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Thank you, Peter!



How can we draw trustworthy scientific conclusions?

Some answers:

Careful design, relevant data

Reasonable assumptions

Appropriate quantification of statistical uncertainty

Replication by independent teams

. . .

Are we missing something?



Marcus R. Munafo & George D. Smith (Nature, 2018)



”If a study is skewed and replications recapitulate that approach, findings
will be consistently incorrect or biased.

An essential protection against flawed ideas is (...) the strategic use of
multiple approaches to address one question.

Results that agree across different methodologies are less likely to be
artefacts.”



”The force of the argument results from the clarity of the prior reasoning,
the bringing together of many different lines of evidence, and the amount
of shoe leather Snow was willing to use.”



It’s expensive to run multiple studies that correspond to different lines of
evidence.

Can we make ”strategic use of multiple approaches” on one data set?



Leamer (1983)

”Sometimes I include observations from the decade of the fifties sometimes
I exclude them, sometimes the equation is linear and sometimes nonlinear.

The professional audience (...) withholds belief until an inference is shown
to be adequately insensitive to the choice of assumptions.”



Yu and Kumbier (2020)

”For example, the biologist studying gene regulation must choose both
how to normalize raw data and what algorithm(s) will be used in analysis.

When there is no principled approach to make these decisions, the
knowledge data scientists can extract from analyses is limited to
conclusions that are stable across appropriate choices.”

Suggestions: change pre-processing, specification of regressions, changing
the model for the errors



These researchers recommend evaluating several modelling choices for one
single data set.

How should we choose multiple approaches?

How should we aggregate different approaches?

How should we report statistical uncertainty?

Main question: if several similar regression return similar coefficients,
what’s the criterion that tells us whether we should be concerned or
not?

Main challenge: we do not know the structure and strength of the biases.
Can’t just use random effect models!



We’ll come back to this. Let’s talk about our model.



Distributional uncertainty

Batch effects, contaminations, confounding, sampling bias,. . . might lead
to a sampling distribution that is different from the target distribution P0.

If the distributional perturbations have some (known) structure, we can
address it via re-weighting, random effects modelling, robust methods,
sensitivity analysis or other statistical techniques.

Here, we want to deal with unknown non-adversarial perturbations.



Distributional uncertainty

Running example: we are interested in a linear regression parameter

θ(P) = arg min
θ

EP[(Y − Xθ)2].

We observe i.i.d. data (D1, . . . ,Dn) from a perturbed distribution Pξ and
compute an estimator θ̂(D1, . . . ,Dn).

The error decomposes as

θ̂ − θ(P0) = θ̂ − θ(Pξ)︸ ︷︷ ︸
error due to
sampling

+ θ(Pξ)− θ(P0)︸ ︷︷ ︸
error due to
perturbation

.



How to deal with distributional perturbations

Idea 1: Use worst-case bounds to control the distributional error (similar
to sensitivity analysis or robust statistics).

Idea 2: Model distributional perturbations as random and strive for
marginally valid confidence intervals.



Integrating sampling uncertainty and distributional
uncertainty

Ideally, we would like to construct confidence intervals that cover the
parameter of the target distribution θ(P0) (and not the contaminated
parameter θ(Pξ)).

Compared to sensitivity analysis and robust statistics, we will NOT rely on
user knowledge how far Pξ is from P0.

We will estimate the strength of the perturbations by evaluating model
stability.



Related literature

Many researchers recommend evaluating model stability to judge
trustworthiness of statistical conclusions (Leamer 1993; Rosenbaum 2010; Yu 2013; Yu and

Kumbier 2020; . . . )

In causal inference, differently specified regressions are often used to
estimate the size of omitted variable bias (Murphy and Topel 1990; Altonji, Elder, and

Taber 2005a; Altonji et al. 2011; Oster, 2019)

In the classical robustness literature, one considers estimation in the
presence of outliers (Huber 1964, Hampel 1968,. . . )

In the modern robustness literature, one considers prediction under
worst-case distributional perturbations (Duchi and Namkoong, 2018; Sinha et al., 2018; . . . )



How to model distributional perturbations?

