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IV Model

> Y =60(X)+e
» Endogeneity: Efe | X]#0

» Hence, 0o(X) £ E[Y | X]
—— ——
structural /generative/causal model predictive model

» Instrument Z has
» Exclusion: Efe | Z] =0
> “Affects Y only via X"
» Relevance: E[A(X) | Z]=0 = 0(X)=0V0 € © — {0y}
> “Affects X"

» Then 6, uniquely solves E[Y — 0(X) | Z] =0 over § € ©
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IV is Workhorse of Empirical Research

Outcome Variable

Endogenous Variable

Source of Instrumental
Variable(s)

Reference

Labor supply

Labor supply

Education, Labor
supply

Wages

Earnings

Earnings
Earnings

Earnings

Earnings

Achievement test
scores

College enrollment

Health

Crime

Employment and

Earnings
Birth weight

1. Natural Experiments

Disability insurance
replacement rates
Fertility
Out-ofwedlock
fertility
Unemployment
insurance tax rate
Years of schooling

Years of schooling
Years of schooling

Veteran status

Veteran status

Class size

Financial aid
Heart attack surgery

Police

Length of prison
sentence

Maternal smoking

Region and time variation in
benefit rules

Sibling-Sex composition

Occurrence of twin births

State laws

Region and time variation in
school construction

Proximity to college

Quarter of birth

Cohort dummies

Draft lottery number
Discontinuities in class size
due to maximum class-size
rule

Discontinuities in financial
aid formula

Proximity to cardiac care
centers

Electoral cycles

Randomly assigned federal
judges

State cigarette taxes

Gruber (2000)

Angrist and Evans (1998)

Bronars and Grogger
(1994)

Anderson and Meyer
(2000)

Duflo (2001)

Card (1995)

Angrist and Krueger
(1991)

Imbens and van der
Klaauw (1995)

Angrist (1990)

Angrist and Lavy (1999)

van der Klaauw (1996)
McClellan, McNeil and
Newhouse (1994)
Levitt (1997)
Kling (1999)

Evans and Ringel (1999)

From Angrist & Krueger 2001
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Conditional Moment Problem

» 0y uniquely solves the following over § € ©
E[p(0;0) | Z] = O,

» Observe O1,...,0, ~ O, Z is O-measurable
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Conditional Moment Problem

» 0y uniquely solves the following over § € ©

E[p(0;0) | Z] = 0y,

» Observe O1,...,0, ~ O, Z is O-measurable

» Examples:
> IV:O=(Z,X,Y), m=1
» BLP model in industrial organization (Berry et al., 1995)
» g-functions and marginal density ratios in offline RL (Liu et
al., 2018, Nachum et al., 2019; Kallus & Uehara, 2019)
» Policy learning with surrogate loss (Bennett & Kallus, 2020)
» Proximal causal inference (Cui et al. 2020)
» Panel data with confounders (Imbens et al., 2021)

» Example with many 6’s, regularization to target minimal one



Reduction to Marginal Moment Problem

» Fix f;: Z—=R" j=1,...,k
> F(Z) = (fl(z)a >fk(z)) € RF*m
» Find 6y € O satisfying

E[F(Z)p(0:0)] = (E[f;(Z)p(0:0)])j= = O
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Reduction to Marginal Moment Problem

» Fix f;: Z—=R" j=1,...,k
> F(Z) = (fl(z)a >fk(z)) € RF*m
» Find 6y € O satisfying

E[F(Z)p(0:0)] = (E[f;(Z)p(0:0)])j= = O

» Solve using Optimally-Weighted Gelv)eralized Method of
Moments (OWGMM; Hansen, 1982 ©)

én € aregergin E.[F(Z)p(O; 0)]Tf;1(§n)En[F(Z)p(O§ 0)l,

where T,(6,) = E,[F(Z)p(O;6,)p(0;0,)TF(2)"]

