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Policy-based Method

Direct policy optimization: search for the best θ∗ via gradient ascent

Policy gradient theorem (Sutton, 2000):

∇θV πθ = Eπθ
[ ∞∑
t=0

γtQπθ(st , at) · ∇θ log πθ(at |st)

]
.
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Policy Gradient: Questions To Ask

Estimation:
• Off-policy distribution shift brings large bias & variance

The most commonly used method is still importance sampling:
exponentially large variance
• Leverage function approximation for more accurate PG?

Tons of value-based methods for learning Q̂. Can we learn ∇θQ in
a similar way?
• Minimax optimal estimation for (off-policy) PG estimation?

Use PG for policy optimization:
• Nonconvexity and global convergence (Agarwal et al 19, Mei et al

20 )
• Sample efficiency for finding optimal policy: use a better PG

estimator? (a long list of variance-reduced methods)
• More generally: can PG method still work beyond standard RL?
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Policy Gradient Bellman Equation (Ni et al. 22)

Bellman equation gives:

Qθ
h = rh + Pθ,hQθ

h+1, h ∈ [H]

Differentiating both sides of the Bellman equation, we get

∇θQθ
h = Pθ,h

(
(∇θ log Πθ,h+1)Qθ

h+1 +∇θQθ
h+1

)
, h ∈ [H]

where we define the operator ∇θ log Πθ,h by

((∇θ log Πθ,h) f ) (s, a) := (∇θ log πθ,h(a|s)) f (s, a).

Hint: One can use function approximation to estimate Q and ∇θQ in
a similar way
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Double Fitted Iteration for Policy Gradient Estimation

Given a function class F and batch data {(skh , akh)} of K i.i.d.
episodes, we apply iterative function fitting (in the same spirit with
Fitted Q Iteration/Evaluation):

Theorem

Double Fitted PG Iteration = Plug-In Model-Based Estimator

Linear MDP: ∇̂θQθ = ∇θQ̂θ
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Optimal Statistical Error Bounds

Given off-policy data:

Theorem ((Variance-Aware) Finite-Sample Error Bound)

With high-probability,

|〈t, ∇̂θvθ −∇θvθ〉| ≤
√

2t>Λθt

K
· log

8

δ
+ O(

1

K
)

where Λθ is the error covariance (formula too long to include)

Theorem

Cramer-Rao Lower Bound Any unbiased estimator have variance at
least 1

K Λθ
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Distribution shift and function approximation are coupled together

Off-policy PG estimation: suppose the batch data and target policy
have state-action occupancy measure µ̄, µθ

Theorem (Finite-Sample Error Bound by Distribution Shift)

With high-probability: |∇̂θvθ−∇θvθ|∞ ≤ 4H2.5
√

1+χF (µθ,µ̄)
K + Õ

(
1
K

)
.

F-restricted chi-square: Measuring the distribution shift in the
function class

χ2
F (p1, p2) : = sup

f ∈F

Ep1 [f (x)]2

Ep2 [f (x)2]
− 1

• χ2
F (µθ, µ̄)� χ2(µθ, µ̄)� ‖µθ/µ̄‖∞

• In linear MDP: χ2
F ≤ relative condition number

• O(
√
χ2
F (µθ, µ̄)/K ) is minimax optimal
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Fundamental Property of RL: Rewards are Cumulative

Rewards are additive, therefore:

• Every state can be assessed via a value function:

V (s) = E[r(s1) + γ · r(s2) + · · · |s1 = s]

• Bellman equation (Bellman, 1945) holds:

V (s) = r(s) + γE[V (s ′)|s]]

• Policy gradient theorem (Sutton, 2000) holds:

∇θV πθ = Eπθ
[ ∞∑
t=0

γtQπθ(st , at) · ∇θ log πθ(at |st)

]
.

The cumulative nature of rewards is key to all RL algorithms
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RL with general utilities

• Consider Markov Decision Process: MDP(S,A,P, r).

• Problems beyond cumulative reward?

(a) Exploration (b) Risk aversion (c) Imitation
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RL with general utilities

• Maximizing a policy’s long term utility:

maximize
θ

R(πθ) := F (λπθ)

– πθ the policy, parameterized by θ.

– λπ the unnormalized state-action occupancy measure.

λπsa :=
∞∑
t=0

γt · P
(
st = s, at = a

∣∣∣π, s0 ∼ ξ
)
.

– F a concave function.

• For concave F , it is sufficient to explore over stationary policies.
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General Utilities for RL

• cumulative reward, linear F :

F (λπθ) = 〈occupancy measure, reward〉.

• exploration over state space:

F (λπθ) = Entropy
(

state visitation frequency
)

• exploration over the feature space:

F (λπθ) = σmin

(
covariance matrix

)
.

• Imitation:

F (λπθ) = −DKL

(
occupancy measure

∣∣∣∣ some distribution
)

11



Moving beyond cumulative rewards is hard

• Difficulty: the Bellman equation, value function, q function,
dynamic programming, all fail.

• Questions:

– Is policy search still viable?

– If so, can we do policy search in parameter space? to handle
large state-action space.

• This is important for deriving scalable parameterized algorithms for
large scale RL problems.
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What are the existing results?

