Self-tests of Physical Theories in Networks and their Implications for the Foundations of Quantum Theory based on joint works with Marc-Olivier Renou, David Trillo, Le Phuc Thinh, Armin Tavakoli, Nicolas Gisin, Antonio Acín, Miguel Navascués and with Roger Colbeck $$\begin{split} P_{C}(ab|xy) &= \sum_{\lambda} P(a|x,\lambda) P(b|y,\lambda) P(\lambda) \\ P_{Q}(ab|xy) &= \operatorname{tr}(A_{x}^{a} \otimes B_{y}^{b} \rho_{\Lambda}) \end{split}$$ CHSH game with winning probability $$p_{\text{win}}(P) = \sum_{a,b,x,y} \frac{1}{4} P_{AB|xy}(a,b) Q(a,b,x,y)$$ and winning condition $$Q(a,b,x,y) = \delta(x \cdot y, a \oplus b).$$ CHSH game with winning probability $$p_{\text{win}}(P) = \sum_{a,b,x,y} \frac{1}{4} P_{AB|xy}(a,b) Q(a,b,x,y)$$ and winning condition $$Q(a,b,x,y) = \delta(x \cdot y, a \oplus b).$$ • Optimal classical strategy: use Λ to prepare perfectly correlated outputs a, b. doi:10.1038/nature15759 #### Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres B. Hensen^{1,2}, H. Bernien^{1,2}, A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2}, R. N. Schouten^{1,2}, C. Abelián³, W. Amaya³, V. Pruneri^{3,4}, M. W. Mitchell^{3,4}, M. Markham⁵, D. J. Twitchen⁵, D. Elkouss¹, S. Wehner¹, T. H. Taminiau^{1,2} & R. Hanson^{1,2} More than 50 years ago1, John Bell proved that no theory of nature sufficiently separated such that locality prevents communication quantum theory; in any local-realist theory, the correlations, under local realism; that obeys locality and realism² can reproduce all the predictions of between the boxes during a trial, then the following inequality holds doi:10.1038/nature1575 # Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres B. Hensen^{1,2}, H. Bernien^{1,2}t, A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2}, R. N. Sch PRL **115**, 250401 (2015) PHYSICAL REVIEW LETTERS 18 DECEMBER 2015 More than that obeys quantum #### Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons Marissa Giustina, ^{1,2*} Marijn A. M. Versteegh, ^{1,2} Sören Wengerowsky, ^{1,2} Johannes Handsteiner, ^{1,2} Armin Hochrainer, ^{1,2} Kevin Phelan, ¹ Fabian Steinlechner, ¹ Johannes Kofler, ² Jan-Åke Larsson, ¹ Carlos Abellán, ² Waldimar Amaya, ⁵ Valerio Pruneri, ^{5,6} Morgan W. Mitchell, ^{5,6} lörm Beyer, ⁷ Thomas Gerrits, ⁸ Adriana E. Lita, ⁸ Lynden K. Shalm, ⁸ Sae Woo Nam, ⁸ Thomas Scheidl, ^{1,2} Rupert Ursin, ¹ Bernhard Wittmann, ^{1,2} and Anton Zeilinger ^{1,2,†} Institute for Quantum Optics and Quantum Information (IQQQI), Austrian Academy of Sciences, Boltzmanneases 3. Vienna 1090, Austria ²Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of Physics, University of Vienna, Boltzmanneasse 5. Vienna 1090. Austria ³Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany ⁴Institutionen f\u00fcr Systemteknik, Link\u00f6pings Universitet, 581 83 Link\u00f6ping, Sweden ⁵ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ⁶ICREA – Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain ⁷Physikalisch-Technische Bundesanstalt, Abbestraße 1, 10587 Berlin, Germany ⁸National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, Colorado 80305, USA (Received 10 November 2015; bublished 16 December 2015). |ロ > ∢御 > ∢き > ∢き > き 釣Q♡ doi:10.1038/nature1575 # Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres B. Hensen^{1,2}, H. Bernien^{1,2}t, A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2} R. N. Sche R. N. Sche PRL 115, 250401 (2015) PHYSICAL REVIEW LETTERS Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons Marissa Giustina, ^{1,2,*} Marijn A. M. Versteegh, ^{1,2} Sören Wengerowsky, ^{1,2} Johannes Handsteiner, ^{1,2} Amin Hochrainer, ^{1,2} PRL 115, 250402 (2015) PHYSICAL REVIEW LETTERS 18 DECEMBER 2015 #### Strong Loophole-Free Test of Local Realism Lynden K. Shalm, ^{1,†} Evan Meyer-Scott, ² Bradley G. Christensen, ³ Peter Bierhorst, ¹ Michael A. Wayne, ^{3,4} Martin J. Stevens, ¹ Thomas Gerrits, ¹ Scott Glancy, ¹ Deny R. Hamel, ³ Michael S. Allman, ¹ Kevin J. Coakley, ¹ Shellee D. Dyer, Carson Hodge, ¹ Adriana E. Lita, ¹ Varun B. Verma, ¹ Camilla Lambrocco, ¹ Edward Tortorici, ¹ Alan L. Migdall, ^{4,6} Yanbao Zhang, ² Daniel R. Kumor, ³ William H. Farr, ⁷ Francesco Marsili, ⁷ Matthew D. Shaw, ⁷ Jeffrey A. Stern, ⁷ Carlos Abellán, ⁸ Waldimar Amaya, ⁸ Valerio Pruneri, ^{8,9} Thomas Jennewein, ^{2,10} Morgan W. Mitchell, ^{8,9} Paul G. Kwiat, ³ Joshua C. Bienfang, ^{4,6} Richard P. Mirin, ¹ Emanuel Knill, ¹ and Sae Woo Nam^{1,2} ¹ National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 8305, USA ² Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1 ³ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ⁴ National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA Spain # LETTER doi:10.1038/nature15759 # Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres B. Hensen^{1,2}, H. Bernien^{1,2}, A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2}, R. S. Sch¹ PRL 115, 250401 (2015) PHY SICAL REVIEW LETTERS The network is crucial! A,B P(ab|xy) National Institute of Stundards and Technology, 325 Broadway, Boulder, Colorado 80305, USA 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1 ³Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ⁴National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA ### Physical Principles Underlying Quantum Theory? Requiring no superluminal signals is not sufficient for singling out quantum correlations. $$\begin{split} \sum_{a} P(ab|xy) &= \sum_{a} P(ab|x'y) \quad \forall \ x, x', b, y, \\ \sum_{b} P(ab|xy) &= \sum_{b} P(ab|xy') \quad \forall \ a, x, y, y' \end{split}$$ ### Physical Principles Underlying Quantum Theory? Requiring no superluminal signals is not sufficient for singling out quantum correlations. $$\sum_{a} P(ab|xy) = \sum_{a} P(ab|x'y) \quad \forall \ x, x', b, y,$$ $$\sum_{b} P(ab|xy) = \sum_{b} P(ab|xy') \quad \forall \ a, x, y, y'$$ Various (information-theoretic) physical principles towards recovering quantum correlations. ### Physical Principles Underlying Quantum Theory? Requiring no superluminal signals is not sufficient for singling out quantum correlations. $$\sum_{a} P(ab|xy) = \sum_{a} P(ab|x'y) \quad \forall \ x, x', b, y,$$ $$\sum_{b} P(ab|xy) = \sum_{b} P(ab|xy') \quad \forall \ a, x, y, y'$$ Various (information-theoretic) physical principles towards recovering quantum correlations. Popescu & Rohrlich, Foundations of Physics 24, 379, 1994. Navascués et al., Nature