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Independent sets in Cayley graphs

Cayley(G, X) T~y gy L EX

SR
group L C G, Y=y

undirected graph on G a=2/5

may contain loops Cayley(2,/5Z, {1,4})

I C G independent: Vx,y € I,x Zy,x Xy

find indep. sets in Cayley(G, >2) which are as “large” as possible




G )

F2 {z :||lz||g <d}, || - ||z Hamming distance
finite error correcting codes

SO(n) {A: AC(a)° N C(a)°® # 0}, C(a) € S™ ! spherical cap
compact spherical codes

SO(n) x R™ {(A,z) : K°nax+ AK® # 0}, K C R” convex body
locally compact body packing




18. Building up of Space from Congruent Polyhedra

(...) How can one arrange most densely in space an infinite number
of equal solids of given form, e.g., spheres with given radii or regular
tetrahedra with given edges (or in prescribed position), that is, how
can one so fit them together that the ratio of the filled to the unfilled

space may be as great as possible?

‘goal’: solve Hilbert’s problem (by computer) using an SOS proof system




JC = unit ball

solved only for dimension 2, 3 (Hales, 1998/2014)
almost solved for dimension 8, 24 (Cohn-Elkies, 2003)

Dimension Lower bound Cohn-Elkies bound New upper bound

4 0.12500
0.08839
0.07217
0.06250
0.04419

0.13126
0.09975
0.08084
0.06933
0.05900

0.130587
0.099408
0.080618
0.069193
0.058951

de Laat, Oliveira, V. (2012)

density given as point density (= # centers per unit volume)




K = regular tetradedron @ € [0.85,1 — 10~ =°]

Chen, Engel, Glotzer (2010)
Gravel, Elser, Kallus (2011)

IC = regular pentagon a € 10.92,0.98]

Kuperberg? (1992)
Oliveira, V. (2013)




SOS proof systems for finite graphs

polynomial optimization formulation

a(G) = max Z 2

veV
T, > 0

2

Ly —

T, =0forveV

Tyl = 01f u ~ v




t-th step of Lasserre’s hierarchy

lasy (G) = max{ Z Yiz) 1 Y € 1226, yp = 1, M(y)

reV

I; = set independent sets with < ¢ elements

if JUJ' € 1o,
otherwise.

YjuJg’

(M; (y))J,J/ — {O

moment matrix

V' (G) =las1 (G) > lasy(G) > ...

Y1
Y1
Y12
Y13
Y12
Y13
Y123

Y2 Y3

Yi2 Y13
Y2 Y23
Y23 Y3

Yi2 Y123
Y123 Y13
Y23 Y23

~ 0

Y12
Y12
Y12
Y123
Y12
Y123
Y123

3

Y1z Y23
Y1z Y123
Y123 Y23
Y1z Y23
Y123 Y123
Y13 Y123
Y123 Y23




lasy (G) = max { Y yay 1y € REY, gy =1, My(y) = 0},
xeV

Many variations possible:
consider "interesting” principal submatrices

add more constraints

n-point bound: makes use of y;;y with [T U J| < n




Generalization of Lasserre’s hierarchy

need topological assumptions

Graph G = (V, F) is a topological packing graph it
* V' is a Hausdortt topological space

* every finite clique is contained in a clique which is open

las, (G) = maX{ > Yo iy ERZ yg =1, My(y) = 0},

reV

(G) = Sup {)\(l— ) A E M(Igt)>(), ({@}) =1, AI)\ c M(It X It)tO}-
g

Borel measure




dual formulation

las; (G') = inf {K((Z),(Z)) . K € C(I x I) o,

AK(S) < —17_,(5) for S € I \ {@}},

Ay C(I; X I)sym — C(Ioy), ALK (S) = > K(J,J).
J,J' el JUJ' =8

¥ (G) =las1(G) > lasy(G) > ...

when G is a compact topological packing graph




Packing problem

Binary codes

Spherical codes

Sphere packings

Congruent copies
of a convex body

Explicit computations

2-point bound 3-point bound 4-point bound

Delsarte 1973

Delsarte,
Goethals,
Seidel 1977

Cohn,
Elkies 2003

Oliveira,
Vallentin
2013

Schrijver 2005

Bachoc,
Vallentin

2008

Gijswijt,
Mittelmann,
Schrijver
2011




2-point (spectral) bounds for Cayley(G, )

las; (G) = inf{ 3 f : G — R pos. type
f(zr) <0ifz ¢ 2}

f positive type:

Viq,...,xn € G (f( is pos. semidefinite

))1§z‘,j§N




f(e)
Jo f(@) du(z)

. f:G — R pos. type

las; (G) = inf
{ f(a:)éOif:z:géZ}

parametrize cone of positive type functions
& use conic optimization

construction of positive type functions

7 : G — U(H,) unitary representation, h € H
then f(x) = (7 (x)h, h) is positive type

* Gelfand-Raikov 1942:

x all positive type functions are of this form

* extreme rays of cone of pos. type functions
come from irreducible rep.



Segal-Mautner 1950

If GG is nice and if f is rapidly decreasing:

optimization variable
7
/A trace(w(x) f(m)) dv ()
G

for positive, trace-class operators f(w) : H, — H,

f 1s pos. type <—

G = {irred. unitary rep. of G}/ ~

v = Plancherel measure on GG

f(?T)Z/Gf($)7T(SU_1)dM(33) Fourier transform




relevant irred. rep. of R” x SO(n) for n = 2

T, : G — U(L?(8Y)) a>0
[Ta(, A)gp] (€) = 9 p(AT1E)

optimization variable
£ fla): L*(SY) — L*(SY)

flz,A) =27 /OOO trace(m, (z, A) f ( ))aga

Plancherel measure

in polar coordinates

f(p,0,a) = / Z Jg(a)r,sis_re_i(SOH_(T_S)H)JS—T(QWCLP)CLda
0

r,sE/

r = p(cosf,sinf), A (COS@ —31na>

S1N v COS




the problem of finding an optimal function is an infinite-dimensional SDP

goal: reformulate and relax to a finite-dimensional SDP

solve this rigorously on a computer




Z fr 2k —7TCL

and setting the rlght f(a), s to zero

forces

f(p,0,a) / Z fla), 45 Te st =80 7 (9rap)ada

r,sE/
to become a polynomial times exponential

If

Z f(@)yrys € Rla,y-n, -, yn]
r,s=—N

is a sum of squares, then f is pos. type

now formulate as a semidefinite program




geometric condition  f(z,A) <0ifx ¢ K — AK

Fix A € SO(n).
r € R" with K° Nz + AK®° # () is Minkowski difference K° — AK?®

If K is a polytope, this is a linear condition in z.

@

JC° — AK° 1s an open 10-gon




Rigorous computations

right choice of polynomial basis is extremely important

— using monomial basis fails badly, even for very small degrees

— our choice: |u; " |LZ/2_1 (27t)

ui: coefficient of LZ/ >~!(2rt) with largest absolute value

— SDPA-gmp with 256 bits of precision: d < 51

— perform post processing of the floating point solution

— perturb to a rational solution

— analyze quality-loss of this perturbation
(by estimates of eigenvalues and condition numbers)

— custom made C+ + library for SDPs with SOS constraints




Tetrahedra?

% needs more automatization
(also the harmonic analysis part)

* needs more theory for numerical
optimization with SOS constraints
(condition numbers, special numerical solvers)

x still a challenge




