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Two-Player Zero-Sum Markov Games
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• Two players compete against each other. Each has a strategy.
• Goal: find a Nash Equilibrium
• Nash Equilibrium: a pair of strategies that no player can do better by unilaterally

changing the policy.
• Applications: poker, Go, chess, computer games, investment, …..



Offline Reinforcement Learning
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• Lots of available offline data from prior experience. Fresh samples are expensive
• This Talk: When can we learn a Nash Equilibrium in offline two-player zero-sum Markov

games?

Figure credit: Berkeley AI Research Blog



Single-Agent Reinforcement Learning
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Repeat H times
H: planning horizon / Episode length

state reward action

Agent

Environment

atst rt

st+1

𝑠!"# ∼ 𝑃! $ 𝑠!, 𝑎!
𝑟! ∼ 𝑟 𝑠!, 𝑎!

A policy 𝜋 :
𝜋: States S → Actions A , a = 𝜋(𝑠)

Goal: maximize value function

V!(s") = 𝔼 𝑟" + 𝑟# +⋯𝑟$

Near-optimal policy:

𝑉∗ 𝑠" − 𝑉! 𝑠" ≤ 𝜖

𝑉∗ = 𝑉!∗ : value function of opt policy

University of Washington



Tabular Markov Decision Process
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Assumptions:
1. # of States 𝑺 < ∞
2. # of actions 𝐀 < ∞
3. Bounded rewards:
0 ≤ 𝑟( ≤ 1, ℎ = 1,… ,𝐻

Sample complexity depends on
(𝑆, 𝐴, 𝐻, 1/𝜖)

University of Washington



Offline Single-Agent Reinforcement Learning
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Offline Data: n (state, action, reward, next state)
tuples:

𝐷 = 𝑠&' , 𝑎&' , r&' , 𝑠&("'
&∈[$]
'∈[,]

~
).).+. 𝑑,

• 𝜌 is the data-collection / behavior policy

• 𝑑&
.(𝑠, 𝑎) is the state-action distribution

induced by 𝜌 and transition 𝑃.

• Goal: learn a policy 𝜋 from 𝐷 such that

𝑉∗ 𝑠" − 𝑉! 𝑠" ≤ 𝜖
Q:

Under what conditions
on 𝒅𝝆 we can learn a
near-optimal policy?



Dataset Coverage and Results
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Single Policy Coverage Assumption

• The behavior policy only covers a single optimal policy.

• There exists some constant 𝐂!"#$%& such that
'!
"∗(),+)
'!
$(),+)

≤ 𝐂!"#$%&
for every (𝑠, 𝑎) [LSAB19,JYW20].
• 1 ≤ 𝐂!"#$%& ≤ ∞
• Algorithmic idea: Pessimism. Penalize uncertain policies
[JYW20,RZMJR21]. More later.

• Near-optimal bounds: *Θ(
-.%𝐂&'()*+

0,
) [XJWXB21].

Necessary and Sufficient



Two-Player Zero-Sum Markov Games
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Special case of Markov games with
H = 1 and a fixed state.
Only reward 𝑟 𝑎, 𝑏 matters.

Repeat H times, H: planning horizon

state reward

Agent

Environment

st rt

st+1

𝑠!"# ∼ 𝑃! $ 𝑠!, 𝑎!, 𝑏!
𝑟! ∼ 𝑟 𝑠!, 𝑎!, 𝑏!

Max player (𝑎", 𝑎#, … , 𝑎$): max 𝔼 𝑟" +⋯𝑟$

Min player (𝑏", 𝑏#, … , 𝑏$): min 𝔼 𝑟" +⋯𝑟$

Zero-SumMarkov Games Zero-Sum Bandits

action
pair
(a, b)

Environment

Agent

𝑟 𝑎, 𝑏

University of Washington

action
pair

(𝑎!, 𝑏!)



