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Recent successes in RL
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Markov decision process (MDP)

• A collection of MABs indexed by state s ∈ S.
• At time step t, an agent observes the state st, selects an

action at ∼ π(·|st), and then receives a reward r(st, at).

• The environment transitions to a new state st+1 ∼ P (·|st, at).

state st

action at

state st+1 action at+1
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Value function and Q-function
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⇠ ⇠ ⇠ ⇠ ⇠

⇡(·|s0) ⇡(·|s1) ⇡(·|s2) ⇡(·|s3) ⇡(·|s4)

Value function and state-action (Q) function of policy π:

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γtrt
∣∣ s0 = s

]

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑
t=0

γtrt
∣∣ s0 = s, a0 = a

]

• Long-term discounted reward: γ ∈ [0, 1) is the discount factor

• Expectation is w.r.t. the sampled trajectory under π
4



Reinforcement learning (RL)

Reinforcement Learning: online vs offline

online offline

offline: no interaction with the environment!
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Reinforcement learning (RL)

Challenges in RL: bigS!

Go game: ≳ 10700 states Mario: 256256×400

How to design provably efficient methods for RL?

6



Reinforcement learning (RL)

Challenges in RL: bigS!

Go game: ≳ 10700 states Mario: 256256×400

How to design provably efficient methods for RL?

6



Surely, RL has been solved?

Best result* B⋆SH3/ϵ2 for Mario�: ≥ 10250000

1/12 of the output!
*XJWXB21, B⋆ is some measure of distribution shift.
�
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Answer to the Ultimate Question of Life: Deep Learning

Function Approximation

f ∈ F


Linear

Kernel

Neural Network

With O( log |F|
ϵ2

) samples we can
learn ϵ-optimal predictor by
ERM.

|F|: cardinality of F .
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Let’s first look at Online RL + Function Approximation

Huge slew of negative results:

• Linear function approximation even with gap conditions is
hard*

• Simplest neural net function approximation is hard �

Positive results:

• Bilinear classes� is essentially the broadest class.

• Almost all positive results rely on elliptic potential lemma,
so are linear in some way.

Basically only Linear Online RL is possible.

*WAJAYJS21, WWK21
�DYM21
�DKLLMSW
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Is offline RL harder than online RL?

• After the bilinear paper , I became depressed about
online/offline RL.

• My reasoning: offline RL is harder than online RL, and online
is already impossible.

So, I went to work on the simulator setting where you can use
Neural Nets*.

Wait, you can aim lower in offline RL!

*HHKLLWa21,HHKLLWb21
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Easier Problem: Transfer Learning

Density Ratio B∗ := maxx
ptgt
psrc

(x). For many function classes
(e.g. kernel methods), the transfer difficulty is characterized
density ratio*:

minimax ≍ (B⋆/n)c,

c is the exponent without distribution shift.

Analogous result for Offline RL

The best you can hope for is B⋆ log |F|poly( 1
1−γ

)

ϵc , and all the hard
part of online RL is hidden in B⋆.

TLDR: Offline RL is easier, because we can aim lower!

*MPW2022
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Model and Notations

Model:

• infinite horizon MDP M = {S,A, P, r, γ, µ0}.
• offline dataset D = {(si, ai, ri, s′i)}ni=1 where (si, ai) ∼ dD,

ri = r(si, ai), s
′
i ∼ P (·|si, ai).

• dD is unknown. Denote dD(a|s) by πD(a|s).
• µ0 is unknown: Assume access to i.i.d. samples

D0 = {s0,j}n0
j=1 from µ0.

Notations:

• dπ: discounted state visitation probability under policy π.

• Qπ(s, a) = E
[∑∞

t=0 γ
tr(st, at)

∣∣s0 = s, a0 = a, π
]
.

• V π(s) = E
[∑∞

t=0 r(st, at)
∣∣s0 = s, π

]
.
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Offline RL should be easy right?

What should F approximate?