θ̂ − θ(P0) = θ̂ − θ(Pξ)︸ ︷︷ ︸
error due to
sampling

+ θ(Pξ)− θ(P0)︸ ︷︷ ︸
error due to
perturbation

.

Three options for the asymptotic regime

Sampling uncertainty is of higher order than distributional uncertainty

Sampling uncertainty is of the same order as distributional uncertainty

Sampling uncertainty is of lower order than distributional uncertainty



How to model distributional perturbations?

What is the most generic distributional perturbation?

One can generate Pξ by randomly up-weighting or down-weighting
probabilities of events compared to the target distribution P0.



Example: the distributional perturbation model

For simplicity, we will focus on discrete distributions with P0(X = x) = 1
m

for all x ∈ X . Without loss of generality X = {1, . . . ,m}.

Draw i.i.d. weights ξk ≥ 0 with finite second moment. Set

Pξ(X = x) =
ξx∑m
k=1 ξk

Draw D1, . . . ,Dn
i.i.d.∼ Pξ. Then, for all functions ψ

Var

(
1√
n

n∑
i=1

(ψ(Di )− EP0 [ψ(D)])

)
=

(
1 +

n

m

Var(ξ)

E[ξ]2

)
Var(ψ(D))+o(1),

where D ∼ P0.



Our setting

Assumption (Simplified version)

Let (D1, . . . ,Dn) be a data set such that for any bounded ψ with bounded
total variation

1√
n

n∑
i=1

(ψ(Di )− EP0 [ψ(D)]) ≈ N (0, δ2Var(ψ(D))),

where D ∼ P0 and δ > 0 is unknown.

If the data is drawn i.i.d. from P0 this holds with δ = 1.

Thus, the assumption can be seen as relaxing the i.i.d. assumption.



Assumption (Rigorous version)

Let (Dn
1 , . . . ,D

n
n ), n ≥ 1 be a triangular array of random variables. For any

bounded ψ with bounded total variation let

1√
n

n∑
i=1

(ψ(Dn
i )− EP0 [ψ(D)]) = N (0, δ2Var(ψ(D))) + op(1),

where D ∼ P0 and δ > 0 is unknown.

Since the data scientist only observes on data set (Dn
1 , . . . ,D

n
n ) for some

fixed n, in the following for simplicity we just write (D1, . . . ,Dn).



When does this assumption hold?



What sampling procedures satisfy Assumption 1? In our paper, we give
several examples:

Distributional perturbation model

Drawing with replacement from a subpopulation

Sampling clusters of units with unobserved membership



”Alright, but I could’ve easily written down another perturbation model
with a different asymptotic behaviour!”

Result: Under a symmetry assumption, all distributional perturbations
models are equivalent (in terms of second moments) to the one introduced
above.



Theorem (Characterization of isotropic distributional perturbations)

Let (D, ξ) ∼ P0 and assume that there exists a function h(•) such that
h(D) is uniformly distributed on [0, 1]. Assume that for any D-measurable
events A and B with P0(A) = P0(B),

Var(Pξ(A)) = Var(Pξ(B)).

Furthermore, assume that for every sequence of D-measurable events Aj

with P(Aj)→ 0,
Var(Pξ(Aj))→ 0.

Then there exists δdist ≥ 0 such that for all ψ ∈ L2(P), and Di
i.i.d.∼ Pξ

Var(
1√
n

n∑
i=1

ψ(Di )− E[ψ(D)]) = δ2Var(ψ(D)),

for δ = 1 + nδ2dist.



”Are there relationships to other statistical concepts?”

Result: The perturbation model induces correlated data, random
confounding, and random sampling bias.

(details: see manuscript)



Violation of the i.i.d. assumption

Draw real-valued random variables Di
i.i.d.∼ Pξ, where Pξ is generated as

above. Let σ2 denote the variance of D under P0. Then, marginally,

Cor(ψ(Di ), ψ(Dj)) = δ2dist

for some constant δdist ≥ 0. Thus, under the random perturbation model
the observations are marginally correlated.



Questions?



Inference



How NOT to do inference

If we use our standard variance formulas (or the bootstrap), we only
estimate sampling uncertainty (not distributional uncertainty) and thus
drastically underestimate uncertainty!