(E, is the empirical average: E,[h(0)] = L 31 | h(O;))



b, € argglginEn[F (Z2)p(0:0)] 'L, (6n)Ea[F(2)p(0; 6)]

» Benefits:
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OWGMM

b, € argminE,[F(2)p(0;0)] T (6,)E.[F(2)p(0: 0)
0cO
» Benefits:

» Consistent and asymptotically normal if 6y uniquely solves
E[F(Z)p(0;0)] = 0y over § € ©
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OWGMM

b, € arggelginEn[F (Z2)p(0:0)] 'L, (6n)Ea[F(2)p(0; 6)]

> Benefits:
» Consistent and asymptotically normal if 6y uniquely solves
E[F(Z)p(0;0)] = 0y over § € ©
» Efficient in the model satisfying E [F'(Z)p(O;6p)] = O
(if 6, — 6o)
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OWGMM

0,, € argmin B, [F(Z)p(0; 0)] T, (0,)EL[F(2)p(O; )]
9ce
> Benefits:
» Consistent and asymptotically normal if 6y uniquely solves
E[F(Z)p(0;0)] = 0y over § € ©
> Efficient in the model satisfying E [F'(Z)p(O; 6p)] = Oy,
(if 6, — 69)
» Limitations:
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OWGMM

b, € argmin E, [F(2)p(0:0)] T (B,)EA[F(2)p(0; )]
6co
> Benefits:
» Consistent and asymptotically normal if 6y uniquely solves
E[F(Z)p(0;0)] = 0y over § € ©
» Efficient in the model satisfying E [F'(Z)p(O;6p)] = O
(if 6, — 6o)
» Limitations:
> E[F(Z)p(O;6p)] = 0x might not identify 6y (not unique)
» [E.g., almost anything that isn't linear IV
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OWGMM

b, € arggelginEn[F (Z2)p(0:0)] 'L, (6n)Ea[F(2)p(0; 6)]

> Benefits:
» Consistent and asymptotically normal if 6y uniquely solves
E[F(Z)p(0;0)] = 0y over § € ©
» Efficient in the model satisfying E [F'(Z)p(O;6p)] = O
(if 0, — o)
» Limitations:
> E[F(Z)p(O;6p)] = 0x might not identify 6y (not unique)
» [E.g., almost anything that isn't linear IV

» Even if identifying, not efficient in the full conditional
moment model

> E.g., almost anything that isn't linear IV with linear E[X | Z]
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Sieve approaches

» Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)

» F=(f1,..., fx,) first ky, elements of basis for Lq, k,, — 00
» FE.g., Hermite polynomials, Fourier basis, B-splines, ..
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Sieve approaches

» Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)
> F=1(f1,..., fr,) first k, elements of basis for Lo, k, — 00
» FE.g., Hermite polynomials, Fourier basis, B-splines, ..

» Sieve-estimate the efficient instruments (Newey, 1993)
> F*(Z) = (E[p(0;0)p(0;0) | Z))'Eldgp(0;6) | Z]
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Sieve approaches

» Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)

» F=(f1,..., fx,) first ky, elements of basis for Lq, k,, — 00
» FE.g., Hermite polynomials, Fourier basis, B-splines, ..

» Sieve-estimate the efficient instruments (Newey, 1993)
> F*(Z) = (E[p(0;0)p(0;0)" | Z])~'E[0p(0;0) | Z]

» Theoretically efficient (under appropriate conditions)

» Unwieldy in practice, especially when 6 and Z are
moderately-dimensional
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Minimax approaches

0, € argminsupE,[f(Z) " p(0;0)]
0cO feF

» Given a rich class of functions F C [Z — R™|

> E.g., neural nets with m outputs, product of RKHSs, ..
» Try to control all marginal moments for all f € F

> Not just f1,..., fr

> Lewis & Syrgkanis (2018), Bennett et al. (2019), Dikkala et
al. (2020), Kallus et al. (2021), Uehara et al. (2021), ..
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Minimax approaches

