SDP-based Cheeger inequalities for vertex (and hypergraph) expansion

Anand Louis, Prasad Raghavendra, Santosh Vempala

Graph expansion

- G=(V,E), edge weights W
- $S \subset V$

$$\phi(S) = w(S,S) / \min w(S), w(S)$$

- $\phi(G) = \min_{\mathcal{T}} \mathcal{S} \phi(S)$
- NP-hard to compute exactly

- Admits polytime $O(\sqrt{\log n})$ approximation [Arora-Rao-Vazirani]
- Improving on earlier $O(\log n)$ approximation [Leighton-Rao'88, Linial-London-Rabinovich, Aumann-Rabani]

Graph eigenvalues

- ▶ $A \downarrow G = D \uparrow 1/2$ $AD \uparrow 1/2$ with $D \downarrow ii = d \downarrow i = \sum_{j} \uparrow m$ $w \downarrow ij$
- $A \downarrow G = 1/dA$ for d-regular graphs
- $L \downarrow G = I A \downarrow G$ is positive semidefinite
- $\lambda \downarrow 1 (L \downarrow G) = 0; L \downarrow G D \uparrow 1/2 \mathbf{1} = 0.$
- $\lambda \downarrow 2 \ (L \downarrow G) = \min_{-x \in R \uparrow n}, \ x \perp D \uparrow 1/2 \ \mathbf{1} \ x \uparrow T L \downarrow G x/x \uparrow T x$ $= \min_{-x \in R \uparrow n}, \ x \cdot d = 0 \sum_{ij \in E \uparrow w \downarrow ij} (x \downarrow i x \downarrow j) \uparrow 2 \ /$ $\sum_{i\uparrow w d \downarrow i} x \downarrow_{i\uparrow 2} \ge 0$

Perron-Frobenius

 $\lambda 12 = 0$ if and only if graph is disconnected.

If $\lambda \downarrow 2 \approx 0$, then is graph close to disconnected?

Cheeger's inequality

[Cheeger-Alon-Milman]

$$\lambda \downarrow 2 /2 \le \phi(G) \le \sqrt{2}\lambda \downarrow 2$$

```
\lambda \downarrow 2 = \min_{\neg x} \in R \uparrow n, \quad x \cdot d = 0 \quad \sum ij \in E \uparrow \equiv w \downarrow ij \quad (x \downarrow i - x \downarrow j) \uparrow 2 \quad / \sum i \uparrow \equiv d \downarrow i \quad x \downarrow i \uparrow 2 \quad = \min_{\neg x} \in R \uparrow n \quad \sum ij \in E \uparrow \equiv w \downarrow ij \quad (x \downarrow i - x \downarrow j) \uparrow 2 \quad / \sum i \uparrow \equiv d \downarrow i \quad d \downarrow i \quad (x \downarrow i - x \downarrow j) \uparrow 2 \quad / \sum i \uparrow \equiv d \downarrow i \quad (x \downarrow i - x \downarrow j) \uparrow 2 \quad / \sum i \uparrow \equiv d \downarrow i \quad (x \downarrow i \uparrow 2 - (\sum i \uparrow \equiv d \downarrow i \quad x \downarrow i \uparrow 2 - (\sum i \uparrow \equiv d \downarrow i \quad x \downarrow i \uparrow 2 \quad (x \downarrow i \uparrow 2 \rightarrow x \downarrow i) \uparrow 2 \quad (x \downarrow i \uparrow 2 \rightarrow x \downarrow i) \uparrow 2 \quad (x \downarrow i \uparrow 2 \rightarrow x \downarrow i) \mid (x \downarrow i \rightarrow x \downarrow i
```

Cheeger's Algorithm

$$1/2 \lambda 1/2 \le \phi(G) \le \sqrt{2}\lambda 1/2$$

x: eigenvector of $L \downarrow G$ for $\lambda \downarrow 2$

- I. Sort $x: x \downarrow 1 \le x \downarrow 2 \le ... \le x \downarrow n$
- 2. Consider subsets $S \downarrow i = \{x \downarrow 1, ..., x \downarrow i\}$
- 3. Take S:argmin $\phi(S \downarrow i)$

$$\min -i \phi(S \downarrow i) \le \sqrt{2} \lambda \downarrow 2$$
, proof via Cauchy-Schwarz