How NOT to do inference

Example: estimation of the mean. Let θ̂ = 1
n

∑
i Di . Under Assumption 1,

σ̂2 =
1

n

n∑
i=1

(Di − D))2 =
1

n

n∑
i=1

D2
i − (D)2 ≈ Var(D).

However,

Var(θ̂) ≈ δ2 Var(D)

n

Thus, if we just use our standard variance formulas (or the bootstrap), we
might drastically underestimate uncertainty!



Without additional assumptions, it is impossible to estimate δ consistently
(δ is not identifiable).



Assumptions

The statistician might have access to several estimators θ̂k that
supposedly estimate a very similar quantity.

Assumption (Asymptotic linearity)

The estimators θ̂k , k = 1, . . . ,K are asymptotically linear, i.e.

θ̂k − θk =
1

n

n∑
i=1

φk(Di ) + op(
1√
n

)

for some bounded φk with mean zero and bounded total variation.

We show that this usually holds for M-estimators in low-dimensional
settings (in particular, maximum likelihood estimators).



Assumption (Consistency)

We assume that θk = θ(P0) for all k = 1, . . . ,K.

If this assumption is violated, we will generally get overcoverage, more
about that later...



Example

On observational data, researchers often estimate a causal effect by
running a regression of the outcome Y on the treatment T and
confounders X . There may be many reasonable choices for the adjustment
set.

θ̂1 = coef(lm(Y ∼ T + X1))[2]

θ̂2 = coef(lm(Y ∼ T + X1 + X2))[2]

θ̂3 = coef(lm(Y ∼ T + X1 + X2 + X3))[2]

θ̂4 = . . .

Other examples: Might want to estimate a causal effect via the
instrumental variables approach, augmented inverse probability weighting,
. . .



How to do inference

If we consider the difference θ̂1 − θ̂2, by Assumption 1 and 2

n(θ̂1 − θ̂2)2
d
≈ δ2Var(φ1(D)− φ2(D))Z 2,

where D ∼ P0 and where Z is a standard Gaussian random variable.

Under regularity assumptions, we can estimate the variance term and
obtain

n(θ̂1 − θ̂2)2

1
n

∑n
i=1(φ̂1(Di )− φ̂2(Di ))2

d
≈ δ2Z 2,

This term has high variance; this variance can be reduced by averaging
over multiple estimators.



How to do inference

If we consider the difference θ̂1 − θ̂2, by Assumption 1 and 2

n(θ̂1 − θ̂2)2
d
≈ δ2Var(φ1(D)− φ2(D))Z 2,

where D ∼ P0 and where Z is a standard Gaussian random variable.

Under regularity assumptions, we can estimate the variance term and
obtain

n(θ̂1 − θ̂2)2

1
n

∑n
i=1(φ̂1(Di )− φ̂2(Di ))2

d
≈ δ2Z 2,

This term has high variance; this variance can be reduced by averaging
over multiple estimators.



How to do inference

Given multiple estimators θ̂1, . . . , θ̂K , we recommend estimating δ2 via

δ̂2 =

∑K
k=1 n(θ̂k − 1

K

∑
j θ̂

j)2∑K
k=1

1
n

∑n
i=1(φ̂k(Di )− 1

K

∑
j φ̂

j(Di ))2

=
between-estimator-variation

expected variation assuming i.i.d. sampling

The denominator is important! It’s not the absolute between-estimator
variation that counts, but the relative stability.



Often, researchers assure themselves that different estimators give similar
conclusions, by comparing very similar estimators.

“As if someone were to buy several copies of the morning newspaper to
assure himself that what it said was true.” (Wittgenstein)

Takeaway: absolute stability is not the right criterion; relative stability is



Let θ̂ be an estimator chosen by the data scientist.

Theorem (Yujin intervals)

Suppose Assumptions 1, 2 and 3 hold. If φ̂k converge to φk , the estimators
are only weakly correlated and K →∞, under some regularity conditions

P

θ(P0) ∈
[
θ̂ ± δ̂ · z1−α/2

√
V̂ar(φ)

n

] −→ 1− α.

Important: this confidence interval covers θ(P0) even in cases where the
data might be drawn i.i.d. from Pξ 6= P0.