0, € argminsupE, [f(Z) " p(0;0)]
0cO® feF

> Benefits:

P |dentification more plausible
> No crazy sieves; much more ML-ish
» Rates for nonparametric ©, F (Dikkala et al., 2020)
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Minimax approaches

0, € argminsupE, [f(Z) " p(0;0)]
0cO® feF

> Benefits:

P |dentification more plausible
> No crazy sieves; much more ML-ish
» Rates for nonparametric ©, F (Dikkala et al., 2020)
» Limitations:
» Efficiency?
> Big deal because lots of moments in F
» Inference?
» Big deal because want to do science!
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Variational Reformulation of OWGMM

> Given F' = (f1,..., fx), fj : Z = R™, recall

b, € aregelginEn[F(Z)p(O; 0)] L (00)Ea[F(Z)p(O:6)]
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Variational Reformulation of OWGMM

> Given F' = (f1,..., fx), fj : Z = R™, recall

b, € aregelginEn[F(Z)p(O; 0)] L (00)Ea[F(Z)p(O:6)]

Set F =span(fi,..., fi) = {z = X7, 6 fi(2)T6 : B € R}
OWGMM is equivalent to

4, € sugminsup E,[1(2)"(0:0)] - JE(F(2)0(0:6,))7

» Arises by Euclidean-norm duality
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Variational Reformulation of OWGMM

> Given F' = (f1,..., fx), fj : Z = R™, recall

b, € aregelginEn[F(Z)p(O; 0)] L (00)Ea[F(Z)p(O:6)]

Set F =span(fi,..., fi) = {z = X7, 6 fi(2)T6 : B € R}
OWGMM is equivalent to

4, € sugminsup E,[1(2)"(0:0)] - JE(F(2)0(0:6,))7

» Arises by Euclidean-norm duality
» VMM: just switch out F by other function classes ..



Variational Method of Moments

. 1
6, € argmin sup E, [f(Z)Tp(O; 0)]—- —R,(f)
0cO  feF, 4
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Variational Method of Moments

Try to make all
moments zero

. 1
6, € argmin sup E, [f(Z)Tp(O; 0)]—- —R,(f)
0cO  feF, 4
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Variational Method of Moments

Try to make all
moments zero

. 1
6, € argmin sup E, [f(Z)Tp(O; 0)]—- —R,(f)
0cO  feF, 4
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Variational Method of Moments

Try to make all
moments zero

9 € argmin sup E,[f T

o /
\ Control complexity
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Variational Method of Moments

Try to make all
moments zero

. 1
6, € argmin sup E, [f(Z)Tp(O; 0)]—- —R,(f)
0cO  feF, 4
Can permit

approx optim ]
Control complexity
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Variational Method of Moments

Try to make all
moments zero

. 1
6, € argmin sup E, [f(Z)Tp(O; 0)]—- —R,(f)
0cO  feF, 4
Can permit

approx optim ]
Control complexity

» k-stage VMM: initialize some 6
> For J = 17 ceey k‘, set ég) to VMM with én = éSL]_l)
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VMM Variants

» Kernel VMM
» Set F,, = H to a reproducing kernel Hilbert space (RKHS)
» E.g., Gaussian kernel, product of m Sobolev spaces

> Set Ru(f) = 2 || /]2,
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VMM Variants

» Kernel VMM

» Set F,, = H to a reproducing kernel Hilbert space (RKHS)
» E.g., Gaussian kernel, product of m Sobolev spaces
2
> Set R,(f) = ¢ [1f11%
» Neural VMM

> Set F,, to a class of neural networks with a given
architecture (possibly growing with n) and unknown weights

> Kernel regularizer: set R, (f) = “p infrepn(z)=f(z,) vi |h]|3,
where H is a given RKHS

> R,(f) has a closed form as a quadratic in f(Z;) in terms of
kernel Gram matrix
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VMM Variants