communications 6, 6288, 2015. #### Networks Enable New Approaches to Singling out Quantum Theory Goal: find a network and information processing task where quantum correlations are (uniquely) extremal. - → Rule out all other generalised probabilistic theories experimentally. - → Point to a physical principle underlying quantum theory. Adaptive CHSH game with winning probability $$p_{\text{win}}(P) = \sum_{a,b,c,x,z} \frac{1}{4} P_{ABC|xz}(a,b,c) Q(a,b,c,x,z)$$ and $$Q(a,b,c,x,z) = 1$$ iff | В | condition for A and C | |------------|---------------------------------------------------------| | b = (0,0) | $(x \oplus 1) \cdot z = a \oplus c$ | | b = (0,1) | $(x \oplus 1) \cdot (z \oplus 1) \oplus 1 = a \oplus c$ | | b = (1,0) | $(x \oplus 1) \cdot (z \oplus 1) = a \oplus c$ | | b = (1, 1) | $(x \oplus 1) \cdot z \oplus 1 = a \oplus c$ | Adaptive CHSH game with winning probability $$p_{\text{win}}(P) = \sum_{a,b,c,x,z} \frac{1}{4} P_{ABC|xz}(a,b,c) Q(a,b,c,x,z)$$ and $$Q(a, b, c, x, z) = 1$$ iff | В | condition for A and C | |------------|---------------------------------------------------------| | b = (0,0) | $(x \oplus 1) \cdot z = a \oplus c$ | | b = (0, 1) | $(x \oplus 1) \cdot (z \oplus 1) \oplus 1 = a \oplus c$ | | b = (1,0) | $(x \oplus 1) \cdot (z \oplus 1) = a \oplus c$ | | b = (1, 1) | $(x \oplus 1) \cdot z \oplus 1 = a \oplus c$ | • Optimal quantum strategy at $p_{win}(P) = \frac{1}{2} \left(1 + \frac{1}{\sqrt{2}} \right)$. - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on system composition.¹ - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on single system state spaces.¹ ¹MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020). ← 🦪 ト ∢ 🧵 ト ∢ 🧵 ト 🧵 🗸 🔈 🤇 🥎 - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on system composition.¹ - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on single system state spaces.¹ ¹MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020). ♦ 🗇 🔻 🗦 🔻 🗦 💆 😤 🛷 🤄 - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on system composition.¹ - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on single system state spaces.¹ Bilocal experiment to rule out quantum theory over real Hilbert spaces.² ¹MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020). ²M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Acín, M. Navascués, Nature 600, (2021). - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on system composition.¹ - Proposed experiment to rule out various "exotic" generalised probabilistic theories by adaptive CHSH game relying on single system state spaces.¹ Bilocal experiment to rule out quantum theory over real Hilbert spaces.² ¹MW, R. Colbeck, PRL 125, 060406 (2020) and PRA 102, 022203 (2020). ²M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Acín, M. Navascués; Nature 600, (2021). ○ ### Complex Quantum Theory # Real Quantum Theory States: of a system A, $$\mathcal{S}_{\mathcal{A}} = \left\{ ho \in \mathcal{B}(\mathcal{H}_{\mathbb{C}}^{\mathcal{A}}) \mid ho \geq 0, \mathsf{tr}(ho) = 1 ight\},$$ for a complex Hilbert space $\mathcal{H}_{\mathbb{C}}^{A}$. • Composition: of independent systems $\rho_A \in \mathcal{S}_A$ and $\rho_B \in \mathcal{S}_B$, $$\rho_{AB} = \rho_A \otimes \rho_B$$ more generally, $$\mathcal{S}_{AB} = \left\{ \rho \in \mathcal{B}(\mathcal{H}_{\mathbb{C}}^{A} \otimes \mathcal{H}_{\mathbb{C}}^{B}) | \rho \geq 0, \mathsf{tr}(\rho) = 1 \right\}.