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Endogeneity
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I θ0(x) = max(x, x/5)
I Y = θ0(X)− 2ε+ η, ε, η ∼ N (0, 1)

I X = Z + 2ε, Z ∼ N (0, 1)
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IV Model

I Y = θ0(X) + ε
I Endogeneity: E [ε | X] 6= 0
I Hence, θ0(X)︸ ︷︷ ︸

structural/generative/causal model

6= E [Y | X]︸ ︷︷ ︸
predictive model

I Instrument Z has
I Exclusion: E [ε | Z] = 0

I “Affects Y only via X”
I Relevance: E [θ(X) | Z] = 0 =⇒ θ(X) = 0 ∀θ ∈ Θ− {θ0}

I “Affects X”
I Then θ0 uniquely solves E [Y − θ(X) | Z] = 0 over θ ∈ Θ
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IV is Workhorse of Empirical ResearchTable 1
Examples of Studies That Use Instrumental Variables to Analyze Data From
Natural and Randomized Experiments

Outcome Variable Endogenous Variable
Source of Instrumental

Variable(s) Reference

1. Natural Experiments

Labor supply Disability insurance
replacement rates

Region and time variation in
benefit rules

Gruber (2000)

Labor supply Fertility Sibling-Sex composition Angrist and Evans (1998)
Education, Labor

supply
Out-of-wedlock

fertility
Occurrence of twin births Bronars and Grogger

(1994)
Wages Unemployment

insurance tax rate
State laws Anderson and Meyer

(2000)
Earnings Years of schooling Region and time variation in

school construction
Duflo (2001)

Earnings Years of schooling Proximity to college Card (1995)
Earnings Years of schooling Quarter of birth Angrist and Krueger

(1991)
Earnings Veteran status Cohort dummies Imbens and van der

Klaauw (1995)
Earnings Veteran status Draft lottery number Angrist (1990)
Achievement test

scores
Class size Discontinuities in class size

due to maximum class-size
rule

Angrist and Lavy (1999)

College enrollment Financial aid Discontinuities in financial
aid formula

van der Klaauw (1996)

Health Heart attack surgery Proximity to cardiac care
centers

McClellan, McNeil and
Newhouse (1994)

Crime Police Electoral cycles Levitt (1997)
Employment and

Earnings
Length of prison

sentence
Randomly assigned federal

judges
Kling (1999)

Birth weight Maternal smoking State cigarette taxes Evans and Ringel (1999)

2. Randomized Experiments

Earnings Participation in job
training program

Random assignment of
admission to training
program

Bloom et al. (1997)

Earnings Participation in Job
Corps program

Random assignment of
admission to training
program

Burghardt et al. (2001)

Achievement test
scores

Enrollment in
private school

Randomly selected offer of
school voucher

Howell et al. (2000)

Achievement test
scores

Class size Random assignment to a
small or normal-size class

Krueger (1999)

Achievement test
scores

Hours of study Random mailing of test
preparation materials

Powers and Swinton
(1984)

Birth weight Maternal smoking Random assignment of free
smoker’s counseling

Permutt and Hebel
(1989)
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Conditional Moment Problem
I θ0 uniquely solves the following over θ ∈ Θ

E [ρ(O; θ) | Z] = 0m

I Observe O1, . . . , On ∼ O, Z is O-measurable

I Examples:
I IV: O = (Z,X, Y ), m = 1
I BLP model in industrial organization (Berry et al., 1995)
I q-functions and marginal density ratios in offline RL (Liu et

al., 2018, Nachum et al., 2019; Kallus & Uehara, 2019)
I Policy learning with surrogate loss (Bennett & Kallus, 2020)
I Proximal causal inference (Cui et al. 2020)
I Panel data with confounders (Imbens et al., 2021)

I Example with many θ0’s, regularization to target minimal one
I …
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Reduction to Marginal Moment Problem
I Fix fj : Z → Rm, j = 1, . . . , k

