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Two-Player Zero-Sum Markov Games

* Two players compete against each other. Each has a strategy.

e Goal: find a Nash Equilibrium

* Nash Equilibrium: a pair of strategies that no player can do better by unilaterally
changing the policy.

* Applications: poker, Go, chess, computer games, investment, .....
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Offline Reinforcement Learning

reinforcement learning offline reinforcement learning

@

* Lots of available offline data from prior experience. Fresh samples are expensive
* This Talk: When can we learn a Nash Equilibrium in offline two-player zero-sum Markov
games?

> train for
many epochs <

big dataset from

this is done ) .
past interactions

many tlmes )

deploy learned policy in new scenarios

Figure credit: Berkeley Al Research Blog
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Single-Agent Reinforcement Learning

o A policy 1 :
e % mr: States(S) — Actions (A),a = n(s)

See1 ~ Pe(c [se ar) | Goal: maximize value function
state| reward 1y ~ (s, ag) action

ot & " V7(sy) = Elry + 1, + -1y

St+1 m Near-optimal policy:

V*(sy) —V™(s1) <€

Repeat H times

* _ T, : :
H: planning horizon / Episode length V* = V" :value function of opt policy
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Tabular Markov Decision Process

Assumptions:

1. # of States § < oo

2. #of actions A < oo

3. Bounded rewards:
0<rmn<1,h=1,..,H

Sample complexity depends on
(S,A,H,1/¢)
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Offline Single-Agent Reinforcement Learning

offline reinforcement learning

Offline Data: n (state, action, reward, next state)

tuples: N Pad e

D= {(Sh' aj, Th, Sh+1)}he [H] LLd-dp

* p is the data-collection / behavior policy

train for
many epochs

big dataset from
past interactions

deploy learned policy in new scenarlos

® dﬁ (s, a) is the state-action distribution
induced by p and transition P. N
Under what conditions

on d” we can learn a
V*(sy) —V™(sy) <€ near-optimal policy?

* Goal: learn a policy m from D such that
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Univer

Dataset Coverage and Results

Single Policy Coverage Assumption « Necessary and Sufficient

* The behavior policy only covers a single optimal policy.

. dn* )
* There exists some constant Csingle such that hp((ssz)) < Csingle

for every (s,a) [LSAB19,JYW?20].
*1< Csingle < ®

* Algorithmic idea: Pessimism. Penalize uncertain policies
[JYW20,RZMIJR21]. More later.

SHSCsmgle
» Near-optimal bounds: 0( ) [XIWXB21].

sity of Washington
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Two-Player Zero-Sum Markov Games

Zero-Sum Markov Games Zero-Sum Bandits
i3
’ action
state| reward Sea1 ~ PeC IS ag, by) actlgn r(a, b) pair
5t Tt 1y ~ r(Sg, ag, by) pair (a,b)

: (at, bt)

Repeat H times, H: planning horizon
Special case of Markov games with

H =1 and a fixed state.
Min player (by, by, ..., by): min E[ry + -+ 1y] Only reward r(a, b) matters.

Max player (a4, a,, ..., ay): max E[r; + -+ 1y]
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Tabular Two-Player Zero-Sum Markov Games

+0.8

Assumptions:

1. # of States § < o

2. Max player # of actions A < o

3. Min player # of actions B < oo

4. Bounded rewards:
0<nmn<1,h=1,..,H

Sample complexity depends on
(S,A,B,H,1/¢)

University of Washington
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Value Function, Best Response and Duality Gap

Policy pair: (u,v)
Max player policy u and min player policy v. u: S - A(4),v:S - A(B).
Q-function and Value Function:

Qﬁ’v(s, a,b) = IE[rh + 141+ 1y | S, =S,ap = a, by, = b,u,v]
VY (s) = IE[rh + 11+ 01y | Sp = S,,u,v]

Best response value for Max-player: Given , V" (s;,) = min V" (sp,)
vV

Best response value for Min-player: Given v, V"’ (s) = max V""" (sp)
U

Nash Equilibrium (u*, v*): Vh”*’v* (sn) = Vh“*’* (sp) = V¥ (sp) [Shapley, 53].
Duality gap: Gap(u, v) = V;"" (s1) — V" (s1)

Goal: find (i, v) such that Gap(u,v) < €

University of Washington

14



Offline Two-Player Zero-Sum Markov Game

Offline Data: n (state, action, reward, next state)
tuples:

D = {(sh, ah, bp, T, Sh+1)}l6[n] LLd-dp Q

 p: data-collection /behavior policy pair

Under what conditions
on df we can learn a
near Nash Equilibrium?

