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Convex Optimization in Conic Form

(P) inf 〈c , x〉
A(x) = b,

x ∈ K ,

and
(D) sup 〈b, y〉D

A∗(y) + s = c ,
s ∈ K ∗.

K∗ :=
{
s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K

}
Dual Cone

F∗(s) := −infx∈int(K) {〈s, x〉 + F (x)} Legendre-Fenchel Conjugate
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Some Elements of Interior-Point Methods

One of the most important concepts in interior-point methods is
the central path.

We arrive at this concept via another central
concept barrier.
Let µ > 0. Consider

(Pµ) min 1
µ〈c , x〉 + F (x)

A(x) = b,
(x ∈ int(K )),

and

(Dµ) min − 1
µ〈b, y〉D + F∗(s)

A∗(y) + s = c,
( s ∈ int(K ∗) ).
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Under the assumption that F+ 6= ∅,

both (Pµ) and (Dµ) have
unique solutions for every µ > 0.
Moreover, these solutions define a smooth path, called central
path, and each point (xµ, yµ, sµ) on the central path can be
characterized as a unique solution of a system of equations (and
being in the interior of the underlying cone).
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Tor Myklebust, Levent Tunçel Primal-Dual IPMs for convex optim.



Under the assumption that F+ 6= ∅, both (Pµ) and (Dµ) have
unique solutions for every µ > 0.
Moreover, these solutions define a smooth path, called central
path, and each point (xµ, yµ, sµ) on the central path can be
characterized as a unique solution of a system of equations (and
being in the interior of the underlying cone).
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We assume, we are given x (0), s(0) both strictly feasible in the

problems (P) and (D), respectively. Define µk := 〈x(k),s(k)〉
ϑ , we will

compute x (k) and s(k) by an interior-point algorithm, which follows
the central path approximately, such that both vectors are feasible
and for a given desired accuracy ε ∈ (0, 1), we have µk ≤ εµ0.

Such algorithms (for LP, SDP and Symmetric Cone Programming)
with current best complexity compute an ε-solution

(
x (k), s(k)

)
in

O
(√

ϑ ln
(

1
ε

))
iterations.
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A Hierarchical view of conic optimization

Strictly speaking we have,

LP ⊂ SOCP ⊂ SDP ⊂ SymCP ⊂ HomCP ⊂ HypCP ⊂ CP.

However, in some sense,

LP ⊂ SOCP ⊆ SDP = SymCP = HomCP ⊆ HypCP ⊂ CP.

Yet in an another sense,

LP = SOCP ⊆ SDP = SymCP = HomCP ⊆ HypCP ⊆ CP.

See, Ben-Tal and Nemirovski; Chua; Faybusovich; Nesterov and
Nemirovski; Vinnikov; Helton and Vinnikov; Lewis, Parrilo and
Ramana; Gurvits; Gouveia, Parrilo and Thomas; Netzer and
Sanyal; Netzer, Plaumann and Schweighofer; Plaumann, Sturmfels
and Vinzant; ...
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Symmetric primal-dual interior-point algorithms

Pinnacle of Symmetric Primal-Dual IPMs

Nesterov-Todd [1997-1998]: Primal-dual interior-point methods for
self-scaled cones.
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Hyperbolic programming and primal-dual interior-point
algorithms?

A key property of self-scaled barriers is “the Long-step Hessian
Estimation property” which hinges on the following “compatibility”
property of the underlying barrier

〈−F ′(x), y〉 is convex for every y ∈ K .

Krylov [1995], Güler [1997] showed that the above property holds
for all hyperbolic barriers (in this sense, “generalizing” self-scaled
barriers).
Nesterov [1997] showed that we can’t have this property for both
F and F∗ unless we are in the self-scaled case.
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v -space
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LAST SLIDE: What are the new results?

Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

Extension of v-space based primal-dual ipms maintaining the
long-step Hessian estimation property (New for HomCP,
HypCP)

Software (some of the Primal-Dual metrics T 2 utilized by
these algorithms are new even for LP!)