The scaling factor δ̂ takes care of the additional variation due to
distributional perturbations.



Questions?



Numerical examples

Is the coverage of Yujin intervals approximately correct?

Stability of rankings based on the proposed procedure



Evaluation of coverage

Define the distribution P0 via the following structural causal model.

ε, ε1, ε2,X3,X4,X5
i.i.d∼ N(0, 1),

X2 ← X3 + ε2,

X1 ← 0.5X2 + X4 + ε1,

Y ← X1 + 0.5X2 + X3 + X5 + ε

The data is drawn i.i.d. from Pξ, where Pξ arises from perturbing P0 as in
the random perturbation model. The strength of the perturbation is
δ2 = 1 + n

m , where m ∈ {200, 500, 1000} and n ∈ {200, 500, 1000}.

Goal: estimate the causal effect of X1 on Y .

Can use different adjustment sets: {X1,X2}, {X1,X2,X3}, . . . leading to
different estimators θ̂1, . . . , θ̂K .



If we only use correct adjustment sets (red bars) then estimation of δ is
almost unbiased. If we also use some incorrect adjustment sets (blue
bars), then we overestimate δ.



Coverage of θ(P0) based on i.i.d. data from the perturbed distribution Pξ.



Stability of rankings

Ultimately, the goal of the proposed procedure is to increase stability and
trustworthiness of decision-making.

We will see that the proposed procedure can increase stability even in
situations without distribution shift.



Stability of rankings

We consider the data set (Cortez and Silva, 2008) about the relationship
of final grades with 20 student-specific covariates. n = 649

The covariates include student grades, demographic, social and
school-related features.

We consider 12 random covariate sets that include 7 binary covariates of
interest.



Stability of rankings

Method 1: The statistician randomly chooses one of the covariate
sets, performs a linear regression, and ranks the effect sizes of 7
covariates.

Method 2: The statistician employs the proposed method. They
perform linear regressions with multiple covariate sets and for each
covariate, average the estimators and compute its effect size in
consideration of distributional perturbations.



Evaluating stability of rankings

We randomly split the data set into two, perform method 1 and method 2
on each split, and compare the rankings resulting from each split.

Stability measure: |S1,k ∩ S2,k |/K , where
S1,k = {Top k covariates by the effect size on split 1} and
S2,k = {Top k covariates by the effect size on split 2}

We repeat this procedure N = 1000 times and record the average set
similarity measure.



` 1 2 3 4 5 6 7
Method 1 (K = 10) 0.102 0.203 0.407 0.648 0.817 0.898 1.000
Method 2 (K = 10) 0.210 0.296 0.449 0.658 0.828 0.912 1.000

` 1 2 3 4 5 6 7
Method 1 (K = 20) 0.090 0.203 0.417 0.659 0.817 0.893 1.000
Method 2 (K = 20) 0.235 0.313 0.445 0.679 0.845 0.912 1.000

Table: The stability of the ranking: The table above shows results with K = 10
adjustment sets and the table below shows results with K = 20 adjustment sets.
Mean over N = 500 iterations of the computed set similarity measure between
S1,` and S2,` for each ` = 1, . . . , 7 is provided for each method.

On this data set, the proposed method improves stability by more than
100%.



Some frequently asked questions. . .



Q: The isotropic perturbation model makes very strong assumptions!

We agree! However, please note that it is weaker than assuming that the
data is drawn i.i.d. from the target distribution. In this sense, it can be
seen as an extension of the most common inferential strategy in statistics.

The isotropic perturbation model can be generalized (see later).



Q: How large are calibrated confidence intervals compared to ordinary
ones? Are they extremely conservative?

Answer 1: In our application, it was reasonable.



Answer 2: Sometimes, calibrated confidence intervals will be quite large.

Under the assumptions outlined above, this is an indication that
distributional uncertainty is of higher order than sampling uncertainty.

If distributional uncertainty is high, standard confidence intervals might be
useless?

In some sense, this is a feature, not a bug.



Q: Does this really work?

Some practitioners have advocated to use different estimation strategies
on a single data set for decades (Leamer 1983, Rosenbaum 2010, Yu and
Kumbier 2020).

Our theory provides rigorous guarantees for a version of this practice &
some guidance how to do it.



