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Convex Optimization in Conic Form

(P) inf {(c,x)
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Convex Optimization in Conic Form

A(x) = b,
x € K,
and
(D) sup (b,y)p
A(y) + s = ¢
s € K~
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Convex Optimization in Conic Form

A(x) = b,
x € K,
and
(D) sup (b,y)p
A(y) + s = ¢
s € K~

K* = {se E* : (s,x) >0, Vx € K} Dual Cone

Tor Myklebust, Levent Tungel Primal-Dual IPMs for convex optim.



Convex Optimization in Conic Form

(P) inf {(c,x)

A(x) = b,
x € K,
and
(D) sup (b,y)p
A(y) + s = ¢
s € K~

K* = {se E* : (s,x) >0, Vx € K} Dual Cone

Fu(s) == —infyciny(k) {(s,x) + F(x)} Legendre-Fenchel Conjugate
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Some Elements of Interior-Point Methods

One of the most important concepts in interior-point methods is
the central path.
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One of the most important concepts in interior-point methods is
the central path. We arrive at this concept via another central
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Some Elements of Interior-Point Methods

One of the most important concepts in interior-point methods is
the central path. We arrive at this concept via another central
concept barrier.

Let 4 > 0. Consider

(P.) min %(c,x> + F(x)
A(x) = b,
(x € int(K)),
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Some Elements of Interior-Point Methods

One of the most important concepts in interior-point methods is
the central path. We arrive at this concept via another central
concept barrier.

Let 4 > 0. Consider

(P.) min %(c,x> + F(x)
A(x) = b,
(x € int(K)),

and

(Dy) min —%(b,yﬁ) + Fu(s)
A*(y) + s=c,
(s eint(K*) ).
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Under the assumption that F, # 0,
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Under the assumption that 7 # (), both (P,) and (D,) have
unique solutions for every y > 0.
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Under the assumption that 7 # (), both (P,) and (D,) have
unique solutions for every y > 0.

Moreover, these solutions define a smooth path, called central
path,
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Under the assumption that 7 # (), both (P,) and (D,) have
unique solutions for every y > 0.

Moreover, these solutions define a smooth path, called central
path, and each point (X, yu, s,) on the central path can be
characterized as a unique solution of a system of equations (and
being in the interior of the underlying cone).
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We assume, we are given x(9), s(0) both strictly feasible in the

problems (P) and (D), respectively. Define py := %, we will
compute x(K) and s(¥) by an interior-point algorithm, which follows
the central path approximately, such that both vectors are feasible

and for a given desired accuracy € € (0,1), we have i < €up.
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We assume, we are given x(9), s(0) both strictly feasible in the

(k) g(k) .
%, we will

problems (P) and (D), respectively. Define py :=
compute x(K) and s(¥) by an interior-point algorithm, which follows
the central path approximately, such that both vectors are feasible

and for a given desired accuracy € € (0,1), we have i < €up.

Such algorithms (for LP, SDP and Symmetric Cone Programming)
with current best complexity compute an e-solution (x(k),s(k)) in

0] (Wln (%)) iterations.
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A Hierarchical view of conic optimization

Strictly speaking we have,

LP C SOCP C SDP C SymCP C HomCP C HypCP C CP.
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A Hierarchical view of conic optimization

Strictly speaking we have,
LP C SOCP C SDP C SymCP C HomCP C HypCP C CP.
However, in some sense,

LP c SOCP C SDP = SymCP = HomCP C HypCP C CP.
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A Hierarchical view of conic optimization

Strictly speaking we have,

LP C SOCP C SDP C SymCP C HomCP C HypCP C CP.
However, in some sense,

LP C SOCP C SDP = SymCP = HomCP C HypCP C CP.

Yet in an another sense,

LP = SOCP C SDP = SymCP = HomCP C HypCP C CP.

