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Learning with Big Data

M

High Dimensional Regime

@ Missing observations, gross corruptions, outliers, ill-posed problems.

@ Needle in a haystack: finding low dimensional structures in high
dimensional data.

Principled approaches for finding low dimensional structures?
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@ Denoising: find hidden low rank

structures in data.

o Efficient computation, perturbation
analysis.
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@ Denoising: find hidden low rank
structures in data.
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Not robust to even a few outliers



Robust PCA Problem

@ Find low rank structure after removing sparse corruptions.

@ Decompose input matrix as low rank + sparse matrices.

- + 2

M L* S*

o M € R™™ L*is low rank and S* is sparse.

@ Applications in computer vision, topic and community modeling.



History

Heuristics without guarantes
@ Multivariate trimming [Gnanadeskian+ Kettering 72]
@ Random sampling [Fischler+ Bolles81].
@ Alternating minimization [Ke+ Kanade03].
@ Influence functions [de la Torre + Black 03]

Convex methods with Guarantees
@ Chandrasekharan et. al, Candes et. al '11: seminal guarantees.
@ Hsu et. al ‘11, Agarwal et. al ‘12: further guarantees.

o (Variants) Xu et. al ‘11: Outlier pursuit, Chen et. al ‘'12: community
detection.



Why is Robust PCA difficult?

|
[ | = _I_
M L* S*
@ No identifiability in general: Low rank matrices can also be sparse and

vice versa.

Natural constraints for identifiability?
@ Low rank matrix is NOT sparse and viceversa.

@ Incoherent low rank matrix and sparse matrix with sparsity
constraints.

Tractable methods for identifiable settings?
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are not tractable.

Convex Relaxation

in ||L]|. . M=L+S5.
min || Z{|. + ]S + 5

o [[Ll. =22, 0i(L), ISl = >, ; 1S4, )| are convex sets.

@ Chandrasekharan et. al, Candes et. al ‘11: seminal works.
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Shortcomings of convex methods

e Computational cost: O(n?/¢) to achieve error of ¢
» Requires SVD of n x n matrix.

@ Analysis: requires dual witness style arguments.

@ Conditions for success usually opaque.

Non-convex alternatives?
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A non-convex heuristic (AltProj)

@ Initialize L, S = 0 and iterate:
| L+ P.(M-S)|and|S «+ H:(M —L)|
® P,(-): rank-r projection. H¢(-): thresholding with C.

@ Computationally efficient: each operation is just a rank-r SVD or
thresholding.
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A non-convex heuristic (AltProj)

@ Initialize L, S = 0 and iterate:
| L+ P.(M-S)|and|S «+ H:(M —L)|
® P,(-): rank-r projection. H¢(-): thresholding with C.

@ Computationally efficient: each operation is just a rank-r SVD or
thresholding.

Any hope for proving guarantees?
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@ Multiple stable points: bad local optima, solution depends on
initialization.

@ Method may have very slow convergence or may not converge at all!
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Challenges

@ Multiple stable points: bad local optima, solution depends on
initialization.

@ Method may have very slow convergence or may not converge at all!

Non-convex Projections vs. Convex Projections
@ Projections on to non-convex sets: NP-hard in general.

» Projections on to rank and sparse sets: tractable.

@ Less information than convex projections: zero-order conditions.
[P(M) — M| <Y = M|, VY € C(Non-convex),
|P(M) - M|?< (Y —M,P(M)— M), VY e C(Convex).
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Non-convex success stories

Classical Result
@ PCA: Convergence to global optima!

Recent results
@ Tensor methods (Anandkumar et. al ‘12, ‘14): Local optima can be
characterized in special cases.

@ Dictionary learning (Agarwal et. al ‘14, Arora et. al '14): Initialize
using a “clustering style” method and do alternating minimization.

@ Matrix completion/phase retrieval: (Netrapalli et. al ‘13) Initialize
with PCA and do alternating minimization.

(Somewhat) common theme
@ Characterize basin of attraction for global optimum.

@ Obtain a good initialization to “land in the ball”.
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Non-convex Robust PCA
A non-convex heuristic (AltProj)
@ Initialize L, S = 0 and iterate:

| L+ P.(M—-S)|and|S «+ H:(M —L)|

Observations regarding Robust PCA

@ Projection on to rank and sparse subspaces: non-convex but
tractable: SVD and hard thresholding.

@ But alternating projections: challenging to analyze

Our results for (a variant of) AltProj
@ Guaranteed recovery of low rank L* and sparse part S™.
@ Match the bounds for convex methods (deterministic sparsity).

@ Reduced computation: only require low rank SVDs!

Best of both worlds: reduced computation with guarantees!
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Toy example: Rank-1 case
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Non-convex method (AltProj)
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Exploit incoherence of L*?
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Rank-1 Analysis Contd.
M = L* + S*, L* = u*(u*)T

Non-convex method (AltProj)
o Initialize L =0,5 = H¢ (M) and iterate:
@ L+ Pi(M—-S)and S« H:(M — L).