Gives method to certify constant edge expansion

Soo useful and central

Image segmentation
data clustering
network routing and design
VLSI layout
Parallel/distributed computing

•••

certificate for constant edge expansion mixing of Markov chains graph partitioning Pseudorandomness

• • •

Talk outline

- [Vertex expansion] Is there a Cheeger-type inequality for vertex expansion? Can we efficiently verify whether a graph is a vertex expander?
- ► [Hypergraphs] How to extend expansion and Cheeger inequalities to hypergraphs?
- [Lower bounds] Are these the best possible algorithmic bounds?

Vertex Expansion

$$\phi \uparrow V(S) = |N \uparrow in(S)| + |N \uparrow out(S)| \min\{|S|, |S|\}$$

$$\phi \downarrow \uparrow V(G) = \min_{T} S \phi \uparrow V(S)$$

$$N(S)$$

- Fundamental parameter, with many applications.
- Admits $O(\sqrt{\log n})$ approximation [Feige-Hajiaghayi-Lee'08]
- Cheeger gives \sqrt{d} OPT, where d is max degree [Alon'85]
- Can constant vertex expansion be certified in polytime?

Vertex expansion

Max formulation

```
\phi \uparrow V(G) = \min_{\neg x} \{0,1\} \uparrow n \sum_{i} \lim_{m \to x} \lim_{j \to i} E(x \downarrow_{i} - x \downarrow_{j}) \uparrow 2 / (\sum_{i} \lim_{m \to i} x \downarrow_{i} \uparrow_{i} 2 - 1/n (\sum_{i} \lim_{m \to i} x \downarrow_{i}) \uparrow 2 ) = \min_{\neg S} |N(S) \cup N(S)|/|S|| S |/n \le 2\phi \uparrow V(G)
```


Cheeger inequality for vertex expansion

Relaxing the 0,1 constraint:

$$\lambda \downarrow \infty = \min_{-x \in R \uparrow n}, x \perp 1 \sum_{i \uparrow m} \max_{-j: ij \in E} (x \downarrow i - x \downarrow j) \uparrow 2 / \sum_{i \uparrow m} x \downarrow i \uparrow 2$$

Theorem [Bobkov-Houdre-Tetali '00]

$$\lambda \downarrow \infty /2 \le \phi \uparrow V(G) \le c \sqrt{\lambda} \downarrow \infty$$

• But how to compute $\lambda \downarrow \infty$?

A semidefinite relaxation

- ▶ $\lambda \downarrow \infty = \min_{-x \in R \uparrow n}$, $x \perp 1$ $\sum_{i \uparrow} max_{-i}$: $ij \in E$ $(x \downarrow i x \downarrow j) \uparrow 2$ $\sum_{i \uparrow} x \downarrow i \uparrow 2$
- ► SDP:min $-x \downarrow 1$,..., $x \downarrow n \in R \uparrow n \sum i \uparrow \text{max} j$: $ij \in E \mid \mid x \downarrow i x \downarrow j \mid \mid \uparrow \uparrow 2 / (\sum i \uparrow \text{max} \mid \mid \mid \uparrow \uparrow 2 1/n \mid \mid \sum i \uparrow \text{max} \downarrow i \mid \mid \uparrow \uparrow 2) \leq \lambda \downarrow \infty$
- ► Theorem. [LRV I 3; also Steurer-Tetali]. $\lambda \downarrow \infty /2 \le \phi \uparrow V(G) \le C \sqrt{SDP} \cdot \log d \le C \sqrt{\lambda} \downarrow \infty \log d$

Cheeger algorithm for vertex expansion

SDP finds vectors $x \downarrow 1$, $x \downarrow 2$,..., $x \downarrow n \in R \uparrow n$.