Connections to other research areas in mathematics and
mathematical sciences.
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Towards a symmetric primal-dual scaling

Lemma

For every pointed closed convex cone K with nonempty interior,
there is an associated function F : int(K )→ R with the following
properties:

1 F is continuously differentiable on int(K );

2 F is strictly convex on int(K );

3 F is a barrier function for K (for every sequence{
x (k)

}
⊂ int(K ) converging to a boundary point of K ,

F
(
x (k)

)
→ +∞).
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A huge family of symmetric primal-dual scalings

Theorem

(T. [2001]) Let K ⊂ E be a pointed closed convex cone with
nonempty interior and let F : int(K )→ R be a function with the
properties listed in the lemma (+ ϑ-log.-homogeneity). Then for
every x ∈ int(K ), s ∈ int(K ∗), there exists T : E→ E

∗
2 linear,

such that

1 T ∗ = T ,

2 T is positive definite,

3 T (s) = T−1(x) or equivalently, T 2(s) = x ,

4 T (F ′(x)) = T−1(F ′∗(s)) or equivalently, T 2(F ′(x)) = F ′∗(s).

The set of solutions T 2 of the above problems are denoted by
T0(x , s) and T1(x , s).
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This theorem allows very wide generalizations of symmetric
primal-dual interior-point algorithms to general convex (conic)
optimization setting

(linear operator T generalizes the notion of
primal-dual symmetric local metric—primal-dual scaling).
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A huge family of symmetric primal-dual scalings

For convenience, we sometimes write µ := 〈x ,s〉
ϑ ,

x̃ := −F
′
∗(s) and s̃ := −F

′
(x).

One can think of x̃ and s̃ as shadow iterates. Since x̃ ∈ int(K ) and
s̃ ∈ int(K ∗) and if (x , s) is a feasible pair, then

µx̃ = x iff µs̃ = s iff (x , s) lies on the central path.

We also denote

µ̃ :=
〈x̃ , s̃〉
ϑ

.
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Explicit formulas for symmetric primal-dual local metrics

”Proof” (for every H symmetric, positive definite):

T 2
H := H + a1xx

> + g1Hss
>H + ã1 x̃ x̃

> + g̃1Hs̃s̃>H + a2

(
xx̃> + x̃x>

)
+ g2

(
Hss̃>H + Hs̃s>H

)
,

where

a1 :=
µ̃

ϑ(µµ̃− 1)
, ã1 :=

µ

ϑ(µµ̃− 1)
, a2 := − 1

ϑ(µµ̃− 1)
,

g1 := −
s̃>Hs̃

(s>Hs)(s̃>Hs̃)−
(
s̃>Hs

)2
, g̃1 := −

s>Hs

(s>Hs)(s̃>Hs̃)−
(
s̃>Hs

)2
, g2 :=

s̃>Hs

(s>Hs)(s̃>Hs̃)−
(
s̃>Hs

)2
.
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Nicer Hessian update formulas

Take
δD := s − µs̃

δP := x − µx̃ .

Consider two consecutive DFP/BFGS-like updates:

H1 := H + 1
〈s,x〉xx> − 1

〈s,Hs〉Hss>H

H2 := H1 + 1
〈δP ,δD〉δPδ

>
P −

1
〈δD ,H1δD〉H1δDδ

>
DH1

Theorem

They’re equivalent! I.e., H2 = T 2.

However, this new form is much more revealing!
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Tor Myklebust, Levent Tunçel Primal-Dual IPMs for convex optim.



Complexity Analysis via Hessian update formulas

What will it reveal?

Iteration complexity bounds for primal-dual
symmetric short-step algorithms.
It suffices to get an upper bound on the optimal objective value of
the following SDP ([T. 2001]):

inf ξ
T 2(s) = x ,

T 2(−F
′
(x)) = −F

′
∗(s),

1
ξh(x ,s) F

′′
∗ (s) � T 2 � ξh(x , s)

[
F
′′

(x)
]−1

,

ξ ≥ 1, T ∈ Sn,

where h(x , s) is a certain proximity measure for the central path.
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The set of η-approximate solutions of the above problem is
denoted by T2(η : x , s).
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Bounds on ξ∗

Theorem

Any upper bound by an absolute constant in a constant-sized
neighbourhood of the central path leads to an iteration complexity

bound of O
(√

ϑ ln 1
ε

)
.