See, Ben-Tal and Nemirovski; Chua; Faybusovich; Nesterov and
Nemirovski; Vinnikov; Helton and Vinnikov; Lewis, Parrilo and
Ramana; Gurvits; Gouveia, Parrilo and Thomas; Netzer and
Sanyal; Netzer, Plaumann and Schweighofer; Plaumann, Sturmfels
and Vinzant; ...
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Symmetric primal-dual interior-point algorithms

Pinnacle of Symmetric Primal-Dual IPMs

Tor Myklebust, Levent Tungel Primal-Dual IPMs for convex optim.



Symmetric primal-dual interior-point algorithms

Pinnacle of Symmetric Primal-Dual IPMs

Nesterov-Todd [1997-1998]: Primal-dual interior-point methods for
self-scaled cones.
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Hyperbolic programming and primal-dual interior-point

algorithms?

A key property of self-scaled barriers is “the Long-step Hessian
Estimation property” which hinges on the following “compatibility”
property of the underlying barrier

(—F'(x),y) is convex for every y € K.
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Hyperbolic programming and primal-dual interior-point

algorithms?

A key property of self-scaled barriers is “the Long-step Hessian
Estimation property” which hinges on the following “compatibility”
property of the underlying barrier

(—F'(x),y) is convex for every y € K.
Krylov [1995], Giiler [1997] showed that the above property holds

for all hyperbolic barriers (in this sense, “generalizing” self-scaled
barriers).
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Hyperbolic programming and primal-dual interior-point

algorithms?

A key property of self-scaled barriers is “the Long-step Hessian
Estimation property” which hinges on the following “compatibility”
property of the underlying barrier

(—F'(x),y) is convex for every y € K.

Krylov [1995], Giiler [1997] showed that the above property holds
for all hyperbolic barriers (in this sense, “generalizing” self-scaled
barriers).

Nesterov [1997] showed that we can't have this property for both
F and F, unless we are in the self-scaled case.
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v-space
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LAST SLIDE: What are the new results?

o Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)
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o Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

@ Extension of v-space based primal-dual ipms maintaining the
long-step Hessian estimation property (New for HomCP,
HypCP)
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LAST SLIDE: What are the new results?

o Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

@ Extension of v-space based primal-dual ipms maintaining the

long-step Hessian estimation property (New for HomCP,
HypCP)

o Software (some of the Primal-Dual metrics T2 utilized by
these algorithms are new even for LP!)
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LAST SLIDE: What are the new results?

o Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

@ Extension of v-space based primal-dual ipms maintaining the
long-step Hessian estimation property (New for HomCP,
HypCP)

o Software (some of the Primal-Dual metrics T2 utilized by
these algorithms are new even for LP!)

@ Connections to other research areas in mathematics and
mathematical sciences.
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Towards a symmetric primal-dual scaling

Lemma

For every pointed closed convex cone K with nonempty interior,
there is an associated function F : int(K) — R with the following
properties:
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there is an associated function F : int(K) — R with the following
properties:

@ F is continuously differentiable on int(K);
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Towards a symmetric primal-dual scaling

Lemma

For every pointed closed convex cone K with nonempty interior,
there is an associated function F : int(K) — R with the following
properties:

@ F is continuously differentiable on int(K);
@ F is strictly convex on int(K);
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Towards a symmetric primal-dual scaling

Lemma

For every pointed closed convex cone K with nonempty interior,
there is an associated function F : int(K) — R with the following
properties:
@ F is continuously differentiable on int(K);
@ F is strictly convex on int(K);
© F is a barrier function for K (for every sequence
{x(k)} C int(K) converging to a boundary point of K,
F (x(k)) — +00).
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A huge family of symmetric primal-dual scalings

Theorem

(T. [2001]) Let K C E be a pointed closed convex cone with
nonempty interior and let F : int(K) — R be a function with the
properties listed in the lemma (+ ¥-log.-homogeneity). Then for
every x € int(K), s € int(K*), there exists T : E — E2 linear,
such that
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A huge family of symmetric primal-dual scalings