Rounding:

- Pick random Gaussian vector g
- Project and sort, according to $x \downarrow i \cdot g$
- Apply a Cheeger sweep to sorted vector (or pick a random threshold cut)

Analysis:

after projection, vector y satisfies

```
\sum i \uparrow \text{max}_{j} : ij \in E(y \downarrow i - y \downarrow j) \uparrow 2 / d(\sum i \uparrow \text{m} y \downarrow i \uparrow 2 - 1/n (\sum i \uparrow \text{m} y \downarrow i) \uparrow 2) \leq SDP \cdot O(\log d)
```

Then [BHT] gives a cut of expansion $O(\sqrt{SDP} \cdot \log d)$

Hypergraph expansion

H=(V,E), edges are subsets of vertices $\phi(H)=\min_{T}S\subset V \text{ Σe:e}\cap S,\ e\cap S\neq \phi \uparrow \text{ $w(e)$ /min}\{w(S),w(S)\}$ $\phi(H)\leq\min_{T}x\in\{0,1\} \uparrow n \text{ Σe}\in E\uparrow \text{ mex} +i,j\in e\ (x\downarrow i-x\downarrow j\)\uparrow 2 \text{ }/d(\sum i\uparrow \text{ $x\downarrow i\uparrow 2-1/n\ }(\sum i\uparrow \text{ $x\downarrow i\uparrow 2-1/n\ })$

Common generalization of vertex and edge expansion

Hypergraph Cheeger

```
\gamma \downarrow 2 = \min_{-x \in R \uparrow n}, x \perp 1 \quad \sum_{e \in E \uparrow \text{mmax} + i, j \in e} (x \downarrow_i - x \downarrow_j) \uparrow_2 / d(\sum_i \uparrow_{\text{max}} \downarrow_i \uparrow_2 - 1/n (\sum_i \uparrow_{\text{max}} \downarrow_i) \uparrow_2 )
```

Theorem.

$$\gamma \downarrow 2 /2 \le \phi(H) \le c \sqrt{\gamma} \downarrow 2$$

- \not $\gamma \not$ 2 can be approximated by the SDP to within $O(\log r)$.
- Hypergraph expansion to within $O(\sqrt{SDP} \cdot \log r)$
- With $L \downarrow 2 \uparrow 2$ -metric constraints, gives $O(\sqrt{\log n})$ approximation [Louis-Makarychev'14]

Hypergraph dispersion

```
\gamma \downarrow 2 = \min_{-x \in R \uparrow n}, x \perp 1 \quad \sum_{e \in E \uparrow \text{max} \rightarrow i, j \in e} (x \downarrow i - x \downarrow j) \uparrow 2 \quad /d(\sum_{i \uparrow \text{max} \downarrow i \uparrow 2} - 1/n (\sum_{i \uparrow \text{max} \downarrow i}) \uparrow 2)
```

This definition suggests the following dispersion process:

- Start with some distribution x on vertices
- Repeat: each hyperedge finds the two vertices with largest difference $x \downarrow i x \downarrow j$ and transfers $1/2d(x \downarrow i x \downarrow j)$ from i to j.

Dispersion and Eigenvalues

Viewing this dispersion process as a (Markov) operator, the process is

$$x \uparrow t + 1 = M \downarrow x \uparrow t (x \uparrow t)$$

- Does this converge? To what? At what rate?
- Theorem [Louis '14]. Under mild conditions, this process converges to uniform at rate $1/\gamma \downarrow 2$ and $\exists \mu$: $M \downarrow \mu$ (μ)= $\gamma \downarrow 2$ μ .
- Note:

$$\gamma \downarrow 2 = \min_{\tau} x \perp \mathbf{1} x \uparrow T (I - M \downarrow x)(x) / x \uparrow T x$$

Better algorithmic bounds?

Can we approximate, in polytime,

- edge expansion to better than \sqrt{OPT} ?
- vertex expansion to better than $\sqrt{OPT}\log d$? (can we certify that vertex expansion is at least some constant in polynomial time?)
- hypergraph expansion to better than $\sqrt{OPT}\log r$?