I F (z) = (f1(z), . . . , fk(z)) ∈ Rk×m

I Find θ0 ∈ Θ satisfying

E [F (Z)ρ(O; θ)] = (E [fj(Z)ρ(O; θ)])
k
j=1 = 0k

I Solve using Optimally-Weighted Generalized Method of
Moments (OWGMM; Hansen, 1982 🥇)

θ̂n ∈ argmin
θ∈Θ

En[F (Z)ρ(O; θ)]
>Γ̂−1

n (θ̃n)En[F (Z)ρ(O; θ)],

where Γ̂n(θ̃n) = En[F (Z)ρ(O; θ̃n)ρ(O; θ̃n)
>F (Z)>](

En is the empirical average: En[h(O)] =
1
n

∑n
i=1 h(Oi)

)
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OWGMM

θ̂n ∈ argmin
θ∈Θ

En[F (Z)ρ(O; θ)]
>Γ̂−1

n (θ̃n)En[F (Z)ρ(O; θ)]

I Benefits:

I Consistent and asymptotically normal if θ0 uniquely solves
E [F (Z)ρ(O; θ)] = 0k over θ ∈ Θ

I Efficient in the model satisfying E [F (Z)ρ(O; θ0)] = 0k
(if θ̃n → θ0)

I Limitations:
I E [F (Z)ρ(O; θ0)] = 0k might not identify θ0 (not unique)

I E.g., almost anything that isn’t linear IV
I Even if identifying, not efficient in the full conditional

moment model
I E.g., almost anything that isn’t linear IV with linear E[X | Z]
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Sieve approaches

I Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)
I F = (f1, . . . , fkn) first kn elements of basis for L2, kn → ∞
I E.g., Hermite polynomials, Fourier basis, B-splines, …

I Sieve-estimate the efficient instruments (Newey, 1993)
I F ∗(Z) = (E[ρ(O; θ)ρ(O; θ)> | Z])−1E[∂θρ(O; θ) | Z]

I Theoretically efficient (under appropriate conditions)
I Unwieldy in practice, especially when θ and Z are

moderately-dimensional
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Minimax approaches

θ̂n ∈ argmin
θ∈Θ

sup
f∈F

En[f(Z)
>ρ(O; θ)]

I Given a rich class of functions F ⊂ [Z → Rm]
I E.g., neural nets with m outputs, product of RKHSs, …

I Try to control all marginal moments for all f ∈ F
I Not just f1, . . . , fk

I Lewis & Syrgkanis (2018), Bennett et al. (2019), Dikkala et
al. (2020), Kallus et al. (2021), Uehara et al. (2021), …
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Minimax approaches

θ̂n ∈ argmin
θ∈Θ

sup
f∈F

En[f(Z)
>ρ(O; θ)]

I Benefits:
I Identification more plausible
I No crazy sieves; much more ML-ish
I Rates for nonparametric Θ, F (Dikkala et al., 2020)

I Limitations:
I Efficiency?

I Big deal because lots of moments in F
I Inference?

I Big deal because want to do science!
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This talk

1 Introduction

2 VMM

3 Guarantees

4 Inference

5 Experiments

6 Application: Policy Learning
Efficient Policy Learning from Surrogate-Loss Classification Reductions

7 Application: Evaluation in Confounded POMDPs
Proximal Reinforcement Learning
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Variational Reformulation of OWGMM
I Given F = (f1, . . . , fk), fj : Z → Rm, recall

θ̂n ∈ argmin
θ∈Θ

En[F (Z)ρ(O; θ)]
>Γ̂−1

n (θ̃n)En[F (Z)ρ(O; θ)]

Theorem
Set F = span(f1, . . . , fk) = {z 7→

∑k
j=1 βjfj(z)

>β : β ∈ Rk}
OWGMM is equivalent to

θ̂n ∈ argmin
θ∈Θ

sup
f∈F

En[f(Z)
>ρ(O; θ)]− 1

4
En[(f(Z)ρ(O; θ̃n))

2]

I Arises by Euclidean-norm duality
I VMM: just switch out F by other function classes …
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Variational Method of Moments