Theorem

(T. [2001]) Let K C E be a pointed closed convex cone with
nonempty interior and let F : int(K) — R be a function with the
properties listed in the lemma (+ ¥-log.-homogeneity). Then for
every x € int(K), s € int(K*), there exists T : E — E2 linear,
such that

Q0 Tr=T,
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A huge family of symmetric primal-dual scalings

Theorem
(T. [2001]) Let K C E be a pointed closed convex cone with
nonempty interior and let F : int(K) — R be a function with the
properties listed in the lemma (+ ¥-log.-homogeneity). Then for
every x € int(K), s € int(K*), there exists T : E — E2 linear,
such that

QT =T,

@ T is positive definite,
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A huge family of symmetric primal-dual scalings

Theorem
(T. [2001]) Let K C E be a pointed closed convex cone with
nonempty interior and let F : int(K) — R be a function with the
properties listed in the lemma (+ ﬁ-/og.-homogeneity).* Then for
every x € int(K), s € int(K*), there exists T : E — E2 linear,
such that

QT =T,

@ T is positive definite,

© T(s) = T Y(x) or equivalently, T?(s) = x,
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A huge family of symmetric primal-dual scalings

Theorem
(T. [2001]) Let K C E be a pointed closed convex cone with
nonempty interior and let F : int(K) — R be a function with the
properties listed in the lemma (+ ﬁ-/og.-homogeneity).* Then for
every x € int(K), s € int(K*), there exists T : E — E2 linear,
such that

QT =T,

@ T is positive definite,

© T(s) = T Y(x) or equivalently, T?(s) = x,

Q@ T(F'(x)) = T-Y(F.(s)) or equivalently, T?>(F'(x)) = F.(s).
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A huge family of symmetric primal-dual scalings

Theorem
(T. [2001]) Let K C E be a pointed closed convex cone with
nonempty interior and let F : int(K) — R be a function with the
properties listed in the lemma (+ ﬁ-/og.-homogeneity).* Then for
every x € int(K), s € int(K*), there exists T : E — E2 linear,
such that

QT =T,

@ T is positive definite,

© T(s) = T Y(x) or equivalently, T?(s) = x,

Q@ T(F'(x)) = T-Y(F.(s)) or equivalently, T?>(F'(x)) = F.(s).

The set of solutions T2 of the above problems are denoted by

To(x,s) and Ti(x,s).
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This theorem allows very wide generalizations of symmetric
primal-dual interior-point algorithms to general convex (conic)
optimization setting
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This theorem allows very wide generalizations of symmetric
primal-dual interior-point algorithms to general convex (conic)
optimization setting (linear operator T generalizes the notion of
primal-dual symmetric local metric—primal-dual scaling).
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A huge family of symmetric primal-dual scalings

For convenience, we sometimes write 1 := =5,

/

%:=—F.(s) and 3 := —F (x).
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A huge family of symmetric primal-dual scalings

For convenience, we sometimes write 1 := =5,
/

%:=—F.(s) and 3 := —F (x).

One can think of X and 5 as shadow iterates.
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A huge family of symmetric primal-dual scalings

For convenience, we sometimes write 1 := =5,

/

%:=—F.(s) and 3 := —F (x).

One can think of X and § as shadow iterates. Since X € int(K) and
S eint(K*) and if (x, s) is a feasible pair, then

pux = x iff s = s iff (x, s) lies on the central path.
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A huge family of symmetric primal-dual scalings

For convenience, we sometimes write 1 := =5,

/

%:=—F.(s) and 3 := —F (x).

One can think of X and § as shadow iterates. Since X € int(K) and
S eint(K*) and if (x, s) is a feasible pair, then

pux = x iff s = s iff (x, s) lies on the central path.

We also denote
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Explicit formulas for symmetric primal-dual local metrics

"Proof” (for every H symmetric, positive definite):
T2 = Htapxx | +giHss | H+ 35% | + g1 HEE | H + a (x;T + ;XT) +& (HsETH T Has T H) ,

where

a = fi 3 = 1 R 1
Hpfi — 1)’ Hpfi — 1)’ Hpfi — 1)
5T Hg s Hs 5T Hs

a= (sT Hs)(3T H3) — (5T Hs)? = (sT Hs)(3T H3) — (5T Hs)? e (sTHs)(3THg) — (3T Hs)? '
( ) ( ) (
L]
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Nicer Hessian update formulas

Take
0p = s—us

0p = X — ux.

