusion

◦ Problem (P0) plays a key role in multiple applications.

◦ Still room for improvements for challenging instances of (P0)

◦ Trimmed Lasso - desirable theoretical properties to solve (P0)

◦ Practical optimization method for Trimmed-Lasso penalty

- Novel surrogate penalty (GSM)
- Accurate numerical scheme
- Accompanying optimization algorithm

◦ Approach potentially applicable to other sparse combinatorial
search problems

code on GitHub.

Amir, T., Basri, R. and Nadler, B., The Trimmed Lasso: Sparse Recovery

Guarantees and Practical Optimization by the Generalized Soft-Min Penalty.

SIAM J. Math. Data Science, 2021
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Thank You

The End
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