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• Are joined by their arxiv category 

• Controls made the SVD to SDP jump in the early 90s 

• ML + Optimization perhaps now the synergistic duo 

• There are many untapped analysis tools from controls

ControlOptimization

G

Δ

\

`



Data Image 
Parser Normalizer Convolver

sqrt,mean
Zipper

Linear 
Solver

Symmetric 
Rectifier

ident,abs
ident,mean

global

Pooler

Patch 
Extractor

Patch 
Whitener

KMeans 
Clusterer

Feature Extractor

Label 
Extractor



• closely related cousin where P is a simple 
convex function: 
!

!

• need algorithms that scale linearly (or sub-
linearly) with dimension and data 

• currently favored family are the first-order 
methods

convex cost

“simple,” convex 
constraints

NJOJNJ[F G(Y)
TVCKFDU UP Y ∈ û

TPUPTPaL M(_) + 7(_)

(for big data?)optimization



gradient descent _[R + �] = _[R] � ��M(_[R])

for constrained optimization, use projected gradient 
descent

_[R + �] = ��(_[R] � ��M(_[R]))

f(x)





acceleration/multistep

Y[L + �] = Y[L] � ��G(Y[L]) + �(Y[L] � Y[L � �])

heavy ball method  (constant α,β)

when f is quadratic, this is 
Chebyshev’s iterative method

Y[L + �] = Y[L] � ��G(Y[L])
Ẏ = ��G(Y)

Ÿ = �CẎ � �G(Y)

gradient method akin to 
an ODE

to prevent oscillation, 
add a second order term

_[R + �] = `[R] � ��M(_[R])
`[R] = (� + �)_[R] � �_[R � �]







canonical first order methods

Heavy Ball

Gradient

Nesterov
_[R + �] = `[R] � ��M(`[R])

`[R] = (� + �)_[R] � �_[R � �]

_[R + �] = _[R] � ��M(_[R])

_[R + �] = `[R] � ��M(_[R])
`[R] = (� + �)_[R] � �_[R � �]

• each analyzed using specialized techniques 
• what’s the right algorithm for my problem? 
• are there other algorithms in this space that could 

be more effective for specific instances?



�[R+ �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]

Control theory is the study of dynamical systems with inputs

G
�[R]

\`

Simplest case of such systems are linear systems
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�[R] �[R+ �] = (�[R] + )\[R]

`[R] = *�[R] + +\[R]
\[R] = �(`[R])

The Lur’e problem

• A linear dynamical system is connected in feedback 
with a nonlinearity.   

• When do all trajectories converge to a fixed point?
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�[R] �[R + �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]
\[R] = �M(`[R])
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Gradient
method
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`

_[R + �] = _[R] � ��M(_[R])

�[R]

�[R + �] = �[R] � �\[R]
`[R] = �[R]
\[R] = �M(`[R])

�[R + �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]
\[R] = �M(`[R])
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�Nesterov

_[R + �] = `[R] � ��M(`[R])
`[R] = (� + �)_[R] � �_[R � �]

��[R + �] = (� + �)��[R] � ���[R] � �\[R]
��[R + �] = ��[R]

`[R] = (� + �)��[R] � ���[R]
\[R] = �M(`[R])

��[R] = ��[R � �]

��[R + �] = (� + �)��[R] � ���[R � �] � �\[R]
`[R] = (� + �)��[R] � ���[R � �]

\[R] = �M(`[R])
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�[R] �[R + �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]
\[R] = �M(`[R])

Step 1: find a fixed point.

�� = (��

_� = *��

�M(_�) = �
\� = �
`� = _�

=�{
How do you prove an algorithm converges?

a dynamical system is stable?



G

∇f

\

`

�[R] �[R + �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]
\[R] = �M(`[R])

How do you prove an algorithm converges?
a dynamical system is stable?