Small Set Expansion [Raghavendra-Steurer]

SSE(\mathcal{E} , \mathcal{S}): Given a graph G=(V,E), distinguish between the following two cases :

- \rightarrow $\exists S \subset V, \ \mu(S) = \delta \text{ and } \Phi(S) \leq \varepsilon$
- All subset $S \subseteq V$ with $\mu(S) = \delta$ have $\Phi(S) \ge 1 \varepsilon$

SSE-Hypothesis: For all $\mathcal{E} > 0$, $\exists \delta > 0$ such that $SSE(\mathcal{E}, \delta)$ is NP-hard.

SSE-Hardness of approximation

Theorem. [Raghavendra-Steurer-Tulsiani '10]

Assuming the SSE hypothesis, edge expansion is hard to approximate to within $o(\sqrt{OPT})$.

Theorem. [Louis-Raghavendra-V.'13]

Assuming the SSE hypothesis, vertex expansion is hard to approximate to within $o(\sqrt{OPT}\log d)$.

Cor. It is SSE-hard to decide if a graph has vertex expansion at most ϵ or at least $\Omega(\sqrt{\epsilon}\log d)$.

Similar lower bound for hypergraph expansion.

A series of reductions [LRV'13]

- SSE: ϵ vs $1-\epsilon$ for δ -measure subsets
- Balanced analytic expansion
- Balanced vertex expansion: ϵ vs $\sqrt{\epsilon} \log d$ for min $\phi \uparrow V$ (S) for $\mu(S) \ge 1/10$
- Symmetric vertex expansion: ϵ vs $\sqrt{\epsilon} \log d$ for $\phi \uparrow V(G)$
- Vertex expansion

Balanced Analytic expansion

Vertices V and distribution P over d+1 subsets, with marginal $P \downarrow 1$ on vertices. For $F: V \rightarrow \{0,1\} \uparrow n$,

$$\phi(V,P,F) = E \downarrow (X,Y \downarrow 1,...,Y \downarrow d) \sim P \left(\max_{\tau} i \mid F(Y \downarrow i) \right)$$

$$-F(X) \mid /E \downarrow X,Y \sim P \downarrow 1 \left(|F(X) - F(Y)| \right)$$

$$\phi(V,P)=\min \phi(V,P,F)$$
: $E\downarrow X,Y\sim P\downarrow 1$ $(|F(X)-F(Y)|)\geq 1/100$.

- Generalizes edge expansion (d=1).
- Reduction to this problem is on the lines of [RST'12]

Analytic expansion

$$E\downarrow(X,Y\downarrow1,...,Y\downarrow d)\sim P(\max_{\tau}i|F(Y\downarrow i)-F(X)|)/E\downarrow X,Y\sim P\downarrow1(|F(X)-F(Y)|)$$

- Sample a vertex X from S
- Sample d neighbors of $X : Y \downarrow 1, ..., Y \downarrow d$
- What is the probability that at least one Y\(\psi\)i lies outside S?
- Computing $\min_{\tau} S \phi \downarrow d(S) \leftrightarrow \text{computing vertex expansion}$ in graphs with degree O(d).

A series of reductions

- SSE: ϵ vs $1-\epsilon$ for δ -measure subsets
- **Balanced** analytic expansion: ϵ vs $\sqrt{\epsilon} \log d$
- Balanced vertex expansion: ϵ vs $\sqrt{\epsilon} \log d$ for min $\phi \uparrow V$ (S) for $\mu(S) \ge 1/10$
- Symmetric vertex expansion: ϵ vs $\sqrt{\epsilon} \log d$ for $\phi \uparrow V(G)$
- Vertex expansion

Transforming an SSE instance

- $G \downarrow 0$ = SSE instance
- H ="gadget" (small graph)
- $G = G \downarrow 0 \times H \uparrow R + \text{``random''} \text{ edges to smooth}$

Claim:

- 1. $\phi \downarrow \delta(G \downarrow 0) \leq \epsilon$ maps to $\phi \uparrow V(G) \leq \epsilon'$
- 2. $\phi \downarrow \delta (G \downarrow 0) \geq 1 \epsilon$ maps to $\phi \uparrow V(G) \geq \sqrt{\epsilon} \uparrow' \log d$

Gadgets for dictators

Dictator cuts: subset defined by all copies of some vertices from base graph

"Completeness": Dictator cuts have analytic expansion $\leq \varepsilon$

"Soundness": Cuts far from dictators have analytic expansion $\geq \sqrt{\varepsilon} \log d$

Reduction from SSE via this gadget gives ε vs $\sqrt{\varepsilon} \log d$ hardness for vertex expansion

Analytic Expansion of Product Graphs

Fix
$$G = H \uparrow R$$

Theorem:

For all S which are far from "axis cuts" $\phi \downarrow d(S) \ge \sqrt{\varepsilon} \log d$

Reduce this computation to bounding analytic expansion of the *Gaussian Graph* via Invariance Principles [Issakson, Mossel-12].