In our language today,

Theorem

(Nesterov and Todd [1997, 1998]) Let K ⊆ E be a symmetric
(homogeneous self-dual) cone. Further let F be a ϑ-self-scaled
barrier for K . Then for every x ∈ int(K ), s ∈ int(K ∗),

ξ∗ ≤ 4

3
.
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We now have:

Theorem

Let K ⊆ E be a convex cone. Further let F be a ϑ-self-concordant
barrier for K . There are absolute constants C1 and C2 such that,
for every x ∈ int(K ) and s ∈ int(K ∗) lying in a constant size (C1)
neighbourhood of the central path, we have

ξ∗ ≤ C2.

Therefore, we obtain O
(√

ϑ ln(1/ε)
)

iteration-complexity

primal-dual symmetric ipms for general convex optimization
problems.
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Hyperbolic Cone Programming and Beyond

Therefore, we obtain O
(√

ϑ ln(1/ε)
)

iteration-complexity

primal-dual symmetric ipms for general convex optimization
problems.

So far, our proofs only work for short-step algorithms.

How about the long-step Hessian estimation property?
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Hyperbolic cone programming and beyond

How about the long-step Hessian estimation property?

Indeed, for hyperbolic programming problems there can be a clear
distinction between the primal and the dual problems, if F is not a
self-scaled barrier. (Recall, only symmetric cones admit self-scaled
barriers.)

Theorem

(Güler [1997]) Let p be a homogeneous hyperbolic polynomial of
degree ϑ. Then, F (x) := − ln(p(x)) is a ϑ-LHSCB for the
hyperbolicity cone of p. Moreover, F has the long-step Hessian
estimation property.

Is there any hope for maintain this long-step Hessian estimation
property in a primal-dual v -space based algorithm?
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Hyperbolic cone programming and beyond

Theorem

Let F be a LHSCB for K and (x , s) ∈ int(K )⊕ int(K ∗). Then, the
linear transformation

T 2
D := µ

∫ 1

0
F ′′∗ (s − tδD)dt

is self-adjoint, positive definite, maps s to x, and maps s̃ to x̃ .
Therefore, its unique self-adjoint, positive definite square root TD

is in T1(x , s).
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Proof

Using the fundamental theorem of calculus (for the second
equation below) followed by the property −F ′∗ (−F ′(x)) = x (for
the third equation below), we obtain

T 2
DδD = µ

∫ 1

0
F ′′∗ (s − tδD)δDdt

= µ
(
F ′∗(s − δD)− F ′∗(s)

)
= µ (x/µ− x̃)

= δP .
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Proof ... continued

We next compute, using the substitution u = 1/t,

T 2
Ds = µ

∫ 1

0
F ′′∗ (s − tδD)sdt

= µ

∫ 1

0

1

t2
F ′′∗ (s/t − δD)sdt

= µ

∫ ∞
1

F ′′∗ (us − δD)sdu

= −µF ′(s − δD) = x .

Further, T 2
D is the mean of some self-adjoint, positive definite

linear transformations, so T 2
D itself is self-adjoint and positive

definite.
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Note that each of the sets T0, T1, T2 of all such primal-dual local
metrics is geodesically convex!

Hence, any specific choice of T 2 (which may not be primal-dual
symmetric) from any one this sets can be made into a primal-dual
symmetric local metric via taking the operator geometric mean
with the inverse of its counterpart.

Tor Myklebust, Levent Tunçel Primal-Dual IPMs for convex optim.



Note that each of the sets T0, T1, T2 of all such primal-dual local
metrics is geodesically convex!
Hence, any specific choice of T 2 (which may not be primal-dual
symmetric) from any one this sets can be made into a primal-dual
symmetric local metric via taking the operator geometric mean
with the inverse of its counterpart.
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Conclusion: What are the new results?

Complexity analysis of v-space based primal-dual ipms
matching the iteration complexity bounds for LPs! (New for
HomCP, HypCP, CP.)

Extension of v-space based primal-dual ipms maintaining the
long-step Hessian estimation property (New for HomCP,
HypCP)

Software (some of the Primal-Dual metrics T 2 utilized by
these algorithms are new even for LP!)

Connections to other research areas in mathematics and
mathematical sciences.
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