Step 2: prove all trajectories converge to the fixed point

�M(_) = 8_ � W _� = 8��W

M(_) = �
�_

;8_ � W;_Simple case:

�[R+ �] � �� = ((+ )8*)(�[R] � ��)

�((+ )8*) < �Necessary and sufficient condition is 

lim
R��

��[R] � ����/R � �((+ )8*)
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T0 � 8 � 30

�[R+ �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]
\[R] = 8`[R]

Gradient
method

� = �
3+T �((+ )8*) � ���

�+�

Nesterov �((+ )8*) � � � ��
�

� = �
3

� =
�

����
�+�

Heavy Ball �((+ )8*) �
��

����
�+�

��/�� = �
(
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� =
�

����
�+�

� = 3/T



�(() < �

(;7(� ��7 � �7 � �
Theorem: if and only if there exists

satisfying

Proof:

Conversely, assume the LMI has a solution and let λ be 
an eigenvalue with  corresponding eigenvector 𝜉. Then

�;(;7(� � ���;7� = (|�|� � ��)�;7� < �
|�|� < ��which implies

If �(() < � ,

exists and satisfies the desired LMI.

then 7 =
��

R=�
���R((;)R(R



�(() < �

(;7(� ��7 � �7 � �
Theorem: if and only if there exists

satisfying

For dynamical systems, if �[R + �] = (�[R] the LMI implies

�[R];7�[R] < ��R�[�];7�[�]
Iterating the recursion to k=0 gives

��[R]� �
�

cond(7)�R����
which in turn implies

�[R + �];7�[R + �] < ���[R];7�[R]



Lyapunov functions

• LMI characterization of stability parametrizes 
quadratic Lyapunov functions for the system 

• This notion generalizes to nonlinear systems

=(_) � � =(_�) = � =(_[R]) < =(_[R � �])

4.3. STABILITY 103
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point xe at the origin is stable since all trajectories that
start near xe stay near xe.

from the phase portraits that not only do all trajectories stay near the equilibrium
point at the origin, but that they also all approach the origin as t gets large (the
directions of the arrows on the phase portrait show the direction in which the
trajectories move).

A solution x(t ; a) is unstable if it is not stable. More specifically, we say that
a solution x(t ; a) is unstable if given some ϵ > 0, there does not exist a δ > 0
such that if ∥b − a∥ < δ, then ∥x(t ; b) − x(t ; a)∥ < ϵ for all t . An example of an
unstable equilibrium point is shown in Figure 4.9.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
asymptotically stable) if it is stable for all initial conditions x ∈ Br (a), where

Br (a) = {x : ∥x − a∥ < r}

is a ball of radius r around a and r > 0. A system is globally stable if it is stable
for all r > 0. Systems whose equilibrium points are only locally stable can have
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium point xe at the origin is asymptotically stable
since the trajectories converge to this point as t → ∞.
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�[R+ �] = (�[R] + )\[R]
`[R] = *�[R] + +\[R]
\[R] = �(`[R])

How do we prove the 
interconnection is stable?

Suppose there exists a P≻0 and matrix M such that
�

`� � `�
�(`�) � �(`�)
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Then (�[R] � ��)
;7(�[R] � ��) � ��R(�[�] � ��)

;7(�[�] � ��)
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Multiply both sides by
�
�[R] � ��

\[R] � \�

�
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Gradient method
�

a� � a�
�M(a�) � �M(a�)

�; �
��T30K (3 + T)0K

(3 + T)0K �0K

� �
a� � a�

�M(a�) � �M(a�)

�
� �

Sector QC

��M(a�) � �M(a�), a� � a�� � �
3��M(a�) � �M(a�)��aka cocoercivity:

Proposition: If f is convex, then f satisfies the Sector QC iff f has 
L-Lipschitz gradients and is strongly convex with parameter m.

z

∇f(z)



Gradient method
�

a� � a�
�M(a�) � �M(a�)
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Setting p=1, and setting the LMI to be exactly equal to zero, gives
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W
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Heavy Ball and Nesterov
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The sector quadratic constraint is not sufficient 
to prove stability
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a[R] = *��[R] + +(\)
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� `[R]

integral 
quadratic 
constraint

composite system matrices

y

Main Result (1): Suppose that there exists a linear system 𝚿 and a 
matrix M such that for any sequence y1, …, yT

and there exists a P≻0 such that 

Then
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Main Result (2): Let f be a strongly convex function with L-Lipschitz 
gradients and strong convexity parameter m. Then for any sequence 
y[0],…,y[T] with u[k] = ∇f(y[k])

off-by-one IQC

• Without the delay terms (ρ=0), this is just the sector QC 
• Builds on Popov and Zames-Falb multipliers from control.   
• Elementary proof using co-coercivity inequalities.
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Nesterov Heavy Ball



Nesterov Heavy Ball
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Heavy Ball isn’t stable

• Aizerman’s conjecture [1949]. A linear system in feedback 
with a sector nonlinearity is stable if the linear system is stable 
for any linear gain of the sector. 