• RL utilities beyond cumulative rewards: Max entropy exploration
(Hazan et al., 2019); Imitation (Schaa, 1997), (Argall et al.,
2008)...; Constrained RL: (Eitan Altman, 1999), (Achiam et al.,
2017) ...

– Many of them does not allow function approximation.
– We provide a general solution to these problems.

• Policy gradient: (Sutton et al., 2000), (Pirotta et al., 2015)...

– limited to cumulative rewards
– convergence to stationary point

• Recently efforts on PG method for cumulative rewards, convergence
to global optima: (Agarwal et al., 2019), (Mei et al., 2020)...

– We guarantee global optimality for more general utilities, via
novel perspective of hidden convexity.
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What’s the policy gradient for general utilities?

• Policy gradient theorem (Sutton et al., 2000), cumulative reward:

∇θV πθ = Eπθ
[ ∞∑
t=0

γtQπθ(st , at) · ∇θ log πθ(at |st)

]
.

It fails for general utilities since Q-function isn’t well-defined.

• For general utilities, by chain rule

∇θR(πθ)=
∑
s,a

∂F (λπθ)

∂λsa
· ∇θλπθsa.

• Both ∂F (λπθ )
∂λsa

and ∇θλπθsa are hard to estimate.
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What’s the policy gradient for general utilities?

Theorem (Variational Policy Gradient Theorem)

∇θR(πθ)= lim
δ→0+

argmax
x

inf
z

{
V (θ; z)+δ∇θV (θ; z)>x−F ∗(z)−δ

2
‖x‖2

}
.

• F ∗: convex conjugate of F .

• z : the shadow reward.

• V (θ; z): cumulative reward with reward function z , policy πθ.
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Estimation of Variational PG

On-policy estimation via stochastic min-max optimization:

1 On policy sampling: Generate episodic sample paths ζi , i ∈ [n] using

πθ, where ζi = {(s(i)
t , a

(i)
t )}

2 For any z , estimate V (θ, z) and ∇V (θ, z) by:

3 Plug-in estimation (with δ ≈ 0):
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Estimation of Variational PG: Statistical Bound

Theorem

Under smoothness assumptions, we have

E[‖∇̂θR(πθ)−∇θR(πθ)‖2] ≤ C

(1− γ)6n
.

Proof idea: analyze the stochastic stability of saddle points
Yes, we can estimate PG for general utilities with polynomial sample
complexity.
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Landscape of the nonconvex utility

Recall:

• maxθ R(πθ) is highly nonconvex: saddle points, bad local optimas.

• Nonconvex even for standard RL
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Landscape of the nonconvex utility

Hidden Convexity: However, the problem maxπ R(π) is equivalent to

max
λ

F (λ) subject to λ ∈ Polyhedron

Theorem

Under proper assumptions (bijection/overparametrization), every
first-order stationary solution of the (possibly nonsmooth) nonconvex
problem

max
θ

R(πθ)

is a global optimal solution.
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Rate of convergence to global optima

Theorem

Consider the policy gradient update

θt+1 = θt + η∇θR(πθt ).

Under proper assumptions, the policy gradient update satisfies

R(πθ∗)−R(πθt ) ≤ O
(
1/t
)
.

Additionally, if F (·) is strongly concave, we have

R(πθ∗)−R(πθt )≤O
(

exp{−α · t}
)
, α ∈ (0, 1).

• For tabular MDP, no parameterization: O(1/ε) iteration complexity.

• Improving the O(1/ε2) state-of-the-art result.
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Rate of convergence to global optima

• Key intuition behind: hidden convexity:

max
θ∈Θ

R(πθ) ⇐⇒ max
λ∈L

F (λ).

• Gradient flow in θ space ⇐⇒ “gradient flow” in λ space.

θ∗

Constraint set Θ

λ∗

Contour of R(πθ)

Constraint set LΘ

Contour of F (λ)

λk = λπθk

θ0

λ0

θ1

λ1

θ2

λ2

θ3
λ3

etc.
...

etc....
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Consequence for cumulative reward

• Cumulative reward, no parameterization (tabular MDP)

max
π

V π ⇐⇒ max
λ
〈r , λ〉 s.t. λ ∈ L.

where L is a polyhedron.

• All assumptions can be verified.

• Iteration complexity O
(

1
ε

)
, improve the state-of-the-art.
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Sample Complexity for Policy Optimization

Theorem (Putting estimation and convergence together (Informal))

There exists an algorithm for maxθ R(πθ) that finds an ε-optimal
policy using O(1/ε2) sample trajectories.

Remarks:

• Optimal dependence on ε

• Requires smoothness conditions

• In short: Sample complexity for General-Utility RL is comparable to
stochastic convex optimization
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Summary

PG estimation via Double Fitted Iteration

• Policy gradient Bellman equation

• Minimax optimal PG estimation of from on/off-policy data

• Statistical error determined by the coupling of distribution shift and
function approximation

Beyond cumulative rewards

• Variational PG Theorem: works when Bellman equation fails

• PG estimation via stochastic minimax optimization.

Convergence to global opt (cumulative reward and beyond)

• Exploit the hidden convexity in the occupancy measure.

• 1/ε iteration complexity and 1/ε2 sample complexity
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