» Kernel VMM
» Set F,, = H to a reproducing kernel Hilbert space (RKHS)
» E.g., Gaussian kernel, product of m Sobolev spaces
> Set Ru(f) = % [1£13
» Neural VMM

> Set F, to a class of neural networks with a given
architecture (possibly growing with n) and unknown weights
> Kernel regularizer: set R, (f) = “p infrepn(z)=f(z,) vi |h]|3,
where H is a given RKHS
> R,(f) has a closed form as a quadratic in f(Z;) in terms of
kernel Gram matrix
> Frobenius regularizer: set Ry, (f) = %Y 7" >, f2(Z;)
> Approximates Gaussian kernel regularizer w/ tiny length scale
» Heuristic practical version of neural VMM
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Implementing VMM

» It's a smooth game!
» So, you tell me how to solve it
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Implementing VMM

» It's a smooth game!
» So, you tell me how to solve it
» Kernel VMM: inner sup has closed form as a convex quadratic
. ) ()~‘8))nﬂn.
In (p]( (3] i=1,7=1
» In terms of kernel Gram matrices and p;(O;; 6,,)
» Can directly apply usual optimization algorithms to this
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Implementing VMM

» It's a smooth game!
» So, you tell me how to solve it

» Kernel VMM: inner sup has closed form as a convex quadratic
in (p;(050))i27 ;4
> In terms of kernel Gram matrices and p;(O;; 6,,)
» Can directly apply usual optimization algorithms to this
» Neural VMM: will use OAdam (Daskalakis et al., 2017) in
experiments
P Lots of developments since and lots of opportunity to
potentially improve
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Some Regularity (Consistency)

» p(0;0) is equi-Lipschitz in 6 for all o
> sup, g [|p(0; 0)]| < oo
> Z C R% bounded

> [/log N(O,€) < 00

> (Trivial for © C R compact)

> 0, —, 0
> [1p;(5:6n) — pj(5;0)||cc = Op(n7P) for some 0 < p < 1
» (Will come for free for k-stage VMM)

> EAuin(E[p(O;0)p(0;0)" | Z])72] < oo for all § € ©
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Consistency

» Set H as any smooth universal kernel (e.g., Gaussian)
» Set v, = 0(1), a, = w(n™P)

~

Kernel VMM with F,, = H is consistent: 0,, —, 0y
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Consistency

» Set H as any smooth universal kernel (e.g., Gaussian)
» Set v, = 0(1), a, = w(n™P)

Kernel VMM with F,, = H is consistent: én —p 0o

Corollary

Same for neural VMM with fully connected net with width and
depth at least a certain amount (in paper) and with kernel
regularizer given by H
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More Regularity (Asymptotic Normality)

» Suppose © C R’ compact
» (Covering assumption holds trivially)

> sup, g || 5-0(0; 0)|| < o0
2
> Sup, ||ae?aej'/)<0§ 0)| < oo
> 3%0(0; 0), %;ojp(o; 0) equi-Lipschitz

> {E[a%p(O;HO) | Z] :i=1,...,b} are b linearly independent
functions Z — R™
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Asymptotic Normality

» Set H as any smooth universal kernel (e.g., Gaussian)
» Set a,, = o(1), o, = w(nP)

Kernel VMM with F,, = H is asymptotically linear
(0, = E,[1)(O)] + 0,(n"1/?)) and asymptotically normal:

V(8 — 80) ~ N(0, V5)
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Asymptotic Normality

» Set H as any smooth universal kernel (e.g., Gaussian)
» Set a,, = o(1), o, = w(nP)

Theorem

Kernel VMM with F,, = H is asymptotically linear
(0, = E,[1)(O)] + 0,(n"1/?)) and asymptotically normal:

V8, — 6o) ~ N(0, V;)

Corollary

Same for neural VMM with fully connected net with width and
depth at least a certain amount (in paper) and with kernel
regularizer given by ‘H
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Semiparametric Efficiency