Incoherence of L*
o L* =u*(u*)" and ||u*]|eo < ——= and | L*|loo < E
Solution for handling large ||.S™|
@ First threshold M before rank-1 projection.

@ Ensures large entries of S* are identified.
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Rank-1 Analysis Contd.

Non-convex method (AltProj)
LO© =0,80 = H. (M),
LD« Py(M — S®), S+ « g (M — LU+ |

L *

o To analyze progress, track £(+1) .= g% — §(t+1)



Rank-1 Analysis Contd.

One iteration of AltProj

LO) = 0,50 = g, (M),

LW« Py(M —S©), SO« H(M —LW) |,

Analyze B0 = §* — §()

@ Thresholding is element-wise operation: require ||L() — L*| .

o In general, no special bound for ||[L(Y) — L*|| .

@ Exploit sparsity of S* and incoherence of L*7
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Rank-1 Analysis Contd.
o LW =uu" =P (M - 8©) and EO© = 5+ — 5O

Fixed point equation for eigenvectors (M — S©)u = \u

-1
o (u*,uyu* + (S* — SO)u = \u or u = Au*, u) ([ _ ﬂ) u*

X
DR
u = \u*,u) (I—I—Z (ET> ) u*
p=1

o EO) is sparse: supp(EY)) C supp(S*).
@ Exploiting sparsity: (E(©)? is the p™"-hop adjacency matrix of E(©)

Taylor Series

@ Counting walks in sparse graphs.
I

NG

@ In addition, u* is incoherent: [[u*||o <
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u =
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E©) is sparse (each row/column is d sparse) and u* is si-incoherent.
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©\"
u = \u",u) I—l—Z (ET> u”

o EO) is sparse (each row/column is d sparse) and u* is si-incoherent.

(BOYPu oo < —=(d]| B o)

@ We show:

\/_

o Convergence when terms are < 1, i.e. d||E"[,, < 1.

4 2
@ Recall |[E©)|,, < —— due to thresholding.
n

. n
@ Require|d < el Can tolerate O(n) corruptions!
1

Contraction of error E®) when degree d is bounded.
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Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init L(O = 0,5 = H. (M), iterate:
LY « p(M - S®),  St+D « H-(M — L) |

Recall for rank-1 case

@ Initial threshold controlled perturbation for rank-1 projection.

Perturbation analysis in general rank case
@ Small A*, (L*): no recovery of lower eigenvectors.

@ Sparsity level depends on condition number A%, /A% .

Guarantees without dependence on condition number?
@ Lower eigenvectors subject to a large perturbation initially.

@ Reduce perturbation before recovering lower eigenvectors!
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Summary of Results
o Low rank part: L* = U*A*(V*)" has rank 7.
pyr
v

@ Sparse part: S* has at most d non-zeros per row/column.

@ Incoherence: ||[U*(7,:)|l2, [[V*(4,:) |2 <

Theorem: Guarantees for Stage-wise AltProj

@ Exact recovery of L*, S* when d = O <%)
wAr

o Computational complexity: O (r?n*log(1/¢))

Comparison to convex method

@ Same (deterministic) condition on d. Running time: O (n?/e)

Best of both worlds: reduced computation with guarantees!

“Non-convex Robust PCA,” P. Netrapalli, U.N. Niranjan, S. Sanghavi, A. , P. Jain, NIPS ‘14.
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Synthetic Results

@ NcRPCA: Non-convex Robust PCA.
@ |IALM: Inexact augmented Lagrange multipliers.
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Real data: Foreground/background Separation

Original Rank-10 PCA
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Robust Tensor PCA
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Robust Tensor Problem
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Robust Tensor PCA

. g

Robust Tensor Problem

:I__+%

Applications: Robust Learning of Latent Variable Models.

A., R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky “Tensor Decompositions for Learning Latent
Variable Models,” Preprint, Oct. ‘12.
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Convex methods
@ No natural convex surrogate for tensor (CP) rank.

@ Matricization loses the tensor structure!

Non-Convex Heuristic: Extension of Matrix AltProj

LD « P(T — SW), S+ « H (T — LU+ |,

Challenges in Non-Convex Analysis
@ P, for a general tensor is NP-hard!

@ Can be well approximated in special cases, e.g. full rank factors.

Guaranteed recovery possible!
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Guaranteed Non-Convex Robust PCA
@ Simple non-convex method for robust PCA.

@ Alternating rank projections and thresholding.
@ Estimates for low rank and sparse parts “grown gradually”.
o Guarantees match convex methods.

@ Low computational complexity: scalable to large matrices.

Possible to have both: guarantees and low computation!
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Reduce computational complexity? Skip stages in rank projections?
Tight bounds for incoherent row-column subspaces?

Extendable to the tensor setting with tight scaling guarantees.

Other problems where non-convex methods have guarantees?
» Csiszar's alternating minimization framework.

(Laserre) hierarchy for convex methods: increasing complexity for
“harder” problems.

Analogous unified thinking for non-convex methods?

Holy grail: A general framework for non-convex methods?
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