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Bell Tests: Ruling out Local Hidden Variable Models by means of a Network
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PC (ab|xy) =
∑

λ
P(a|x , λ)P(b|y , λ)P(λ)

PQ(ab|xy) = tr(Aa
x ⊗ Bb

y ρΛ)

P(ab|xy)
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CHSH game with winning probability

pwin(P) =
∑

a,b,x,y

1
4 PAB|xy (a,b)Q(a,b,x ,y)

and winning condition

Q(a,b,x ,y) = δ(x · y , a ⊕ b).
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∑

a,b,x,y

1
4 PAB|xy (a,b)Q(a,b,x ,y)

and winning condition

Q(a,b,x ,y) = δ(x · y , a ⊕ b).

Optimal classical strategy: use Λ to prepare perfectly correlated outputs a, b.
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Bell Tests: Ruling out Local Hidden Variable Models by means of a Network

The network is crucial!
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Physical Principles Underlying Quantum Theory?

Requiring no superluminal signals is not sufficient
for singling out quantum correlations.∑

a
P(ab|xy) =

∑
a

P(ab|x ′y) ∀ x , x ′, b, y ,∑
b

P(ab|xy) =
∑

b
P(ab|xy ′) ∀ a, x , y , y ′

Various (information-theoretic) physical principles towards recovering quantum
correlations.

Popescu & Rohrlich, Foundations of Physics 24, 379, 1994.
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Various (information-theoretic) physical principles towards recovering quantum
correlations.

Popescu & Rohrlich, Foundations of Physics 24, 379, 1994.
Navascués et al., Nature communications 6, 6288, 2015.
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Networks Enable New Approaches to Singling out Quantum Theory

Goal: find a network and information processing task where quantum cor-
relations are (uniquely) extremal.

−→ Rule out all other generalised probabilistic theories experimentally.
−→ Point to a physical principle underlying quantum theory.

MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020).
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Looking at the Bilocal Network through the Adaptive CHSH Game
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Adaptive CHSH game with winning probability

pwin(P) =
∑

a,b,c,x,z

1
4 PABC|xz (a, b, c)Q(a, b, c, x , z)

and Q(a, b, c, x , z) = 1 iff B condition for A and C
b = (0, 0) (x ⊕ 1) · z = a ⊕ c
b = (0, 1) (x ⊕ 1) · (z ⊕ 1)⊕ 1 = a ⊕ c
b = (1, 0) (x ⊕ 1) · (z ⊕ 1) = a ⊕ c
b = (1, 1) (x ⊕ 1) · z ⊕ 1 = a ⊕ c

Optimal quantum strategy at pwin(P) = 1
2

(
1 + 1√

2

)
.
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Results Enabled by the Bilocal Network

Proposed experiment to rule out various “exotic” generalised probabilistic theories
by adaptive CHSH game relying on system composition.1

Proposed experiment to rule out various “exotic” generalised probabilistic theories
by adaptive CHSH game relying on single system state spaces.1

Bilocal experiment to rule out quantum theory over real Hilbert spaces.2

1MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020).
Self-tests of Physical Theories in Networks and their Implications for the Foundations of Quantum Theory



Results Enabled by the Bilocal Network

Proposed experiment to rule out various “exotic” generalised probabilistic theories
by adaptive CHSH game relying on system composition.1

Proposed experiment to rule out various “exotic” generalised probabilistic theories
by adaptive CHSH game relying on single system state spaces.1

Bilocal experiment to rule out quantum theory over real Hilbert spaces.2

1MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020).
Self-tests of Physical Theories in Networks and their Implications for the Foundations of Quantum Theory



Results Enabled by the Bilocal Network

Proposed experiment to rule out various “exotic” generalised probabilistic theories
by adaptive CHSH game relying on system composition.1

Proposed experiment to rule out various “exotic” generalised probabilistic theories
by adaptive CHSH game relying on single system state spaces.1

Bilocal experiment to rule out quantum theory over real Hilbert spaces.2

1MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020).
2M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Aćın, M. Navascués, Nature 600, (2021).
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Complex Quantum Theory vs. Real Quantum Theory

States: of a system A,

SA =
{
ρ ∈ B(HA

C) | ρ ≥ 0, tr(ρ) = 1
}
,

for a complex Hilbert space HA
C.