Soundness of the gadget

- Need to show that every subset "far" from a dictator has high analytic expansion.
- This is done via an invariance principle for low-degree polynomials [Isaksson-Mossel '12]
- Reduces to showing that the infinite Gaussian graph has large analytic expansion.

Invariance Principles

 $E[\Gamma \downarrow 1 - \eta F(X \downarrow 1, ..., X \downarrow n)]$

(average over random boolean inputs)

≈ 1

 $E[\Gamma \downarrow 1 - \eta F(G \downarrow 1, ..., G \downarrow n)]$

(average over random Gaussian inputs)

Analytic Vertex Expansion of Gadget

Analytic Vertex Expansion of Gaussian graph

Gaussian graph

- $G \downarrow \epsilon$: complete (weighted) graph on $V=R \uparrow n$
- $w(u,v) \propto \exp(-\|u-v\|/12/2\epsilon)$
- w(u,v)=P[X=u,Y=v], where X and Y are $(1-\epsilon)$ -correlated Gaussians
- Fix $S \subset V$, sample $X \sim \mathcal{N}(0,1) \uparrow n$, $Y \downarrow 1$,..., $Y \downarrow d \sim \mathcal{N}(X, \varepsilon I)$
- ▶ Theorem. $\phi \downarrow d(S) \ge c \sqrt{\varepsilon} \log d$ for all $S \subseteq V$

Analytic Expansion of the Gaussian Graph

$$S \downarrow 1 = \{X \in S: \mu \downarrow X (\Re \uparrow n \setminus S) < 1/2d \}$$
 and $S \downarrow 2 = \{X \in \Re \uparrow n \setminus S: \mu \downarrow X (S) < 1/2d \}$

If
$$||u-v|| \le \sqrt{\epsilon} \log d$$
 then $d \downarrow TV (P \downarrow u, P \downarrow v) \le 1$

$$\mu(boundary) \ge \sqrt{\varepsilon log} \, d \cdot \mu(S) \mu(\Re \ln S)$$
via [Borell-75]

Analytic vertex expansion of $S \ge \sqrt{\varepsilon \log d}$.

Conclusion

Given a graph G distinguish between the following cases:

- (Non-expander) G has a set with $\phi \uparrow V(S) < \varepsilon \downarrow 0$
- (Vertex Expander) $\phi \downarrow G \uparrow V \ge 0.1$

 $\sqrt{OPT} \cdot \log d$ upper and lower bounds for approximating vertex expansion.

Edge Expansion	Vertex Expansion
$O(\log n)$ [Leighton,Rao-88]	$O(\log n)$ [Leighton,Rao-88]
$O(\sqrt{\log n})$ [Arora,Rao,Vazirani-04]	$O(\sqrt{\log n})$ [Feige, Hajiaghayi, Lee-05]
$O(\sqrt{OPT})$ [Alon-Milman-86]	$O(\sqrt{d \cdot OPT})$ [Alon-Milman 86]
	$O(\sqrt{OPTlogd})$
No PTAS assuming ETH [Ambuhl-Mastrolilli-Svensson-07]	
$\Omega(\sqrt{OPT})$ under SSE [Raghavendra,Steurer,Tulsiani-12]	
	$\Omega(\sqrt{OPTlogd}\)$ under SSE

Open questions

- Better approximations for edge expansion, vertex expansion, hypergraph expansion?
- Analyze Miller's algorithm
- Show NP-hard to approximate to within some constant factor (1.01)
 - [AMS07]: No PTAS unless SAT has subexp algorithms
- Give local (small-space) implementation of a hypergraph dispersion process