Tabular Two-Player Zero-Sum Markov Games
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Assumptions:
1. # of States 𝑺 < ∞
2. Max player # of actions 𝐀 < ∞
3. Min player # of actions 𝐁 < ∞
4. Bounded rewards:

0 ≤ 𝑟( ≤ 1, ℎ = 1,… ,𝐻

Sample complexity depends on
(𝑆, 𝐴, 𝐵, 𝐻, 1/𝜖)

University of Washington



Value Function, Best Response and Duality Gap
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• Policy pair: (𝝁, 𝝂)
Max player policy 𝝁 and min player policy 𝝂. 𝜇: 𝑺 → Δ 𝑨 , 𝜈: 𝑺 → Δ(𝑩) .

• Q-function and Value Function:
𝑄&
/,1 𝑠, 𝑎, 𝑏 = 𝔼 𝑟& + 𝑟&(" +⋯𝑟$│𝑠& = 𝑠, 𝑎& = 𝑎, 𝑏& = 𝑏, 𝜇, 𝜈

𝑉&
/,1 𝑠 = 𝔼 𝑟& + 𝑟&(" +⋯𝑟$│𝑠& = 𝑠, 𝜇, 𝜈

University of Washington

• Best response value for Max-player: Given 𝜇, 𝑉&
/,∗ 𝑠& = min

1
𝑉&
/,1 𝑠&

• Best response value for Min-player: Given 𝜈, 𝑉&
∗,1 𝑠& = max

/
𝑉&
/,1(𝑠&)

• Nash Equilibrium (𝝁∗, 𝝂∗): 𝑉&
/∗,1∗ 𝑠& = 𝑉&

/∗,∗ 𝑠& = 𝑉&
∗,1∗ (𝑠&) [Shapley, 53].

• Duality gap: Gap(𝜇, 𝜈) = 𝑉!
∗,$ 𝑠! − 𝑉!

%,∗ 𝑠!

Goal: find (𝝁, 𝝂) such that Gap(𝜇, 𝜈) ≤ 𝜖



Offline Two-Player Zero-Sum Markov Game
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Offline Data: n (state, action, reward, next state)
tuples:
𝐷 = 𝑠&' , 𝑎&' , 𝑏&' , r&' , 𝑠&("'

&∈[$]
'∈[,]

~
).).+. 𝑑,

• 𝜌: data-collection /behavior policy pair

• 𝑑&
.(𝑠, 𝑎, 𝑏) is the state-action distribution

induced by 𝜌 and transition 𝑃.

• Goal: learn a policy pair (𝜇, 𝜈) from 𝐷:

Gap(𝜇, 𝜈) ≤ 𝜖

Under what conditions
on 𝒅𝝆 we can learn a
near Nash Equilibrium?

Q:

What about single
policy-pair coverage?

😭 NO𝑑&
(/∗,1∗)(𝑠, 𝑎, 𝑏)
𝑑&
.(𝑠, 𝑎, 𝑏)

≤ 𝐂456789



Counter Example for Single Strategy Coverage
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𝒃𝟏 𝒃𝟐

𝒂𝟏 0.5 1

𝒂𝟐 0 0.5

Max
Player

Game 1

Min Player

𝒃𝟏 𝒃𝟐

𝒂𝟏 0.5 0

𝒂𝟐 1 0.5

Max
Player

Game 2

Min Player

• NE for Game 1: (𝒂𝟏, 𝒃𝟏), NE for Game 2: (𝒂𝟐, 𝒃𝟐)
• Covers (𝒂𝟏, 𝒃𝟏) and (𝒂𝟐, 𝒃𝟐) with 𝑑.(𝑎", 𝑏")= 𝑑. 𝑎#, 𝑏# = 0.5 ⇒ 𝐂456789 = 𝟐.
• We cannot differentiate Game 1 or Game 2!