Composition: of independent systems ρA ∈ SA
and ρB ∈ SB ,

ρAB = ρA ⊗ ρB ,

more generally,

SAB =
{
ρ ∈ B(HA

C ⊗H
B
C)|ρ ≥ 0, tr(ρ) = 1

}
.

Evolution: of a state ρAB is unitary

ρ
′
AB = UABρABU†

AB .

Measurement: x on AB, given by an observable
Ax =

∑
a

aAa
x , with projectors Aa

x such that∑
a

Aa
x = IAB . The probability to observe a on

ρAB is
P(a|x) = tr(Aa

xρAB).

States: of a system A,

SA =
{
ρ ∈ B(HA

R) | ρ ≥ 0, tr(ρ) = 1
}
,

for a real Hilbert space HA
R.

Composition: of independent systems ρA ∈ SA
and ρB ∈ SB ,

ρAB = ρA ⊗ ρB ,

more generally,

SAB =
{
ρ ∈ B(HA

R ⊗H
B
R)|ρ ≥ 0, tr(ρ) = 1

}
.

Evolution: of a state ρAB is orthogonal

ρ
′
AB = UABρABUT

AB .

Measurement: x on AB, given by a real
observable Ãx =

∑
a

aÃa
x , with projectors Ãa

x

such that
∑

a
Ãa

x = IAB . The probability to
observe a on ρAB is

P(a|x) = tr(Ãa
xρAB).
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Real and Complex Quantum Theory have Different Properties

Qubit: ρ = 1
2 (I + xσx + yσy + zσz ). Rebit: ρ = 1

2 (I + xσx + zσz ).

Local Tomography: 2-qubit states
characterised by local σx , σy , σz
measurements on each qubit.

2-rebit states not fully characterised
σx , σz on separate rebits.

Example: for the real state |ψ+〉 = 1√
2

(|00〉+ |11〉) we have

|ψ+〉 〈ψ+| =
1
2

(I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz ) .

−→ No Local tomography !

Self-tests of Physical Theories in Networks and their Implications for the Foundations of Quantum Theory



Real and Complex Quantum Theory have Different Properties

Qubit: ρ = 1
2 (I + xσx + yσy + zσz ). Rebit: ρ = 1

2 (I + xσx + zσz ).

Local Tomography: 2-qubit states
characterised by local σx , σy , σz
measurements on each qubit.

2-rebit states not fully characterised
σx , σz on separate rebits.

Example: for the real state |ψ+〉 = 1√
2

(|00〉+ |11〉) we have

|ψ+〉 〈ψ+| =
1
2

(I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz ) .

−→ No Local tomography !

Self-tests of Physical Theories in Networks and their Implications for the Foundations of Quantum Theory



Real Simulations of Quantum Theory in Multi-Party Scenarios

Quantum correlations from local measurements

P(a, b|x , y) = tr
(
Aa

x ⊗ Bb
y ρAB

)
.

Real simulation on a larger Hilbert space preserves locality of measurements

P(a, b|x , y) = tr(Ãa
x ⊗ B̃b

y ρ̃AB)

using the real states and measurements (using |±i〉 = 1√
2 (|0〉 ± i |1〉))

ρ̃AB = 1
2
(
ρAB ⊗ |i〉〈i |⊗2

A′B′ + ρ∗AB ⊗ |−i〉〈−i |⊗2
A′B′

)
Ãa

x = Aa
x ⊗ |i〉〈i |A′ + (Aa

x )∗ ⊗ |−i〉〈−i |A′

B̃b
y = Bb

y ⊗ |i〉〈i |B′ + (Bb
y )∗ ⊗ |−i〉〈−i |B′ .
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y ⊗ |i〉〈i |B′ + (Bb
y )∗ ⊗ |−i〉〈−i |B′ .

E. C. G. Stuckelberg, Helvetica Physica Acta, 33 (1960).
M. McKague, M. Mosca, N. Gisin, PRL 102, 020505 (2009).
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Candidate Complex Quantum Distribution

Candidate Distribution:

P̄(a, b, c|x , z) = tr
(
Aa

x ⊗ Bb ⊗ C c
z (|ψ+〉〈ψ+|AB1

⊗ |ψ+〉〈ψ+|B2C )
)
,

in terms of a Bell state measurement B and the observables

A1 = σZ , A2 = σX , A3 = σY ,

C1 = Dzx , C2 = Ezx , C3 = Dzy , C4 = Ezy , C5 = Dxy , C6 = Exy .

where Dij = σi +σj√
2 , Eij = σi−σj√

2 .