θ̂n∈ argmin
θ∈Θ

sup
f∈Fn

En[f(Z)
>ρ(O; θ)]−1

4
En[(f(Z)ρ(O; θ̃n))

2]−Rn(f)

I k-stage VMM: initialize some θ̂(0)n

I For j = 1, . . . , k, set θ̂(j)n to VMM with θ̃n = θ̂
(j−1)
n
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VMM Variants

I Kernel VMM
I Set Fn = H to a reproducing kernel Hilbert space (RKHS)

I E.g., Gaussian kernel, product of m Sobolev spaces
I Set Rn(f) =

αn
4 ‖f‖2H

I Neural VMM
I Set Fn to a class of neural networks with a given

architecture (possibly growing with n) and unknown weights
I Kernel regularizer: set Rn(f) =

αn
4 infh∈H:h(Zi)=f(Zi) ∀i ‖h‖2H

where H is a given RKHS
I Rn(f) has a closed form as a quadratic in f(Zi) in terms of

kernel Gram matrix
I Frobenius regularizer: set Rn(f) =

αn
4

∑m
k=1

∑n
i=1 f

2
k (Zi)

I Approximates Gaussian kernel regularizer w/ tiny length scale
I Heuristic practical version of neural VMM
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Implementing VMM

I It’s a smooth game!
I So, you tell me how to solve it

I Kernel VMM: inner sup has closed form as a convex quadratic
in (ρj(Oi; θ))

n,m
i=1,j=1

I In terms of kernel Gram matrices and ρj(Oi; θ̃n)
I Can directly apply usual optimization algorithms to this

I Neural VMM: will use OAdam (Daskalakis et al., 2017) in
experiments
I Lots of developments since and lots of opportunity to

potentially improve
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Some Regularity (Consistency)

I ρ(o; θ) is equi-Lipschitz in θ for all o
I supo,θ ‖ρ(o; θ)‖ <∞
I Z ⊂ Rdz bounded

I
∫ √

logN(Θ, ε) <∞
I (Trivial for Θ ⊂ Rb compact)

I θ̃n →p θ̃

I ‖ρj(·; θ̃n)− ρj(·; θ̃)‖∞ = Op(n
−p) for some 0 < p ≤ 1

2
I (Will come for free for k-stage VMM)

I E[λmin(E[ρ(O; θ)ρ(O; θ)> | Z])−2] <∞ for all θ ∈ Θ
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Consistency

I Set H as any smooth universal kernel (e.g., Gaussian)
I Set αn = o(1), αn = ω(n−p)

Theorem
Kernel VMM with Fn = H is consistent: θ̂n →p θ0

Corollary
Same for neural VMM with fully connected net with width and
depth at least a certain amount (in paper) and with kernel
regularizer given by H
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More Regularity (Asymptotic Normality)

I Suppose Θ ⊂ Rb compact
I (Covering assumption holds trivially)

I supo,θ ‖ ∂
∂θi
ρ(o; θ)‖ <∞

I supo,θ ‖ ∂2

∂θi∂θj
ρ(o; θ)‖ <∞

I ∂
∂θi
ρ(o; θ), ∂2

∂θi∂θj
ρ(o; θ) equi-Lipschitz

I {E[ ∂
∂θi
ρ(O; θ0) | Z] : i = 1, . . . , b} are b linearly independent

functions Z → Rm
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Asymptotic Normality

I Set H as any smooth universal kernel (e.g., Gaussian)
I Set αn = o(1), αn = ω(n−p)

Theorem
Kernel VMM with Fn = H is asymptotically linear
(θ̂n = En[ψ(O)] + op(n

−1/2)) and asymptotically normal:
√
n(θ̂n − θ0) N (0, Vθ̃)

Corollary
Same for neural VMM with fully connected net with width and
depth at least a certain amount (in paper) and with kernel
regularizer given by H



Intro VMM Guarantees Inference Experiments Policy Learning POMDPs

Asymptotic Normality

I Set H as any smooth universal kernel (e.g., Gaussian)
I Set αn = o(1), αn = ω(n−p)

