Bickel’s Influence on My Career

Celebrate Peter’s 82nd birthday!




e Covariance Matrix Estimation

e Network Analysis

e Variational Inference
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REGULARIZED ESTIMATION OF LARGE
COVARIANCE MATRICES

BY PETER J. BICKEL AND ELIZAVETA LEVINA'
University of California, Berkeley and University of Michigan

This paper considers estimating a covariance matrix of p variables from
n observations by either banding or tapering the sample covariance matrix,
or estimating a banded version of the inverse of the covariance. We show that
these estimates are consistent in the operator norm as long as (log p)/n — 0,
and obtain explicit rates. The results are uniform over some fairly natural




Bandable Covariance Matrix Estimation
Model: Let Xy,...,X, beiid N(0,%,x,).
Goal: Estimate >.,x, under the spectral norm.

assume that

Parameter space: For ¥ = (0y5),; i

o3| < M (Ji — 4] + 1)~V

for some a > 0 and M > 0.

Note that for all k,

max » oy [L{|i — j| > k} < Ck™.
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Banding Estimation

Sample covariance:

- 1 — _ _
Y= (0ihziger = > (X -X) (X -X)"
=1

which is an unbiased estimator of X = (0y;),; ;-

Banding estimator: Bickel and Levina (2008a)
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Bickel and Levina (2008a): A Fascinating Rate

Analysis: Bound the spectral norm by the matrix /; norm
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Rate of convergence: Set k = (i;2>)*#2*. We have
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as long as logp = o(n).

Remark: ||A], < ||A||, = max; ) . |a;;|, for A symmetric.




Our Follow-up: Optimality of Banding Estimation

Upper bound:
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Lower bound: Assouad and Le Cam

Reference: Cai, Zhang, Z. (2010)




COVARIANCE REGULARIZATION BY THRESHOLDING

BY PETER J. BICKEL! AND ELIZAVETA LEVINA?Z

University of California, Berkeley and University of Michigan

This paper considers regularizing a covariance matrix of p variables
estimated from n observations, by hard thresholding. We show that the
thresholded estimate is consistent in the operator norm as long as the true
covariance matrix is sparse in a suitable sense, the variables are Gaussian or
sub-Gaussian, and (log p)/n — 0, and obtain explicit rates. The results are
uniform over families of covariance matrices which satisfy a fairly natural no-
tion of sparsity. We discuss an intuitive resampling scheme for threshold se-
lection and prove a general cross-validation result that justifies this approach.
We also compare thresholding to other covariance estimators in simulations
and on an example from climate data.




Bickel and Levina (2008b)

Parameter space:

m?xZ]I(aij #0) <'s, max o, < M.

Thresholding estimation:

log p
==,

OA'Z',j = 5i,jﬂ(|5—i,j| > )\)7 with A =¢c

Upper bound:
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Our Follow-up: Optimality of Thresholding Estimation
Lower bound: Assouad — Le Cam

Reference: Cai, Z. (2012) for s relatively small.
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Our Other Follow-ups

e Inference for Gaussian graphical model: Ren, Sun, Zhang, Z. (2015)

¢ PCA and CCA: Gao, Ma, Z. (2017)

e Bayesian estimation: Gao, Z. (2015, 2016)
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Network Analysis

More on Network Models

Yale, May 30, 2012
Peter Bickel
Statistics Dept. UC Berkeley
(Joint work with S. Bhattacharyya UC Berkeley, A. Chen Google, D.

Choi UC Berkeley and |, E. Levina, U. Mich)
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A nonparametric view of network models and
Newman-Girvan and other modularities

Peter J. Bickel*' and Aiyou Chen®

3University of California, Berkeley, CA 94720; and b alcatel-Lucent Bell Labs, Murray Hill, NJ 07974

Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved October 13, 2009 (received for review July 2, 2009)

Prompted by the increasing interest in networks in many fields,
we present an attempt at unifying points of view and analyses of
these objects coming from the social sciences, statistics, probability
and physics communities. We apply our approach to the Newman-
Girvan modularity, widely used for "community” detection, among
others. Our analysis is asymptotic but we show by simulation and
application to real examples that the theory is a reasonable guide
to practice.

modularity | profile likelihood | ergodic model | spectral clustering
he social sciences have investigated the structure of small

networks since the 1970s, and have come up with elaborate
modeline stratecies. hoth deterministic. see Doreian et al_ (1) for

principle, “fail-safe” for rich enough models. Moreover, our point
of view has the virtue of enabling us to think in terms of “strength
of relations™ between individuals not necessarily clustering them
into communities beforehand.

We begin, using results of Aldous and Hoover (9), by introduc-
ing what we view as the analogues of arbitrary infinite population
models on infinite unlabeled graphs which are “ergodic” and from
which a subgraph with n vertices can be viewed as a piece. This
development of Aldous and Hoover can be viewed as a gener-
alization of deFinetti’s famous characterization of exchangeable
sequences as mixtures of i.i.d. ones. Thus, our approach can also be
viewed as a first step in the generalization of the classical construc-
tion of complex statistical models out of i.i.d. ones using covariates,
information about labels and relationships.
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Theorem 1. Suppose F, S and n satisfy I-III and ¢ is the maximizer
of Q(e,A). Suppose ];“g—ﬂ — oc. Then, forall (n,S) € ©,

log P(¢ # ¢)
n

limit,,_. = —sp(m,S) < 0.
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connections than within-community connections while N-G more
or less maximizes within-community connections. We have ver-
ified that the group communicating with all others is a service

group.