Vy, (i-e., the asymptotic covariance of VMM when 8,, —, 6;) is
the semiparametric efficiency bound for 6 in the model consisting
of all distributions satisfying E[p(O;0y) | Z] =0
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Semiparametric Efficiency

Theorem

Vy, (i-e., the asymptotic covariance of VMM when 8,, —, 6;) is
the semiparametric efficiency bound for 6y in the model consisting
of all distributions satisfying E[p(O;0y) | Z] =0

Corollary

k-stage kernel/neural VMM (k > 2) using a smooth universal
kernel and o, = o(1), a,, = w(1/+/n) is semiparametrically
efficient in the conditional moment problem

In particular: minimum asymptotic MSE for 30, for any 3 (either
among regular estimators or locally minimax among all estimators)
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Variational Reformulation of the Efficiency Bound

Let Vi, be the efficiency bound. Then

B Vo8 = sup inf 'S — —E[f(Z)TVe/)(X;Ho)v]
~eRrb FEF
1

+ El(/(2)T p(X; 60))’

» We estimate this variance using VMM-style minimax

B2(8) = sup inf 178~ {EF(2) Vap(X:,)0]

~erb JEH

+ %En[(f(Z)Tp(X; 0n))*] = Rn(f)
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Kernel VMM Inference

» Set H any smooth universal kernel (e.g., Gaussian)
» Set a,, = o(1), o, = w(nP)
> Set 0, to k-stage kernel /neural VMM (k > 2)

Kernel VMM standard error estimate with F,, = H has
fﬁz(ﬁ) _>P 6T‘/90ﬂ

Hence: P((0y) € [10(0,) £ 1.960,(V4)(6,))]) — 0.95

» 0,(0) has a closed form in terms of kernel Gram matrices
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MSE in Simple IV scenario

Method 200 500 1,000 2,000 5,000 10,000
0 >100 88+427 >100  67F1.2 23+.29 .14+.16
1078 51470 28430 26453 324165 .254+.32 .174.23

% | 1076 55£70 25+27 17+£30 .78+13 .24+.33 .14+.16
2 & 100* 55476 25+32 18429 72+13 .25+.32 .14+.16
S 1072 60483 27+31 17+24 72412 26+.34 .14+.17
1 11+21  41+66 21+28 75+1.1 .34+.41 .16+.21
s 0 25420 16+19 93+12 42+.65 1621 .10+.14
S, 107 28+27 1.8+£20 81+£11 .39+£.62 .18+.25 .11+.14
2 ¢ 1072 22419 21+£26 74+.99 42+.66 17+£.23 .10+.12
=~ 1 21+20 21+21 .94+1.2 39+.65 .18+.26 .114.12
e d 42+65 25+36 1.84£30 68+1.0 24+.31 .15+.19
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MSE in Complex IV scenario

n
Method 200 500 1,000 2,000 5,000 10,000
0 > 100 38+55  >100 63+14 24+29 09+.18
s 10-8 > 100 >100 13422 .63+20 .21+.23 .06+.05
S, 1005 87+229 20426 .78+.98 .35+.50 22427 .06+.05
> . 100% 994276 1.9+22 79+.96 .35+.45 .21+.26 .05=+.05
X9 1072 914197 26+36 1.1+1.3 40+.49 .21+.23 .06+ .06
1 101+155 52470 35458 25+47 16+15 14415
s 0  93+37 53+28 28+1.6 19+13 12+.84 .68+.64
S, 10% 82+40 54+25 29+17 17+13 1.14+.80 .T1+.68
> . 1002  88+41 56425 28420 18413 1.1+.83 .724.65
2~ 1 73427 49421 27+19 20413 114+.84 .67+.68
’7I;*7|7d*77751067777>71070777ST06777>7160777§1706777>71607’
& Hom > 100 > 100 > 100 > 100 > 100 > 100
D et > 100 > 100 > 100 > 100 > 100 > 100
"MMR T T 103419 102+12 97+1.2 98+.85 97+.70 96+.60