Value Function Approximation: Approximate Q⋆ via function
class F .
Value Function Approximation: Approximate Q⋆ via function
class F .

Can we attain poly(B⋆, log |F|, 1ϵ , 1
1−γ ) sample complexity to find

optimal policy?
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No!

In concurrent work*, this has been shown to be impossible.

Theorem (FKSlX21)

There is a family of MDPs (with A = 2, B⋆ ≤ 16, and realizable
value function |F| = 2) such that any algorithm needs n ≥ S1/3 to
attain

J(π⋆)− J(π̂) ≥ .01

1− γ
.

Similar lower bound holds even under strong concetrability
(all-policy concentrability).

First conjectured by Chen and Jiang in 2019.

*FKSlX21
14



Should we give up?

The whole point is to break lower bounds!

Potential Assumptions:

• Completeness

• Super strong Concentrability

15



Completeness

Function class is closed under Bellman update:
For all f ∈ F , Tf ∈ F .

What is wrong with this?

• Non-monotone: increasing the approximation power of F may
cause completeness to be more violated.

• Pretrained representation are realizable, yet do not work
empirically under distribution shift in algorithms that require
completeness*.

*WFK22
16



What if F is universal?

But my F is universal, so it has to be complete!

NO!!!!!!
• Have to use function classes of bounded complexity (e.g.
RKHS norm ball, finite-capacity network)

• Bellman operator may not preserve the bounded complexity.
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Algorithms that work with Completeness

• Approximate Dynamic Programming* ( Fitted Q Iteration)

• Minimax FQI �

• Bellman-consistent Pessismism�

• Many others...

*EGW05,CJ19
�CJ19
�XCJMA21
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Concentrability

Many types of distribution ratio/concentrability:

• Single-policy : ∥dπ
∗

dD
∥∞ ≤ B⋆

• All-policy: ∥ dπ

dD
∥∞ ≤ Bπ for all π

• Super-strong: ∥p(·|s,a)
dD(·) ∥∞ ≤ BP for all s, a

19



Positive result under super-strong assuptions

Only positive result under realizability* is from Chen and Jiang:

n ≥ poly(BP ,
1

ϵ
,

1

1− γ
)

When does this hold?

• Known example is when dynamics P have low non-negative
rank and µ is average of the rows of P (s′).

*Not comparing to model-based methods, since realizable implies
completeness.
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Compare to transfer learning

Transfer learning is possible under the weakest density ratio
condition:

∥ptgt
psrc

∥∞ ≤ B⋆ equiv to ∥d
π∗

dD
∥∞ ≤ B⋆

21



Pessimism

Pessimism is a recently developed technique that allows us to use
single-point density ratio:

• Pioneered in Linear MDP*

• Bellman-consistent Pessimism for general function class
(under completeness) �

• All known algorithms that allow single-point or all-policy ratio
require completeness.

*JYY20, earlier works also use it, but do not analyze.
�XCJMA21
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Offline RL

Challenges in offline RL

• Distribution shift → Super strong concentrability

• Function approximation → Bellman-completeness

Both assumptions are very strong and are violated in practice!

Is sample-efficiency possible with realizability and single-policy
concentrability?

23
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Back to the basics: LP

Dual LP

max
d≥0

E(s,a)∼d[r(s, a)] (1)

s.t. d(s) = (1− γ)µ0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) (2)

where d ∈ R|S×A|, d(s) =
∑

a d(s, a),

Bellman flow constraints ⇐⇒ d is induced by a policy π.

24



Primal-dual form

Primal-dual LP for MDPs

max
d≥0

min
v

Lα(v, w) := (1− γ)Es∼µ0 [v(s) + E(s,a)∼d[ev(s, a)],

where ev(s, a) = r(s, a) + γ
∑

P (s′|s,a) v(s
′)− v(s).