$$ • Evolution: of a state ρ_{AB} is unitary $$\rho_{AB}' = U_{AB}\rho_{AB}U_{AB}^{\dagger}.$$ • Measurement: x on AB, given by an observable $A_x = \sum_a aA_x^a$, with projectors A_x^a such that $\sum_a A_x^a = \mathbb{I}_{AB}$. The probability to observe a on ρ_{AB} is $$P(a|x)=\operatorname{tr}(A_x^a\rho_{AB}).$$ • States: of a system A, VS. $$\mathcal{S}_A = \left\{ ho \in \mathcal{B}(\mathcal{H}_\mathbb{R}^A) \mid ho \geq 0, \mathsf{tr}(ho) = 1 ight\},$$ for a real Hilbert space $\mathcal{H}_{\mathbb{R}}^{A}$. • Composition: of independent systems $\rho_A \in \mathcal{S}_A$ and $\rho_B \in \mathcal{S}_B$, $$\rho_{AB} = \rho_A \otimes \rho_B,$$ more generally, $$\mathcal{S}_{AB} = \left\{ ho \in \mathcal{B}(\mathcal{H}_{\mathbb{R}}^A \otimes \mathcal{H}_{\mathbb{R}}^B) | ho \geq 0, \mathsf{tr}(ho) = 1 ight\}.$$ $\bullet \quad \textbf{Evolution:} \ \, \text{of a state} \, \, \rho_{AB} \, \, \text{is orthogonal} \\$ $$\rho_{AB}' = \mathit{U}_{AB} \rho_{AB} \mathit{U}_{AB}^T.$$ • Measurement: x on AB, given by a real observable $\tilde{A}_x = \sum_a a \tilde{A}_x^a$, with projectors \tilde{A}_x^a such that $\sum_a \tilde{A}_x^a = \mathbb{I}_{AB}$. The probability to observe a on ρ_{AB} is $$P(a|x) = \operatorname{tr}(\tilde{A}_x^a \rho_{AB}).$$ # Real and Complex Quantum Theory have Different Properties • Qubit: $\rho = \frac{1}{2} (\mathcal{I} + x\sigma_x + y\sigma_y + z\sigma_z)$. • Rebit: $\rho = \frac{1}{2} (\mathcal{I} + x\sigma_x + z\sigma_z)$. #### Real and Complex Quantum Theory have Different Properties - Qubit: $\rho = \frac{1}{2} (\mathcal{I} + x\sigma_x + y\sigma_y + z\sigma_z)$. - Local Tomography: 2-qubit states characterised by local σ_x , σ_y , σ_z measurements on each qubit. - Rebit: $\rho = \frac{1}{2} (\mathcal{I} + x\sigma_x + z\sigma_z)$. - 2-rebit states not fully characterised σ_x , σ_z on separate rebits. Example: for the *real* state $|\psi^+ angle= rac{1}{\sqrt{2}}(|00 angle+|11 angle)$ we have $$|\psi^{+}\rangle\langle\psi^{+}|= rac{1}{2}\left(\mathcal{I}+\sigma_{x}\otimes\sigma_{x}-\sigma_{y}\otimes\sigma_{y}+\sigma_{z}\otimes\sigma_{z} ight).$$ \longrightarrow No Local tomography! #### Real Simulations of Quantum Theory in Multi-Party Scenarios Quantum correlations from local measurements $$P(a,b|x,y) = \operatorname{tr}\left(A_x^a \otimes B_y^b \rho_{AB}\right).$$ ### Real Simulations of Quantum Theory in Multi-Party Scenarios #### Quantum correlations from local measurements $$P(a,b|x,y) = \operatorname{tr}\left(A_x^a \otimes B_y^b \rho_{AB}\right).$$ E. C. G. Stuckelberg, Helvetica Physica Acta, 33 (1960). M. McKague, M. Mosca, N. Gisin, PRL 102, 020505 (2009). #### Real Simulations of Quantum Theory in Multi-Party Scenarios #### Quantum correlations from local measurements $$P(a,b|x,y) = \operatorname{tr}\left(A_x^a \otimes B_y^b \rho_{AB}\right).