M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Aćın, M. Navascués, Nature 600, (2021).
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Intuition: Scenario that Requires Complex Quantum Measurements

CHSH3
00(P) = 6

√
2

Self-testing Pauli measurements: If we have a quantum P(a, c|x , z), such that

CHSH3
00(P) = CHSHA1,A2,C1,C2(P) + CHSHA1,A3,C3,C4(P) + CHSHA2,A3,C5,C6(P) =6

√
2,

then this self-tests |ψ+〉AC and Alice’s observables

A1 = σZ , A2 = σX , A3 = σY .

J. Bowles, I. Supić, D. Cavalcanti, A. Aćın, PRA 98, 042336 (2018).
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Result: Candidate Distribution Not Reproducible in Real Quantum Theory

Proposition: P̄ does not admit a decomposition

P̄(a, b, c|x , z) =
∑
λ

P(λ) tr
(
Ãa

x ⊗ B̃b ⊗ C̃ c
z (ρ̃λAB1 ⊗ ρ̃

λ
B2C )

)
with real states ρ̃λAB1 , ρ̃

λ
B2C and real measurements Ãx , B̃, C̃z (of any dimension).

The result can be made noise robust for an experimental test.

M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Aćın, M. Navascués, Nature 600, (2021).
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Experimental Implementations

M.-C. Chen et al. “Ruling out real-number description of quantum mechanics”, PRL 128, 040403 (2022).
Z.-Da. Li et al. “Testing real quantum theory in an optical quantum network”, PRL 128, 040402 (2022).
D. Wu et al. “Experimental refutation of real-valued quantum mechanics under strict locality conditions”,

arXiv:2201.04177.
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Summary and Open Questions

Causal networks enable the design of experiments to single out quantum theory
among various generalised probabilistic theories (including more non-local ones).

Real and Complex Quantum Theory lead to different experimental predictions in
scenarios where multiple states are independently prepared, which led to the
experimental refutation of Real Quantum Theory (with loopholes).

Gaps to other potential contenders of quantum theory. Is there a network and task
where quantum theory is uniquely optimal?

New axiomatic frameworks recovering quantum theory?

Other applications of causal networks in quantum foundations?
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Thank you for your attention!
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Main Idea of the Proof

Applying real local isometries UA→AA′A′′ and VC→CC′C′′ to
∑

λ
P(λ)ρ̃λAB1 ⊗ ρ̃

λ
B2C

leads to a state

ρ̃A′C′ =
∑
λ

P(λ) trAA′′CC′′
(
U ρ̃λAU† ⊗ V ρ̃λC V †

)
.

[Such states satisfy ρ̃TC′
A′C′ = ρ̃A′C′ .]

We show that if we find a real strategy to recover P̄ there are specific real
isometries ŨA→AA′A′′ , ṼC→CC′C′′ such that

ρ̃A′C′ = |i〉〈i |
⊗2 + |−i〉〈−i |⊗2

2
.
The state ρ̃A′C′ is not of the above form, which we see from ρ̃

TC′
A′C′ 6= ρ̃A′C′ .

−→ Contradiction!
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ρ̃A′C′ = |i〉〈i |
⊗2 + |−i〉〈−i |⊗2

2
.
The state ρ̃A′C′ is not of the above form, which we see from ρ̃

TC′
A′C′ 6= ρ̃A′C′ .

−→ Contradiction!

Self-tests of Physical Theories in Networks and their Implications for the Foundations of Quantum Theory



Main Idea of the Proof

Applying real local isometries UA→AA′A′′ and VC→CC′C′′ to
∑

λ
P(λ)ρ̃λAB1 ⊗ ρ̃

λ
B2C

leads to a state

ρ̃A′C′ =
∑
λ

P(λ) trAA′′CC′′
(
U ρ̃λAU† ⊗ V ρ̃λC V †

)
.

[Such states satisfy ρ̃TC′
A′C′ = ρ̃A′C′ .]

We show that if we find a real strategy to recover P̄ there are specific real
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