Theorem
Kernel VMM with Fn = H is asymptotically linear
(θ̂n = En[ψ(O)] + op(n

−1/2)) and asymptotically normal:
√
n(θ̂n − θ0) N (0, Vθ̃)

Corollary
Same for neural VMM with fully connected net with width and
depth at least a certain amount (in paper) and with kernel
regularizer given by H



Intro VMM Guarantees Inference Experiments Policy Learning POMDPs

Semiparametric Efficiency

Theorem
Vθ0 (i.e., the asymptotic covariance of VMM when θ̃n →p θ0) is
the semiparametric efficiency bound for θ0 in the model consisting
of all distributions satisfying E[ρ(O; θ0) | Z] = 0

Corollary
k-stage kernel/neural VMM (k ≥ 2) using a smooth universal
kernel and αn = o(1), αn = ω(1/

√
n) is semiparametrically

efficient in the conditional moment problem
In particular: minimum asymptotic MSE for β>θ0 for any β (either
among regular estimators or locally minimax among all estimators)
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Variational Reformulation of the Efficiency Bound

Theorem
Let Vθ0 be the efficiency bound. Then

β>Vθ0β = sup
γ∈Rb

inf
f∈F

γ>β − 1

4
E[f(Z)>∇θρ(X; θ0)γ]

+
1

16
E[(f(Z)>ρ(X; θ0))

2]

I We estimate this variance using VMM-style minimax

v̂2n(β) = sup
γ∈Rb

inf
f∈H

γ>β − 1

4
En[f(Z)

>∇θρ(X; θ̂n)γ]

+
1

16
En[(f(Z)

>ρ(X; θ̂n))
2]−Rn(f)
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Kernel VMM Inference

I Set H any smooth universal kernel (e.g., Gaussian)
I Set αn = o(1), αn = ω(n−p)

I Set θ̂n to k-stage kernel/neural VMM (k ≥ 2)

Theorem
Kernel VMM standard error estimate with Fn = H has

v̂2n(β) →p β
>Vθ0β

Hence: P(ψ(θ0) ∈ [ψ(θ̂n)± 1.96v̂n(∇ψ(θ̂n))]) → 0.95

I v̂n(β) has a closed form in terms of kernel Gram matrices
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MSE in Simple IV scenario

Method n
200 500 1,000 2,000 5,000 10,000

K
-V

M
M

α
n
=

0 > 100 8.8± 42.7 > 100 .67± 1.2 .23± .29 .14± .16
10−8 5.1± 7.0 2.8± 3.0 2.6± 5.3 3.2± 16.5 .25± .32 .17± .23
10−6 5.5± 7.0 2.5± 2.7 1.7± 3.0 .78± 1.3 .24± .33 .14± .16
10−4 5.5± 7.6 2.5± 3.2 1.8± 2.9 .72± 1.3 .25± .32 .14± .16
10−2 6.0± 8.3 2.7± 3.1 1.7± 2.4 .72± 1.2 .26± .34 .14± .17
1 11± 21 4.1± 6.6 2.1± 2.8 .75± 1.1 .34± .41 .16± .21

N
-V

M
M

λ
n
=

0 2.5± 2.0 1.6± 1.9 .93± 1.2 .42± .65 .16± .21 .10± .14
10−4 2.8± 2.7 1.8± 2.0 .81± 1.1 .39± .62 .18± .25 .11± .14
10−2 2.2± 1.9 2.1± 2.6 .74± .99 .42± .66 .17± .23 .10± .12
1 2.1± 2.0 2.1± 2.1 .94± 1.2 .39± .65 .18± .26 .11± .12

Si
ev

e Id 4.2± 6.5 2.5± 3.6 1.8± 3.0 .68± 1.0 .24± .31 .15± .19
Hom 4.2± 6.5 2.5± 3.6 1.8± 3.0 .68± 1.0 .24± .32 .15± .19
Het 4.3± 5.7 2.4± 3.3 1.7± 2.6 .66± 1.0 .24± .31 .15± .18