$$ Real simulation on a larger Hilbert space preserves locality of measurements $$P(a,b|x,y) = \operatorname{tr}(\tilde{A}_{x}^{a} \otimes \tilde{B}_{y}^{b} \tilde{\rho}_{AB})$$ using the real states and measurements (using $|\pm i\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm i\,|1\rangle)$) $$ilde{ ho}_{AB} = rac{1}{2} \left(ho_{AB} \otimes |i\rangle\langle i|_{A'B'}^{\otimes 2} + ho_{AB}^* \otimes |-i\rangle\langle -i|_{A'B'}^{\otimes 2} ight)$$ $$\tilde{A}_{x}^{a}=A_{x}^{a}\otimes|i\rangle\langle i|_{A'}+(A_{x}^{a})^{*}\otimes|-i\rangle\langle -i|_{A'}$$ $$\tilde{B}^b_y = B^b_y \otimes |i\rangle \langle i|_{B'} + \left(B^b_y\right)^* \otimes |-i\rangle \langle -i|_{B'} \,.$$ E. C. G. Stuckelberg, Helvetica Physica Acta, 33 (1960). M. McKague, M. Mosca, N. Gisin, PRL 102, 020505 (2009). #### Candidate Complex Quantum Distribution #### **Candidate Distribution:** $$\bar{P}(a,b,c|x,z) = \operatorname{tr}\left(A_x^a \otimes B^b \otimes C_z^c(|\psi^+\rangle\langle\psi^+|_{AB_1} \otimes |\psi^+\rangle\langle\psi^+|_{B_2C})\right),$$ in terms of a Bell state measurement B and the observables $$A_1 = \sigma_Z, \ A_2 = \sigma_X, \ A_3 = \sigma_Y,$$ $C_1 = D_{zx}, \ C_2 = E_{zx}, \ C_3 = D_{zy}, \ C_4 = E_{zy}, \ C_5 = D_{xy}, \ C_6 = E_{xy}.$ where $$D_{ij} = \frac{\sigma_i + \sigma_j}{\sqrt{2}}$$, $E_{ij} = \frac{\sigma_i - \sigma_j}{\sqrt{2}}$. M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Acín, M. Navascués, Nature 600, (2021). ### Intuition: Scenario that Requires Complex Quantum Measurements #### Intuition: Scenario that Requires Complex Quantum Measurements • Self-testing Pauli measurements: If we have a quantum P(a,c|x,z), such that $\text{CHSH}_{00}^3(P) = \text{CHSH}_{A_1,A_2,C_1,C_2}(P) + \text{CHSH}_{A_1,A_3,C_3,C_4}(P) + \text{CHSH}_{A_2,A_3,C_5,C_6}(P) = 6\sqrt{2},$ then this self-tests $|\psi^+\rangle_{AC}$ and Alice's observables $$A_1 = \sigma_Z$$, $A_2 = \sigma_X$, $A_3 = \sigma_Y$. #### Result: Candidate Distribution Not Reproducible in Real Quantum Theory #### Result: Candidate Distribution Not Reproducible in Real Quantum Theory Proposition: \bar{P} does not admit a decomposition $$ar{P}(a,b,c|x,z) = \sum_{\lambda} P(\lambda) \operatorname{tr} \left(ilde{A}_{\mathsf{x}}^{\mathsf{a}} \otimes ilde{B}^{\mathsf{b}} \otimes ilde{C}_{\mathsf{z}}^{\mathsf{c}} (ilde{ ho}_{AB_{1}}^{\lambda} \otimes ilde{ ho}_{B_{2}\mathcal{C}}^{\lambda}) ight)$$ with real states $\tilde{\rho}_{AB_1}^{\lambda}$, $\tilde{\rho}_{B_2C}^{\lambda}$ and real measurements \tilde{A}_x , \tilde{B} , \tilde{C}_z (of any dimension). • The result can be made noise robust for an experimental test. M.O. Renou, D. Trillo, MW, T. P. Le, A. Tavakoli, N. Gisin, A. Acín, M. Navascués; Nature 600, (2021). #### **Experimental Implementations** $M.-C.\ Chen\ et\ al.\ \ "Ruling\ out\ real-number\ description\ of\ quantum\ mechanics",\ PRL\ 128,\ 040403\ (2022).$ Z.