Naive 9.1+6.7 8.8+5.1 76+£30 79+£24 T77+£12 74+.89
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Ly error in Complex IV scenario

n
Method 200 500 1,000 2,000 5,000 10,000
0 > 100 92+18 21+131 .16+ .34 .06+.05 .03L.07
s 10-% 1404598 >100  .36+.69 .15+.31 .05+.04 .024+.01
S, 10° 14413 444+.37 19+£.14 .09+£.07 .05+.04 .02+.01
> . 100% 14414 40+.33 .18+.13 .09+.07 .05+.04 .024+.01
X9 1072 15415 49+ .47 21+.17 .09+.07 .05+.03 .024+.01
1 1.7+16  87+.79 .52+.64 .35+.49 .224.18 .194.19
s 0  52+27 15x74 55+.29 32+.20 .16+.10 .09+.07
S, 10% 50+30 15+.73 .58+.32 30+£.18 .154+.09 .09+.08
> . 1002 48427 15+.71 55+.33 .314.19 .154+.09 .09+ .08
2~ 1 37418 144+.58 544+.29 .324+.18 .154+.10 .094.08
T ;;7 T ld T 44+29  44+40  33+38 27+31 25+29 37+40
&  Hom  43+31 34458 33449 37439 36433 32431
D Het 48434 35+40 34+37 24+29 32+31 27+33
"MMR T ¢ 21+ 81  17+.44 15+.29 14+4+.31 13+.24 13+.17
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Coverage for 95% Cls

n Method Simple IV Complex IV

o = 83.0 84.5

on = 1078 83.0 83.5

Kernel  @n = 10-6 83.0 87.5

an = 10—‘; 84.5 91.5

an =10~ 86.5 95.0

200 on =1 91.0 100
T An=0_ T~ 780 " 705 °

Neural = 10—4 81.5 71.5

A = 1072 83.5 69.5

An =1 825 70.0
T T T T e =0 915 = 955

an = 10—2 92.0 95.5

an =10~ 925 95.5

Kernel — _ 10—‘; 925 96.0

an =10~ 95.0 97.5

2000 on =1 100.0 100
T An=0_~77000 "~ T 955 ~°

Neural = 10—4 90.5 95.5

A = 1072 90.0 95.5
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Beyond efficiency

» We proved VMM consistent for general 6
» But efficiency and inference only made sense for finite-dim 6
» What about general nonparametric 67
» Dikkala et al. (2020) provide nonparametric finite-sample
guarantees for unweighted minimax method “&

> But we know plain minimax not efficient — need weighting
P> At the same time, efficiency is not a story about rates, but

about leading constants on first-order terms
» Hard to characterize the effect of optimal weighting in terms
of finite-sample guarantees?

> TBD

» But does seem to help in practice
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DirectNN Vanilla2sLs Poly2SLS

DirectNN Vanilla2sLs Poly2SLS
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
DirectNN Vanilla2sLs Poly25LS
———
-4 -2 o 2 a4 -4 -2 0o 2 a4 -4 -2 0o 2 a4
raw data DirectNN Vanilla2sLs Poly2SLS
4
2
0
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GMM-+NN AGMM DeeplV Our Method

-4 -2 0 2 4 -4 -2 0o 2 4 -4 -2 0o 2 4 -4 -2 0 2 4
GMM+NN AGMM DeeplV Our Method

-4 2 0 2 4 4 2 o0 2 4 -4 2 0 2 a4 -4 2 0 2 4
GMM+NN AGMM DeeplV Our Method

-4 -2 0 2 4 -4 -2 0o 2 4 -4 2 0 2 4 -4 2 0 2 a

GMM-+NN AGMM DeeplV Our Method
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@ Application: Policy Learning

Efficient Policy Learning from Surrogate-Loss Classification Reductions
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Policy Learning

» Covariates X, potential losses Y*(+1),Y*(—1)
> For g : X — R define

J(9) = Elsign(g(X))(Y"(+1) = Y*(=1))]