Need to cover (𝑎", 𝑏#) , (𝑎#, 𝑏")



Unilateral Coverage Assumption
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𝒃𝟏 𝒃𝟐 … 𝒃<

𝒂𝟏 0.5 1 … 0.7

𝒂𝟐 0 0.5 … 0.6

… … … … …

𝒂𝑨 0.2 0.3 … …

Max
Player

Min Player

Nash Equilibrium: (𝑎", 𝑏")

• For a Nash Equilibrium 𝜇∗, 𝜈∗ , the
behavior policy covers 𝝁∗, 𝝂 and 𝝁, 𝝂∗
for all 𝝁 and 𝝂.
• There exists some constant 𝐂>658?@9A?8 such

that
B"
#∗,%(C,D,E)
B"
&(C,D,E)

, B"
#,%∗(C,D,E)
B"
&(C,D,E)

≤ 𝐂>658?@9A?8 for

every (𝑠, 𝑎, 𝑏) and 𝜇, 𝜈 .
• 𝐴 + 𝐵 ≤ 𝐂>658?@9A?8 ≤ ∞

Covered or not doesn’t matter.



A Weaker Assumption Than Unilateral Coverage?
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𝒃𝟏 𝒃𝟐

𝒂𝟏 0.25 0.5

𝒂𝟐 0 0.75

Max
Player

Game 1

Min Player

𝒃𝟏 𝒃𝟐

𝒂𝟏 0.25 0.5

𝒂𝟐 1 0.75

Max
Player

Game 2

Min Player

• A slightly weaker assumption: there exists at most one deterministic 𝜇 or 𝜈 such that
the behavior policy 𝜌 does not cover (𝜇∗, 𝜈) or (𝜇, 𝑣∗).

• We cannot differentiate Game 1 or Game 2 without information of (𝑎#, 𝑏") .

(𝑎#, 𝑏") not coveredNot Sufficient!



Algorithm for Two-Player Zero-Sum Bandits
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𝒃𝟏 𝒃𝟐 … 𝒃<

𝒂𝟏
[0.4,
0.6]

[0.8,
1] … [0.7,

0.8]

𝒂𝟐
[0,

0.1]
[0.4,
0.7] … [0.6,

0.7]

… … … … …

𝒂𝑨
[0.1,
0.3]

[0.2,
0.4] … …

Max
Player

Min Player

• Estimate 𝑟 𝑎, 𝑏 ∈ 𝑟 𝑎, 𝑏 , 𝑟 𝑠, 𝑎 ∀ 𝑎, 𝑏 .

• Computer NE 𝜇, 𝜈 for 𝑟(⋅,⋅).

• Computer NE (𝜇, 𝜈) for 𝑟 ⋅,⋅ .

• Output (𝜇, 𝜈).

Pessimism



Result for Two-Player Zero-Sum Bandits
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Theorem

• Sample complexity with unilateral coverage: p𝑂(FG𝐂'()*+,-.+*I/ )

• Sample complexity with uniform coverage: p𝑂(𝐂'()0I/ )

• Sample complexity for turn-based game with unilateral coverage: p𝑂(𝐂'()*+,-.+*I/ )

• Unilateral assumption is sufficient.
• Lower bounds (from single-agent bandits)
• Sample complexity with unilateral coverage: Ω(𝐂'()*+,-.+*

I/
)

• Sample complexity with uniform coverage: Ω(𝐂'()0
I/
)

• Sample complexity for turn-based game with unilateral coverage: Ω(𝐂'()*+,-.+*I/ )

University of Washington

Match



Algorithm for Markov Games
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𝒃𝟏 𝒃𝟐 … 𝒃<

𝒂𝟏
[0.4,
0.6]

[0.8,
1] … [0.7,

0.8]

𝒂𝟐
[0,

0.1]
[0.4,
0.7] … [0.6,

0.7]

… … … … …

𝒂𝑨
[0.1,
0.3]