» d}(s,a,b) is the state-action distribution What al?out single
induced by p and transition P. policy-pair coverage?  ~
* * O
* Goal: learn a policy pair (u, v) from D: dl(lﬂ v )(s, a, b) NO
= Csingle

Gap(u,v) <€ dZ(S: a,b)
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Counter Example for Single Strategy Coverage

Min Player Min Player

Max
Player

Max
Player

Game 1

Need to cover (a4, by), (a,, by)

 NE for Game 1: (a4, bq), NE for Game 2: (a3, b;) ‘
* Covers (a4, by) and (az, by) with d” (a4, by)= dP(ay, b;) = 0.5 = Cgjpgle = 2.
 We cannot differentiate Game 1 or Game 2!
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Unilateral Coverage Assumption

Min Player

* For a Nash Equilibrium (u*,v*), the
behavior policy covers (u*,v) and (i, v*)
for all u and v.

* There exists some constant Cypilateral SUCh

d* V(s,ab) d*V (sab

Viax that hp e )' hp e )— Cunilateral for
Player dh(s,a,b) dh(s,a,b)
every (s,a, b) and (u,v).

* A+ B < Cynilateral < ®

Covered or not doesn’t matter.

Nash Equilibrium: (a4, b1)
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A Weaker Assumption Than Unilateral Coverage?

Min Player Min Player

Max
Player

Max
Player

Game 1 (a,, by) not covered Game 2

* Aslightly weaker assumption: there exists at most one deterministic i or v such that
the behavior policy p does not cover (u*,v) or (u, v™).
* We cannot differentiate Game 1 or Game 2 without information of (a,, by) .
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Algorithm for Two-Player Zero-Sum Bandits

Min Player

Computer NE (u, y) forr(-,).
Max -

Player

Computer NE (i, v) for r(-,-).

Output (i, v).

o "

Pessimism

University of Washington

Estimater(a,b) € [E(a, b), 7 (s, a)]‘v’ (a,b).
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Result for Two-Player Zero-Sum Bandits

Bcunilateral)

. . ° A A
* Sample complexity with unilateral coverage: O( 2

» Sample complexity with uniform coverage: 0 (=24 ‘”“f)

Cunilateral)
62

 Sample complexity for turn-based game with unilateral coverage: 5(

* Unilateral assumption is sufficient.
* Lower bounds (from single-agent bandits)

* Sample complexity with unilateral coverage: {1( ““‘late“al)
* Sample complexity with uniform coverage: Q( ‘”“f ‘ ‘

unllateral)
62

 Sample complexity for turn-based game with unllateral coverage: Q(
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Max
Player

Algorithm for Markov Games

Min Player

Confidence for one
state s at one step h

University of Washington

e Estimate transition and reward using the
dataset: P,(s'|s,a,b),#(s,a,b)

* Set Vy+1(s) = Vyi1(s) < 0,Vs.
e For h= H,H-1, ...1:
* Qu(s,a,b) « #(s,a,b) ‘
_+(P71(° |s, a, b), Vs41(-)) — bonusy, (s, a, b)
* Computer NE (&, V_h) for Qh(';';')-
* Vu(s) « E(a’b%( [Qn(s,a,b)]

Hrvn)'<
e Similarly get ah with +bonus,, , Vh, (Un, Vh)
* Output (u,v).




Result for Two-Player Zero-Sum Markov Games

If the bonus is constructed using a reference function and Bernstein bound:

SABH? Cunllateral)
62
3C
unlf)

* with unilateral coverage: O(

SH
* with uniform coverage: 0(

3
SH Cumlateral)
62

e for turn-based game with unilateral coverage: 0(

* Unilateral assumption is sufficient for Markov games.
* Lower bounds (from single-agent RL)

. . SH3C
e with unilateral coverage: Q( “mlateral)

SH? Cunl
 with uniform coverage: Q( f) ‘ ‘

SH Cumlateral)
62

* for turn-based game with unllateral coverage: {(

University of Washington
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Summary and Open Problems

First theoretical study on two-player zero-sum Markov games
 Single-policy coverage not sufficient: separation between single-agent and two-player
* Unilateral coverage: sufficient and cannot be weakened.

* Algorithms based on pessimism for both players

* Polynomial bound for unilateral coverage.
* Near-optimal bounds for (1) uniform coverage, (2) unilateral coverage + turn-based games.

e Concurrent work also studied linear MDP [ZXTWZWY22].

Upcoming Work!
Future Directions '

* Improve bound under unilateral coverage (now AB factor gap). '
e General sum in multi-agent games (online setting [ZMB21, JLWY21, ...]).

University of Washington
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Thank You



Analysis

. . _ ~ , 1 1
Confidence interval length: bonus(a, b) = i S \/ndp(a,b)'
r(u*,v*) < r(u*,v) (by the defn of v*)

r (E’*) >71 (E'*) > (E’ y) > 1(u*,v) (bythe defns of of r and v)

r(u*,v*) —r (ﬁ*) < r(,u*,y) - f(,u*,y) < IE(a’b)N(M*’Z) [bonus(a, b)]

Similarly, 7(*,v) —r(u*,v*) < E(gp)~@«)[bonus(a, b)]

Gap (E’ V) < E(a,b)~(u*,1_/) [bonus(a,b)]| + E g p)~@ «)[bonus(a, b)]
* Then use Cauchy-Schwartz

University of Washington
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