-Da. Li et al. "Testing real quantum theory in an optical quantum network", PRL 128, 040402 (2022). D. Wu et al. "Experimental refutation of real-valued quantum mechanics under strict locality conditions", #### Summary and Open Questions - Causal networks enable the design of experiments to single out quantum theory among various generalised probabilistic theories (including more non-local ones). - Real and Complex Quantum Theory lead to different experimental predictions in scenarios where multiple states are independently prepared, which led to the experimental refutation of Real Quantum Theory (with loopholes). #### Summary and Open Questions - Causal networks enable the design of experiments to single out quantum theory among various generalised probabilistic theories (including more non-local ones). - Real and Complex Quantum Theory lead to different experimental predictions in scenarios where multiple states are independently prepared, which led to the experimental refutation of Real Quantum Theory (with loopholes). - Gaps to other potential contenders of quantum theory. Is there a network and task where quantum theory is uniquely optimal? - New axiomatic frameworks recovering quantum theory? - Other applications of causal networks in quantum foundations? Thank you for your attention! #### Main Idea of the Proof • Applying real local isometries $U_{A \to AA'A''}$ and $V_{C \to CC'C''}$ to $\sum_{\lambda} P(\lambda) \tilde{\rho}^{\lambda}_{AB_1} \otimes \tilde{\rho}^{\lambda}_{B_2C}$ leads to a state $$\tilde{\rho}_{A'C'} = \sum_{\lambda} P(\lambda) \operatorname{tr}_{AA''CC''} \left(U \tilde{\rho}_A^{\lambda} U^{\dagger} \otimes V \tilde{\rho}_C^{\lambda} V^{\dagger} \right).$$ [Such states satisfy $\tilde{\rho}_{A^{\prime}C^{\prime}}^{T_{C^{\prime}}} = \tilde{\rho}_{A^{\prime}C^{\prime}}.]$ #### Main Idea of the Proof • Applying real local isometries $U_{A \to AA'A''}$ and $V_{C \to CC'C''}$ to $\sum_{\lambda} P(\lambda) \tilde{\rho}^{\lambda}_{AB_1} \otimes \tilde{\rho}^{\lambda}_{B_2C}$ leads to a state $$\tilde{\rho}_{A'C'} = \sum_{\lambda} P(\lambda) \operatorname{tr}_{AA''CC''} \left(U \tilde{\rho}_A^{\lambda} U^{\dagger} \otimes V \tilde{\rho}_C^{\lambda} V^{\dagger} \right).$$ [Such states satisfy $\tilde{\rho}_{A^{\prime}C^{\prime}}^{T_{C^{\prime}}} = \tilde{\rho}_{A^{\prime}C^{\prime}}.]$ • We show that if we find a real strategy to recover \bar{P} there are specific real isometries $\tilde{U}_{A \to AA'A''}$, $\tilde{V}_{C \to CC'C''}$ such that $$\tilde{ ho}_{A'C'} = rac{|i angle\langle i|^{\otimes 2} + |-i angle\langle -i|^{\otimes 2}}{2}$$ The state $\tilde{\rho}_{A'C'}$ is not of the above form, which we see from $\tilde{\rho}_{A'C'}^{T_{C'}} \neq \tilde{\rho}_{A'C'}$. #### Main Idea of the Proof • Applying real local isometries $U_{A \to AA'A''}$ and $V_{C \to CC'C''}$ to $\sum_{\lambda} P(\lambda) \tilde{\rho}^{\lambda}_{AB_1} \otimes \tilde{\rho}^{\lambda}_{B_2C}$ leads to a state $$\tilde{\rho}_{A'C'} = \sum_{\lambda} P(\lambda) \operatorname{tr}_{AA''CC''} \left(U \tilde{\rho}_A^{\lambda} U^{\dagger} \otimes V \tilde{\rho}_C^{\lambda} V^{\dagger} \right).$$ [Such states satisfy $\tilde{\rho}_{A^{\prime}C^{\prime}}^{T_{C^{\prime}}} = \tilde{\rho}_{A^{\prime}C^{\prime}}.]$ • We show that if we find a real strategy to recover \bar{P} there are specific real isometries $\tilde{U}_{A \to AA'A''}$, $\tilde{V}_{C \to CC'C''}$ such that $$\tilde{\rho}_{A'C'} = \frac{|i\rangle\langle i|^{\otimes 2} + |-i\rangle\langle -i|^{\otimes 2}}{2}$$ The state $\tilde{\rho}_{A'C'}$ is not of the above form, which we see from $\tilde{\rho}_{A'C'}^{T_{C'}} \neq \tilde{\rho}_{A'C'}$. → Contradiction!