MMR 17± 28 5.6± 9.2 2.8± 3.7 .83± 1.1 .37± .45 .17± .23
Naïve 6.2± 1.3 6.0± .71 5.8± .45 5.8± .47 5.8± .25 5.8± .20
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MSE in Complex IV scenario

Method n
200 500 1,000 2,000 5,000 10,000

K
-V

M
M

α
n
=

0 > 100 3.8± 5.5 > 100 .63± 1.4 .24± .29 .09± .18
10−8 > 100 > 100 1.3± 2.2 .63± 2.0 .21± .23 .06± .05
10−6 8.7± 22.9 2.0± 2.6 .78± .98 .35± .50 .22± .27 .06± .05
10−4 9.9± 27.6 1.9± 2.2 .79± .96 .35± .45 .21± .26 .05± .05
10−2 9.1± 19.7 2.6± 3.6 1.1± 1.3 .40± .49 .21± .23 .06± .06
1 10.1± 15.5 5.2± 7.0 3.5± 5.8 2.5± 4.7 1.6± 1.5 1.4± 1.5

N
-V

M
M

λ
n
=

0 9.3± 3.7 5.3± 2.8 2.8± 1.6 1.9± 1.3 1.2± .84 .68± .64
10−4 8.2± 4.0 5.4± 2.5 2.9± 1.7 1.7± 1.3 1.1± .80 .71± .68
10−2 8.8± 4.1 5.6± 2.5 2.8± 2.0 1.8± 1.3 1.1± .83 .72± .65
1 7.3± 2.7 4.9± 2.1 2.7± 1.9 2.0± 1.3 1.1± .84 .67± .68

Si
ev

e Id > 100 > 100 > 100 > 100 > 100 > 100
Hom > 100 > 100 > 100 > 100 > 100 > 100
Het > 100 > 100 > 100 > 100 > 100 > 100

MMR 10.3± 1.9 10.2± 1.2 9.7± 1.2 9.8± .85 9.7± .70 9.6± .60
Naïve 9.1± 6.7 8.8± 5.1 7.6± 3.0 7.9± 2.4 7.7± 1.2 7.4± .89
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L2 error in Complex IV scenario

Method n
200 500 1,000 2,000 5,000 10,000

K
-V

M
M

α
n
=

0 > 100 .92± 1.8 2.1± 13.1 .16± .34 .06± .05 .03± .07
10−8 14.0± 59.8 > 100 .36± .69 .15± .31 .05± .04 .02± .01
10−6 1.4± 1.3 .44± .37 .19± .14 .09± .07 .05± .04 .02± .01
10−4 1.4± 1.4 .40± .33 .18± .13 .09± .07 .05± .04 .02± .01
10−2 1.5± 1.5 .49± .47 .21± .17 .09± .07 .05± .03 .02± .01
1 1.7± 1.6 .87± .79 .52± .64 .35± .49 .22± .18 .19± .19

N
-V

M
M

λ
n
=

0 5.2± 2.7 1.5± .74 .55± .29 .32± .20 .16± .10 .09± .07
10−4 5.0± 3.0 1.5± .73 .58± .32 .30± .18 .15± .09 .09± .08
10−2 4.8± 2.7 1.5± .71 .55± .33 .31± .19 .15± .09 .09± .08
1 3.7± 1.8 1.4± .58 .54± .29 .32± .18 .15± .10 .09± .08

Si
ev

e Id 4.4± 2.9 4.4± 4.0 3.3± 3.8 2.7± 3.1 2.5± 2.9 3.7± 4.0
Hom 4.3± 3.1 3.4± 5.8 3.3± 4.9 3.7± 3.9 3.6± 3.3 3.2± 3.1
Het 4.8± 3.4 3.5± 4.0 3.4± 3.7 2.4± 2.9 3.2± 3.1 2.7± 3.3