» Equal to (twice) the value of the policy sign(g(X)) minus the
value of the completely randomized policy (£1 equiprobably)
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Policy Learning

» Covariates X, potential losses Y*(+1),Y*(—1)
> For g : X — R define

J(9) = Elsign(g(X))(Y"(+1) = Y*(=1))]

» Equal to (twice) the value of the policy sign(g(X)) minus the
value of the completely randomized policy (£1 equiprobably)

» Observe O = (X, A,Y) where Y =Y*(A), A L Y*(£1) | X
J(9) = E[p(0) sign(g(X))]

$(0) = p(X.+1) = p(X, —1) + 5t
( A)=E[Y | X, A], e(X) =P(A=1] X)

E,[¢(O)sign(g(X))] semiparametrically efficient for .J(g)



Reduction to Cost-Sensitive Classification

> J(g) = E[¢(0)sign(9(X))] = E[W (o1 (9(X), 5)]
> W =[4(0)], S = sign((0)), Lo-1(v, s) = sign(v)s
» For a classification calibrated loss ¢ (Bartlett et al., 2006):
g € argmin E[W/o1(g(X), 5)]
< g € argmin E[W/{(g(X), )]
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Reduction to Cost-Sensitive Classification

> J(g) = E[¢(0)sign(g(X))] = E[Wlo1 (9(X), 5]
> W= (0)|, S = sign(4(0)), lo-1(v, s) = sign(v)s
» For a classification calibrated loss ¢ (Bartlett et al., 2006):
g € argmin E[W/o1(g(X), 5)]
< g € argmin E[W/{(g(X), )]
» May restrict g € G if G Nargmin E[W/y1(9(X),S)] # 0
» Suggests to use surrogate-loss classification

gn € argmin E, [W{(g(X), S)]
geg

» E.g., hinge (Zhou & Kosorok, '17), logistic (Jiang et al., '19)
» For logistic can even do M-estimation inference



A Conditional Moment Problem

> g cargminE[W/{(g(X),S)] < E[W(9(X),S)| X]=0
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A Conditional Moment Problem

> g cargminE[W/{(g(X),S)] < E[W(9(X),S)| X]=0
» Consider G = {gg(z) =0Tz : 0 € R%}
» Classic MLE theory: linear logistic regression is efficient in
the model on (X, S) satisfying E[¢/(¢(X),S) | X] =0
» Surprisingly, weighted logistic regression
O, € argming e g En[WE(gg(X), S)] is not efficient for 6 in
the above policy learning setting
» Can use VMM to get efficient learner
> Efficiency has optimal regret implications
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Numerics

_ (1 EIG™)iny J(g)
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Numerics
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Numerics

_ (1 EIG™)iny J(g)
> RMRR = (1 - §@mnl=n270)) x 100%

QuadraticScenario, FlexiblePolicy
Method
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This talk

Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning



POMDPs
Model

» POMDP confounded observation model




OPE in Confounded POMDP

» Reduces to a sequence of nested proximal causal inference
problems

» Subject to certain completeness assumptions analogous to
proximal causal inference, can do OPE
» Need to fit value bridge function and action bridge function

» Analogous to ¢g-function and density ratio
P Given by conditional moment equations
» Solve using VMM



Experiments

» Easy (high overlap) policy
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Experiments

» Hard (low overlap) policy
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Experiments

» Optimal policy
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Conclusions

» Conditional moment model can be used for many problems
» Workhorse of economics
P> Important in offline RL
» Especially confounded settings
P> Can even be used to do cost-sensitive classification

» Sieves are unwieldy — more ML-ish minimax approaches
v

P Loses the efficiency and inference of OWGMM ¢

» Developed VMM by more directly generalizing OWGMM to
minimax setting with general function classes

> Asymptotically normal
> Semiparametrically efficient
» Can be applied to itself to estimate standard errors

» Works well in practice
» .. even beyond finite dim § &



Thank youl!
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