Consider two consecutive DFP/BFGS-like updates:

Hi = H+ g — oy HssTH
A 1
H2 — H]_ + W(SP(ST mH]_(SDd H]_
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Nicer Hessian update formulas

Take
0p = s—us

0p = X — ux.

Consider two consecutive DFP/BFGS-like updates:

Hi = H+ g — oy HssTH
A 1
H2 — H]_ + W(Sp(;T mH]_(SDd H]_

They're equivalent! l.e., Hy = T?.

However, this new form is much more revealing!
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Complexity Analysis via Hessian update formulas

What will it reveal?
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Complexity Analysis via Hessian update formulas

What will it reveal? Iteration complexity bounds for primal-dual
symmetric short-step algorithms.
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Complexity Analysis via Hessian update formulas

What will it reveal? Iteration complexity bounds for primal-dual
symmetric short-step algorithms.

It suffices to get an upper bound on the optimal objective value of
the following SDP ([T. 2001]):
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Complexity Analysis via Hessian update formulas

What will it reveal? Iteration complexity bounds for primal-dual
symmetric short-step algorithms.

It suffices to get an upper bound on the optimal objective value of
the following SDP ([T. 2001]):

inf
T2(5) - X,
TA-F() = ~F(s), -
GtgFl(s) 2 TP 2 ehxs) [F'()]
£ =21, Iresn,

where h(x,s) is a certain proximity measure for the central path.

Tor Myklebust, Levent Tungel Primal-Dual IPMs for convex optim.



Q>



Any upper bound by an absolute constant in a constant-sized
neighbourhood of the central path leads to an iteration complexity

bound of O (\/Eln %)
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Any upper bound by an absolute constant in a constant-sized
neighbourhood of the central path leads to an iteration complexity

bound of O (\/Eln %)

In our language today,

Theorem

(Nesterov and Todd [1997, 1998]) Let K C E be a symmetric
(homogeneous self-dual) cone. Further let F be a 9-self-scaled
barrier for K. Then for every x € int(K), s € int(K*),

4

o
éh_3
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We now have:

Theorem

Let K C E be a convex cone. Further let F be a 9-self~-concordant
barrier for K. There are absolute constants C; and Co such that,
for every x € int(K) and s € int(K*) lying in a constant size (Cy)
neighbourhood of the central path, we have

<G,
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We now have:

Theorem

Let K C E be a convex cone. Further let F be a 9-self~-concordant
barrier for K. There are absolute constants C; and Co such that,
for every x € int(K) and s € int(K*) lying in a constant size (Cy)
neighbourhood of the central path, we have

&< G.

Therefore, we obtain O (ﬂln(l/e)) iteration-complexity

primal-dual symmetric ipms for general convex optimization
problems.
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Hyperbolic Cone Programming and Beyond

Therefore, we obtain O (ﬁln(l/e)) iteration-complexity

primal-dual symmetric ipms for general convex optimization
problems.
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Hyperbolic Cone Programming and Beyond

Therefore, we obtain O (ﬁln(l/e)) iteration-complexity

primal-dual symmetric ipms for general convex optimization
problems.

So far, our proofs only work for short-step algorithms.
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Hyperbolic Cone Programming and Beyond

Therefore, we obtain O (ﬁln(l/e)) iteration-complexity

primal-dual symmetric ipms for general convex optimization
problems.

So far, our proofs only work for short-step algorithms.

How about the long-step Hessian estimation property?
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Hyperbolic cone programming and beyond

How about the long-step Hessian estimation property?
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Hyperbolic cone programming and beyond

How about the long-step Hessian estimation property?