MMR 2.1± .81 1.7± .44 1.5± .29 1.4± .31 1.3± .24 1.3± .17
Naïve 5.9± 1.3 5.7± .67 5.5± .63 5.6± .53 5.6± .28 5.5± .22
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Coverage for 95% CIs

n Method Simple IV Complex IV

200

Kernel

αn = 0 83.0 84.5
αn = 10−8 83.0 83.5
αn = 10−6 83.0 87.5
αn = 10−4 84.5 91.5
αn = 10−2 86.5 95.0
αn = 1 91.0 100

Neural

λn = 0 82.0 70.5
λn = 10−4 81.5 71.5
λn = 10−2 83.5 69.5
λn = 1 82.5 70.0

2000

Kernel

αn = 0 91.5 95.5
αn = 10−8 92.0 95.5
αn = 10−6 92.5 95.5
αn = 10−4 92.5 96.0
αn = 10−2 95.0 97.5
αn = 1 100.0 100

Neural

λn = 0 90.0 95.5
λn = 10−4 90.5 95.5
λn = 10−2 90.0 95.5
λn = 1 90.0 95.5
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Beyond efficiency

I We proved VMM consistent for general θ
I But efficiency and inference only made sense for finite-dim θ

I What about general nonparametric θ?
I Dikkala et al. (2020) provide nonparametric finite-sample

guarantees for unweighted minimax method 👍
I But we know plain minimax not efficient – need weighting
I At the same time, efficiency is not a story about rates, but

about leading constants on first-order terms
I Hard to characterize the effect of optimal weighting in terms

of finite-sample guarantees?
I TBD

I But does seem to help in practice
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Figure 2: Low-dimensional scenarios (Section 5.1). Estimated ĝ in blue; true response g0 in orange.

Scenario DirectNN Vanilla2SLS Poly2SLS GMM+NN AGMM DeepIV Our Method

abs .20± .01 .23± .01 .04± .00 .02± .00 .29± .01 .12± .00 .01± .00
linear .08± .00 .00± .00 .00± .00 .03± .00 .02± .00 .04± .00 .00± .00
sin .25± .01 .09± .00 .04± .00 .06± .00 .12± .00 .06± .00 .02± .00
step .21± .01 .03± .00 .03± .00 .04± .00 .03± .00 .02± .00 .01± .00

Table 1: Low-dimensional scenarios: Test MSE averaged across ten runs, followed by the standard
error of the mean.

Scenario DirectNN Vanilla2SLS Ridge2SLS GMM+NN AGMM DeepIV Our Method

MNISTz .25± .02 .23± .00 .23± .00 .27± .01 – .11± .00 .07± .02
MNISTx .28± .03 > 1000 .19± .00 .19± .00 – – .15± .02
MNISTx,z .24± .01 > 1000 .39± .00 .25± .01 – – .14± .02

Table 2: High-dimensional scenarios: Test MSE averaged across ten runs, followed by the standard
error of the mean.

the results in Fig. 2. The left column shows the sampled Y plotted against X , with the true g0 in227

orange. The other columns show in blue the estimated ĝ using various methods. Table 1 shows the228

corresponding MSE over the test set.229

First we note that in each case there is sufficient confounding that the DirectNN regression fails badly230

and a method that can use the IV information to remove confounding is necessary.231

Our next substantive observation is that our method performs competitively across scenarios, attaining232

the lowest MSE in each. At the same time, the identity of the best performing benchmark changes in233

each scenario: GMM+NN for abs, 2SLS for linear, Poly2SLS for sin, and DeepIV for step. Therefore234

we conclude that in the low dimensional setting, our method is able to adapt to the scenario and235

compete with best tuned methods for the scenario.236

Overall, we also found that GMM+NN performed well (but not as well as our method). In some237

sense GMM+NN is a novel method; we are not aware of previous work using (OW)GMM to train238

a neural network. Whereas GMM+NN needs to be provided moment conditions, our method can239

be understood as improving further on this by learning the best moment condition over a large class240

using optimal weighting. Moreover, we found that GMM+NN outperformed AGMM, which uses the241

same moment conditions. Aside from the jitter step implemented in the AGMM code, it is equivalent242

to one-step GMM, Eq. (5), with k · k1 vector norm in place of the standard k · k2 norm. Its worse243

performance can perhaps be explained by this change and by its lack of optimal weighting.244