Discussion

1. As we noted, under our conditions the usual statistical
goal of estimating the parameters m and P is trivial, since,
once we have assigned individuals to the K communities

consistently, the natural estimates, W and ft, are not just
consistent but efficient. However, in the more realistic
case where A, = (1), or even just A, = £2(logn), this
is no longer true. Elsewhere, we shall show that, indeed,
estimation of parameters by maximum likelihood and
Bayes classification of individuals (no longer perfect) is
optimal.

2. A difficulty faced by all these methods, modularities or
likelihoods, is that if K is large, searching over the space
of classifications becomes prohibitively expensive. In sub-
sequent work we intend to show that this difficulty may

neighborhood of the estimated values.

Open Problems

1. A fundamental difficulty not considered in the literature

is the choice of K. From our nonparametric point of view,
this can equally well be seen as, how to balance bias and
variance in the estimation of w(-, -). We would like to argue
that, as in nonparametric statistics, estimating w(-, -) with-
out prior prejudices on its structure is as important an
exploratory step in this context as, using histograms in
ordinary statistics.

. The linking of this framework to covariates depending on

vertice or edge identity is crucial, permitting relationship
strength to be assessed as a function of vector variables.

. The links of our approach to spectral graph clustering and

more generally clustering on the basis of similarities seem
intriguing.

ACKNOWLEDGMENTS. We thank Tin K Ho for help in obtaining the PBX data
and for helpful discussions. We also thank the referees, whose references and
comments improved this article immeasurably.
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Model: 2 Communities

Partition:
z:{1,2,...n} = {1,2},

where 2(7)’s are i.i.d. Bernoulli(r).

Observation: The adjacency matrix A is
A;; ~ Bernoulli(p;;), independent, for i > j

with p;; = a if 2(¢) = 2(j), and p;; = b otherwise, where a > b.

Bll

B
22 By

Remark: All optimality results stated can be extended to k-community case.
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Questions
Global parameters estimation: m, a, and b.
Graphon estimation: P = (p;;).

Community detection and spectral clustering: z.
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Global Parameters Estimation

THE METHOD OF MOMENTS AND DEGREE DISTRIBUTIONS
FOR NETWORK MODELS

By PETER J. BickEL!, Arvou CHEN? AND EL1ZAVETA LEVINAZ

University of California, Berkeley, Google Inc. and University of Michigan

This research is dedicated to Erich L. Lehmann, the thesis advisor of one
of us and “grand thesis advisor” of the others. It is a work in which we try
to develop nonparametric methods for doing inference in a setting,
unlabeled networks, that he never considered. However, his influence shows
in our attempt to formulate and develop a nonparametric model in this
context. We also intend to study to what extent a potentially “optimal”
method such as maximum hikelihood can be analyzed and used in this
context. In this respect, this is the first step on a road he always felt was
the main one to stick to.

Probability models on graphs are becoming increasingly impor-
tant in many applications, but statistical tools for fitting such models
are not yet well developed. Here we propose a general method of mo-
ments approach that can be used to fit a large class of probability
models through empirical counts of certain patterns in a graph. We
establish some general asymptotic properties of empirical graph mo-
ments and prove consistency of the estimates as the graph size grows
for all ranges of the average degree including (1). Additional results
are obtained for the important special case of degree distributions.
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Global Parameters Estimation

THEOREM 2. Suppose 0 = (m,S) defines a block model with knouwn K,
and the vectors w,F'm,. .., FE=17 are linearly independent. Suppose € < A\, =

o(n'’?). Then: o

(a) {m:l=1,...,2K —-1,k=2,...,K} identify the K(K +3)/2 — 2 pa-
rameters of the block model other than p (i.e., the map f is one to one).

(b) If f has a gradient which s of rank M@ — 2 at the true (mo, So),
then f~1(P(7)) is a \/n-consistent estimate of (mg, Sp), where 7 = ||| and
P(7) s the closest point in the range of f to 7.

Global parameters estimation:

Under an assumption § > 1+ ¢ for some fixed constant ¢ > 0, b < 1, and
m # 1/2, we have

1
E(ad—a)* < —.
n
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Graphon Estimation

Graphon estimation:

1 . 4 9 n 1
E—||P - PI} S -

Global parameters estimation as a corollary:

1
E<& T @)2 g R
n

without the assumption # > 1+ ¢ for some fixed constant ¢ > 0, b < 1, and

T #1/2.

Reference: Gao, Yu, Z. (2015)
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An Unpublished Result

Global parameters estimation: Bickel, Feng, Z.

Under an assumption § > 1 + ¢ for some fixed constant ¢ > 0, b < 1, and
m # 1/2, we have
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Community Detection
Optimality: Under the assumption n/ — oo,

irz}f Sup EL(Z,z) = exp (—(1 4+ 0(1))nl/2).