Looking ahead.



Extensions: Generalizing the isotropic perturbation model

For example, one can perturb the distribution of X and Y |X differently,
leading to

Var

(
1√
n

n∑
i=1

(ψ(Dn
i )− EP0 [ψ(D)])

)
= δ21Var(EP0 [ψ(D)|X ]) + δ22Var(ψ(D)− EP0 [ψ(D)|X ])

We can estimate δ1 and δ2 similarly as above. In words, we would calibrate
a multidimensional uncertainty model.



Extensions: Other ways to calibrate inference (that means, estimate δ)

So far, we have discussed how to use several estimators θ̂1, . . . , θ̂K to
estimate δ.

There are lots of other ways to estimate δ. In principle, can use any types
of moment equations either within data sets or across data sets.

Examples:

Negative controls in causal inference (negative outcomes or negative
exposures)

Knowledge of population quantities (for example, if EP0 [X ] is known)

Multiple data sets drawn from Pξ1 , . . . ,PξE .



Getting started

We’re writing an R package calinf available under
github.com/rothenhaeusler/calinf.

github.com/rothenhaeusler/calinf


Sampling from the distributional perturbation model

Sampling uncertainty

x <- rnorm(1000)

y <- 2*x + rnorm(1000)

Sampling uncertainty and distributional uncertainty

d_seed <- distributional_seed(n=1000,delta=5)

x <- drnorm(d_seed)

y <- 2*x + drnorm(d_seed)



Sampling from the distributional perturbation model

Sampling uncertainty

x <- rnorm(1000)

y <- 2*x + rnorm(1000)

Sampling uncertainty and distributional uncertainty

d_seed <- distributional_seed(n=1000,delta=5)

x <- drnorm(d_seed)

y <- 2*x + drnorm(d_seed)



drnorm()

Left: δ = 1; Right: δ = 5. In both cases n = 1000.



drunif()

Left: δ = 1; Right: δ = 5. In both cases, n = 1000.



Calibrated inference

> formulas <- list(

Y ~ X,

Y ~ X + I(X^2),

Y ~ X + Z1,

Y ~ X + Z2 + I(X^2),

Y ~ X + Z1 + Z2 + I(X^2)

)

> calm(formulas,data=data, target="X")

Quantification of both distributional and sampling uncertainty

Estimate Std. Error Pr(>|z|)

X 1.0244 0.0159 0



Tools

We have functions

1 to generate distributional seeds and draw from perturbed distributions
(drnorm, drunif, drbinom, drchisq,. . . )

2 to conduct inference in generalized linear models (calm, caglm)



Some more philosophical remarks



High-level intuition

Calibrated inference can quantify uncertainty in settings where due to
isotropic distributional perturbations, there is confounding, correlated
data, or selection bias.



In Statistics, as n→∞, we often report that uncertainty goes to zero.



Your inference is only as good as your assumptions

For n→∞, assuming that the estimators are uncorrelated, the estimated
variance is

τ̂2σ̂2

n
∼

K∑
k=1

wk(θk − 1

K

K∑
j=1

wjθ
j)2,

for some weights wi ≥ 0.



Consequences:

Assumptions almost correct → precise inference

Assumptions grossly violated → high uncertainty

Even for n→∞, uncertainty will not go to zero. Uncertainty is lower
bounded by the quality of your assumptions.



What is the third number?

In Statistics, there is consensus that we report 1) the estimate and 2) the
standard error. Should we report a third number?

Three versions of the future:

1 (pessimistic) No.

2 (optimistic) We’ll report other numbers which measure issues stability
under distribution shift, sensitivity to outliers, method stability, . . .

3 (in between) Integrate additional sources of uncertainty in the
variance estimate.



Summary

Provides theoretical guarantees for a type of stability analysis that
some researchers strongly advocate

Yields p-values and confidence intervals (easy to interpret, integrates
with FWER, FDR control)

Can be extended to more complex perturbations

Limitations:

Can lead to large confidence intervals

Can be unstable (if all estimators have the same influence function)



Thank you for your attention!

Draft is on arXiv.

Package is available under github.com/rothenhaeusler/calinf.

github.com/rothenhaeusler/calinf