In the experiments, the other NN-based method, DeepIV, was consistently outperformed by Poly2SLS245

across scenarios. This can potentially be attributed to the infamous “forbidden regression” issue.246

7
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Policy Learning

I Covariates X, potential losses Y ∗(+1), Y ∗(−1)
I For g : X → R define

J(g) = E[sign(g(X))(Y ∗(+1)− Y ∗(−1))]

I Equal to (twice) the value of the policy sign(g(X)) minus the
value of the completely randomized policy (±1 equiprobably)

I Observe O = (X,A, Y ) where Y = Y ∗(A), A ⊥⊥ Y ∗(±1) | X

J(g) = E[ψ(O) sign(g(X))]

ψ(O) = µ(X,+1)− µ(X,−1) + Y−µ(X,A)
1
2
(A−1)+e(X)

,
µ(X,A) = E[Y | X,A], e(X) = P (A = 1 | X)
I En[ψ(O) sign(g(X))] semiparametrically efficient for J(g)
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Reduction to Cost-Sensitive Classification

I J(g) = E[ψ(O) sign(g(X))] = E[W`0-1 (g(X), S)]
I W = |ψ(O)|, S = sign(ψ(O)), `0-1(v, s) = sign(v)s

I For a classification calibrated loss ` (Bartlett et al., 2006):
g ∈ argminE[W`0-1(g(X), S)]

⇐⇒ g ∈ argminE[W`(g(X), S)]

I May restrict g ∈ G if G ∩ argminE[W`0-1(g(X), S)] 6= 0

I Suggests to use surrogate-loss classification

ĝn ∈ argmin
g∈G

En[W`(g(X), S)]

I E.g., hinge (Zhou & Kosorok, ’17), logistic (Jiang et al., ’19)
I For logistic can even do M -estimation inference
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A Conditional Moment Problem

I g ∈ argminE[W`(g(X), S)] ⇐⇒ E[W`′(g(X), S) | X] = 0

I Consider G = {gθ(x) = θ>x : θ ∈ Rd}
I Classic MLE theory: linear logistic regression is efficient in

the model on (X,S) satisfying E[`′(g(X), S) | X] = 0
I Surprisingly, weighted logistic regression

θ̂n ∈ argming∈G En[W`(gθ(X), S)] is not efficient for θ0 in
the above policy learning setting

I Can use VMM to get efficient learner
I Efficiency has optimal regret implications
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5 Experiments
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Efficient Policy Learning from Surrogate-Loss Classification Reductions

7 Application: Evaluation in Confounded POMDPs
Proximal Reinforcement Learning



Intro VMM Guarantees Inference Experiments Policy Learning POMDPs

Model
I POMDP confounded observation model
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OPE in Confounded POMDP

I Reduces to a sequence of nested proximal causal inference
problems

I Subject to certain completeness assumptions analogous to
proximal causal inference, can do OPE

I Need to fit value bridge function and action bridge function
I Analogous to q-function and density ratio
I Given by conditional moment equations
I Solve using VMM
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Experiments

I Easy (high overlap) policy
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Experiments

I Hard (low overlap) policy
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Experiments

I Optimal policy
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Conclusions
I Conditional moment model can be used for many problems

I Workhorse of economics
I Important in offline RL
I Especially confounded settings
I Can even be used to do cost-sensitive classification

I Sieves are unwieldy −→ more ML-ish minimax approaches
I Loses the efficiency and inference of OWGMM 🥇

I Developed VMM by more directly generalizing OWGMM to
minimax setting with general function classes
I Asymptotically normal
I Semiparametrically efficient
I Can be applied to itself to estimate standard errors

I Works well in practice
I … even beyond finite dim θ 🤔



Thank you!
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