Key quantity:

I =—2log (\/aﬁ+\/1—a\/1—b).

Remark: L(Z,z) is the proportion of mislabeling.

Reference: Zhang and Z. (2016).
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Our Other Follow-ups

¢ Community detection and spectral clustering: Gao, Ma, Zhang, Z.
(2017, 2018).

e Bayesian estimation: Gao, van der Vaart, Z. (2020)
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Variational Inference

Brock MoDELS WITH COVARIATES: LIKELIHOOD METHODS OF FITTING

Bickel, Peter J. (bickel@stat.berkeley.edu)
University of California, Berkeley

Type: Plenary Talk

Abstract. We introduce block models with edge and block covariates, along the lines of Hoff,
Handcock, Raftery (2002), specializing to covariate forms of the types proposed by Zhang, Levina,
Zhu (2014) and generalizing that of Newman, Clauset(2015). We study maximum likelihood and
mean field variational fitting for these methods along the lines of Celisse, Daudin, Pierre (2011)
and B., Choi, Chang, Zhang (2013) and partly extend their results to the regime where the average
degree tends to infinity faster than loglog(n). We show by example and simulation when mean field
methods work and how they can be adapted to succeed when they fail. Co-authors: Purna Sarkar
(U. of Texas, Austin), Soumendu Mukherjee (UC, Berkeley), Sharmodeep Bhattacharyya (Oregon
State University) and David Choi (Carnegie Mellon University).

Keywords: Block models; Field vanational fitting; Infinite average degree.
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ASYMPTOTIC NORMALITY OF MAXIMUM LIKELIHOOD AND
ITS VARIATIONAL APPROXIMATION FOR
STOCHASTIC BLOCKMODELS'

BY PETER BICKEL, DAVID CHOI, XIANGYU CHANG AND HAI ZHANG

University of California, Berkeley, Carnegie Mellon University, Xi'an Jiaotong
University and Northwest University

Variational methods for parameter estimation are an active research area,
potentially offering computationally tractable heuristics with theoretical per-
formance bounds. We build on recent work that applies such methods to net-
work data, and establish asymptotic normality rates for parameter estimates
of stochastic blockmodel data, by either maximum likelihood or variational
estimation. The result also applies to various sub-models of the stochastic
blockmodel found in the literature.
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3.2. Asymptotic normality of maximum likelihood under GM blockmodel. Our
main result is that for graphs with poly-log expected degree, the likelihood ratios
of the CGM and GM blockmodels are essentially equivalent with probability tend-
ing to 1, so that inference under the models is essentially equivalent up to the
identifiability restrictions of the GM blockmodel.

THEOREM 1. Let (Z, A) be generated from a blockmodel with 6y € T, such
that So has no identical columns, and py = p,, satisfies np, /logn — 00. Then for
all 8 € T,

(9) é(/11,{9) = max i‘(Z, A,Q")(l + SH(K, 9")) —I-SH(K,Qf),
20 0'eSs 1o

where supg .7 €,(K,0) =o0p(1).
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Bayesian Framework

Likelihood function:

L(A|Z) = [ P (1= Py)t =

1<J
Multinomial prior:
P(Z;. =emn) = pm,Vm =1, 2,

where {eq, es} are the coordinate vectors.

Posterior:

p(Z, A
pr (Z,A)

p(Z|A) =

which is computationally intractable.
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Mean Field Method

Basic idea:

Approximate p(Z|A) by a product distribution ¢.(Z) = [, ¢r, (Z;) in terms of
KL(¢x(Z)[lp(Z]A)), where

P(Zi. = ep) = T, Ym =1,2,) i =1

Mean field method:
QMF  gME arg min KL(q,(2)||p(Z|A)),

melly
where Iy = {7 € [0, 1]™**, ||m; ||, = 1}.

Remark: The objective is not convex in m:

1 n
AMF — argmax(A + A, — AL, 17 7nT) — ; > KL(m |lp).

welly
where \ = log 1_b/ log Z(ll_bi and t = § ; log 2(11 3;




Batch Coordinate Ascent Variational Inference (BCAVI)

CAVI: For any 7 € II;, we have

(W (70)]i.m X P €XP <2t > T (Agy — A)) .

J71

Batch coordinate ascent variational inference (BCAVI):

Input: Initializer 7°, prior p, adjacency matrix A and parameter \

Output: 7

1 Denote 79 = 70

2 Start from s = 0, do it recursively 7571 = p(7()).

Computational and statistical guarantees: Rate optimal after an order of
log n steps if the error of initializer is smaller than 1/2 — e, for some fixed € > 0.

Reference: Zhang and Z. (2020).
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Global Convergence of EM with Random Initialization

e Two-component Gaussian mixtures: Wu, Z. (2022)

e General Gaussian mixtures (ongoing): Overparametrization +

Optimal transport
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Summary
e Covariance Matrix Estimation
e Network Analysis

e Variational Inference

In the past 10 to 15 years, we have been following some of Peter’s

groundbreaking ideas very closely, and will continue to do so.
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