[0.2,
0.4] … …

Max
Player

Min Player
• Estimate transition and reward using the

dataset: 3𝑃$ 𝑠J|𝑠, 𝑎, 𝑏 , 𝑟̂(𝑠, 𝑎, 𝑏)
• Set 𝑉$(" 𝑠 = 𝑉$(" 𝑠 ← 0, ∀𝑠.
• For h= H,H-1, ….,1:

• 𝑄$ 𝑠, 𝑎, 𝑏 ← 𝑟̂ 𝑠, 𝑎, 𝑏
+ M𝑃! ⋅ |𝑠, 𝑎, 𝑏 , 𝑉$"# ⋅ − 𝐛𝐨𝐧𝐮𝐬𝒉 (𝒔, 𝒂, 𝒃)

• Computer NE 𝜇$, 𝜈$ for 𝑄$(⋅,⋅,⋅).
• 𝑉$ 𝑠 ← 𝔼 &,( ∼ *!,+!

[𝑄$(𝑠, 𝑎, 𝑏)]

• Similarly get 𝑄$ with +𝐛𝐨𝐧𝐮𝐬𝒉 , 𝑉$, (𝜇$, 𝜈$)
• Output (𝜇, 𝜈).

Confidence for one
state 𝒔 at one step 𝒉

DP Step



Result for Two-Player Zero-Sum Markov Games
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Theorem
If the bonus is constructed using a reference function and Bernstein bound:

• with unilateral coverage: p𝑂(OFG$
1𝐂'()*+,-.+*
I/ )

• with uniform coverage: p𝑂(OP
1𝐂'()0
I/ )

• for turn-based game with unilateral coverage: p𝑂(O$
1𝐂'()*+,-.+*

I/ )

• Unilateral assumption is sufficient for Markov games.
• Lower bounds (from single-agent RL)

• with unilateral coverage: Ω(QP
1𝐂'()*+,-.+*

I/ )

• with uniform coverage: Ω(QP
1𝐂'()2
I/

)

• for turn-based game with unilateral coverage: Ω(QP
1𝐂'()*+,-.+*

I/ )
University of Washington

Match



Summary and Open Problems
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First theoretical study on two-player zero-sum Markov games
• Single-policy coverage not sufficient: separation between single-agent and two-player
• Unilateral coverage: sufficient and cannot be weakened.
• Algorithms based on pessimism for both players

• Polynomial bound for unilateral coverage.
• Near-optimal bounds for (1) uniform coverage, (2) unilateral coverage + turn-based games.

• Concurrent work also studied linear MDP [ZXTWZWY22].

University of Washington

Future Directions
• Improve bound under unilateral coverage (now 𝑨𝑩 factor gap).
• General sum in multi-agent games (online setting [ZMB21, JLWY21, …]).

Upcoming Work!
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Analysis
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• Confidence interval length: bonus 𝑎, 𝑏 ≈ "
, D,E

≈ "
,B& D,E

.
• 𝑟 𝜇∗, 𝜈∗ ≤ 𝑟(𝜇∗, 𝜈) (by the defn of 𝜈∗)

• 𝑟 𝜇,∗ ≥ 𝑟 𝜇,∗ ≥ 𝑟 𝜇, 𝜈 ≥ 𝑟(𝜇∗, 𝜈) (by the defns of of 𝑟 and 𝜈)

• 𝑟 𝜇∗, 𝜈∗ − 𝑟 𝜇,∗ ≤ 𝑟 𝜇∗, 𝜈 − 𝑟 𝜇∗, 𝜈 ≤ 𝔼 D,E ∼ /∗,1 [bonus a, b ]

• Similarly, 𝑟 ∗, 𝜈 − 𝑟 𝜇∗, 𝜈∗ ≤ 𝔼 D,E ∼ /,∗ [bonus a, b ]

• Gap 𝜇, 𝜈 ≤ 𝔼 D,E ∼ /∗,1 bonus a, b + 𝔼 D,E ∼ /,∗ [bonus a, b ]

• Then use Cauchy-Schwartz