• THE AIZERMAN CONJECTURE IS FALSE [Krasovskii 1952]  
• This is a very simple counterexample.
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��_� _ � �

T = � 3 = ��

If you start at x0 ∈ [1.9,2.4], 
Heavy Ball with standard 
parameters converges to 
the limit cycle.



Nesterov
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Iterations (-log-1 ρ)

Iterations differ from the quadratic case by less 
than a factor of 2.



Heavy-Ball
Rate Iterations (-log-1 ρ)

Fixα=1/L. 	 
Grid search over β to find minimal convergence rate ρ
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Integral Quadratic Constraints in Context

• Proposed by Megretski and Rantzer in 1996 (frequency 
domain) 

• Generalizes the KYP Lemma/dissipativity theory 

• Special case of S-Procedure/sum-of-squares hierarchy 

• Drori and Teboulle 2013 used all quadratic constraints 
between time points to provide sharp analysis of gradient 
method for weakly convex functions. 

• IQCs allow analysis which is dimension-free and certificates 
of size independent of the time horizon.



Extensions

Achieve same rate as 
unconstrained case 
via an LFT argument

Proximal/Projected methods

Removing strong convexity
Achieve standard 

Õ(poly(k-1)) rates by 
adding a 

regularization term



Noisy Gradients

u[k] = ∇f(y[k]) + ω[k]

||ω[k]|| ≤ δ || ∇f(y[k]) ||

Gradient method becomes 
robust when α=1/L
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Synthesis (brutal forces)

• test all algorithms with two states 
• parameterization in terms of (α,β1,β2):

Special cases:
(α,β1,β2)=(α,0,0)

(α,β1,β2)=(α,β,0)

(α,β1,β2)=(α,β,β)

gradient

Heavy Ball

Nesterov

_R+� = _R � ��M(_R + ��(_R � _R��)) + ��(_R � _R��)



Synthesis (brutal forces)
• parameterization in terms of (α,β1,β2):

_R+� = _R � ��M(_R + ��(_R � _R��)) + ��(_R � _R��)

• Faster than the gradient method AND provably robust to noise. 
• Suggests that more sophisticated algorithm design is possible.
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Conclusions
• IQCs provide a powerful proof system for algorithm analysis 

by replacing complicated nonlinearities with quadratic 
constraint sets. 

• Collects constraints about function classes, not algorithms. 

• New proofs of convergence for popular first-order methods. 

• Enables numerical exploration of parameter spaces. 

• Only beginning to get a sense of what IQCs can tell us about 
optimization schemes 

• Many more control theory techniques that may provide new 
insight when applied to optimization and machine learning.



Open Problems
• Improve the analysis for Nesterov’s method using refined IQCs 
• An analytic proof of Nesterov’s method using IQCs 
• Lower bounds using Zames-Falb IQCs and Megretski argument 
• Integrating time varying plants.  Is Nonlinear Conjugate Gradient actually stable? 
• Is there a way to choose the stepsize using adaptive control techniques? 
• New algorithm design via DK iterations and IQC-based nonlinear control synthesis. 
• Stochastic coordinate descent and stochastic gradient descent via expected IQCs 
• Subgaussian noise analysis via LQG and Ricatti equations 
• Bringing the function value into the picture.  The function itself is Lyapunov! 
• Extending the library of IQCs. 
• Automatically proving and deriving IQCs via sum-of-squares techniques 
• Smaller function classes. With more structure, do we get better rates? 
• Search for non-quadratic Lyapunov functions using IQC + SOS 
• Analyzing really complicated interconnections for modular machine learning
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