Indeed, for hyperbolic programming problems there can be a clear
distinction between the primal and the dual problems, if F is not a
self-scaled barrier.
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Hyperbolic cone programming and beyond

How about the long-step Hessian estimation property?

Indeed, for hyperbolic programming problems there can be a clear
distinction between the primal and the dual problems, if F is not a
self-scaled barrier. (Recall, only symmetric cones admit self-scaled

barriers.)
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Hyperbolic cone programming and beyond

How about the long-step Hessian estimation property?

Indeed, for hyperbolic programming problems there can be a clear
distinction between the primal and the dual problems, if F is not a
self-scaled barrier. (Recall, only symmetric cones admit self-scaled
barriers.)

(Gliler [1997]) Let p be a homogeneous hyperbolic polynomial of
degree . Then, F(x) := —In(p(x)) is a V-LHSCB for the
hyperbolicity cone of p. Moreover, F has the long-step Hessian
estimation property.
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Hyperbolic cone programming and beyond

How about the long-step Hessian estimation property?

Indeed, for hyperbolic programming problems there can be a clear
distinction between the primal and the dual problems, if F is not a
self-scaled barrier. (Recall, only symmetric cones admit self-scaled
barriers.)

(Gliler [1997]) Let p be a homogeneous hyperbolic polynomial of
degree . Then, F(x) := —In(p(x)) is a V-LHSCB for the
hyperbolicity cone of p. Moreover, F has the long-step Hessian
estimation property.

Is there any hope for maintain this long-step Hessian estimation
property in a primal-dual v-space based algorithm?
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Hyperbolic cone programming and beyond

Let F be a LHSCB for K and (x,s) € int(K) @ int(K*). Then, the
linear transformation

1
Vi = M/o F!(s — top)dt
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Hyperbolic cone programming and beyond

Theorem

Let F be a LHSCB for K and (x,s) € int(K) @ int(K*). Then, the
linear transformation

1
Vi = M/o F!(s — top)dt

is self-adjoint, positive definite, maps s to x, and maps § to X.
Therefore, its unique self-adjoint, positive definite square root Tp
is in T1(x,s).
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Using the fundamental theorem of calculus (for the second
equation below) followed by the property —F, (—F'(x)) = x (for
the third equation below), we obtain

1
TééD = u/ F:(S—t(sD)(stt
0

= p(F(s—dp)—Fi(s))
= p(x/p—X)
— p
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Proof ... continued

We next compute, using the substitution u = 1/t,
1
T3s = u/ F!'(s — tép)sdt
0
11
0

= u/ F!(us — 6p)sdu
1
= —,U,F/(S—éD) = X.
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Proof ... continued

We next compute, using the substitution u = 1/t,

Tg,s =

1
u/ F!'(s — tép)sdt
0
11
y / S FU(s/t — bp)sdt
0

u/ F!(us — 6p)sdu
1
—,U,F/(S — 5D) = X.

Further, TE, is the mean of some self-adjoint, positive definite
linear transformations, so TL% itself is self-adjoint and positive

definite.
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Proof ... continued

We next compute, using the substitution u = 1/t,

Tg,s =

1
u/ F!'(s — tép)sdt
0
11
y / S FU(s/t — bp)sdt
0

u/ F!(us — 6p)sdu
1
—,U,F/(S — 5D) = X.

Further, TE, is the mean of some self-adjoint, positive definite
linear transformations, so TL% itself is self-adjoint and positive

definite.
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Note that each of the sets Ty, 71, 7> of all such primal-dual local
metrics is geodesically convex!
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Note that each of the sets Ty, 71, 7> of all such primal-dual local
metrics is geodesically convex!

Hence, any specific choice of T2 (which may not be primal-dual
symmetric) from any one this sets can be made into a primal-dual
symmetric local metric via taking the operator geometric mean
with the inverse of its counterpart.
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Conclusion: What are the new results?

o Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

Tor Myklebust, Levent Tungel Primal-Dual IPMs for convex optim.



Conclusion: What are the new results?

o Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

@ Extension of v-space based primal-dual ipms maintaining the
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