• Inspired by bilinear π-learning* and OptiDice�

*W17,W19
�LJPLK21
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Offline primal-dual

Change of variables: w(s, a) = d(s,a)
dD(s,a)

Offline primal-dual LP for MDPs

max
w≥0

min
v

Lα(v, w) := (1− γ)Es∼µ0 [v(s)] + E(s,a)∼dD [w(s, a)ev(s, a)].

Computable from samples!

26



Difficulties with primal-dual

max
w≥0

min
v

Lα(v, w) := (1− γ)Es∼µ0 [v(s)] + E(s,a)∼dD [w(s, a)ev(s, a)].

• Not strongly concave in w, so no uniqueness.

• Nature can randomize over instances, to force errors when
there is zeroes in w (counterexample in the paper).

27



Density regularization to the rescue

Problem: Regularized Maximin

max
w≥0

min
v

Lα(v, w) :=(1− γ)Es∼µ0 [v(s)]− αE(s,a)∼dD [f(w(s, a))]

+ E(s,a)∼dD [w(s, a)ev(s, a)], (3)

where ev(s, a) = r(s, a) + γ
∑

P (s′|s,a) v(s
′)− v(s).

Denote the optimizer as (v∗α, w
∗
α).

28



Interpretation: Density Regularization

• Policy optimization: maxπ J(π) = E(s,a)∼dπ [r(s, a)].

• Density Regularization:

max
π

JD,f (π) = E(s,a)∼dπ [r(s, a)]− αDf (d
π∥dD),

where α > 0, Df (d
π∥dD) = E(s,a)∼dD [

dπ(s,a)
dD(s,a)

] is an

f -divergence.

Encourages dπ to stay close to dD.

• Suggested explanation from DICE family of algorithms and
most offline algorithms.
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Interpretation II: Density Regularization

Uniqueness: Density regularization leads to strong concavity in
the primal-dual, and thus unique w∗

α. Suppose d∗α is the optimum

of the regularized LP, then we can extract the regularized optimal
policy π∗

α via:

π∗
α(s|a) :=

{
d∗α(s,a)∑
a d∗α(s,a)

, for
∑

a d
∗
α(s, a) > 0,

1
|A| , else.

∀s ∈ S, a ∈ A.

When α > 0 and f is strongly-convex, d∗α and π∗
α are unique!
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PRO-RL

Function classes: V ⊆ R|S| and W ⊆ R|S|×|A|
+

Algorithm: PRO-RL

(ŵ, v̂) = arg max
w∈W

argmin
v∈V

L̂α(v, w), (4)

where

L̂α(v, w) :=(1− γ)
1

n0

n0∑
j=1

[v(s0,j)] +
1

n

n∑
i=1

[−αf(w(si, ai))]

+
1

n

n∑
i=1

[w(si, ai)ev(si, ai, ri, s
′
i)], (5)

and ev(s, a, r, s
′) = r + γv(s′)− v(s).

Denote the optimizer as (v∗α, w
∗
α).
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PRO-RL: policy extraction

Assume πD is known for now, dD(s, a) = dD(s)πD(a|s). Then the
final learned policy is:

π̂(a|s) =
{

ŵ(s,a)πD(a|s)∑
a′ ŵ(s,a′)πD(a′|s) , for

∑
a′ ŵ(s, a

′)πD(a
′|s) > 0,

1
|A| , else,

When πD is unknown, use behavior cloning to extract the policy!
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Assumptions

• Concentrability: d∗α(s,a)
dD(s,a)

≤ Bα
w, ∀s ∈ S, a ∈ A.

• Realizability: v∗α ∈ V, w∗
α ∈ W.

• Properties of f :
• Strong Convexity: f is Mf -strongly-convex,
• Boundedness: |f ′(x)| ≤ Bf ′,α, |f(x)| ≤ Bf,α,∀0 ≤ x ≤ Bα

w.
• Non-negativity: f(x) ≥ 0,∀x ∈ R.

• Boundedness of the function classes:
• 0 ≤ w(s, a) ≤ Bα

w,∀s ∈ S, a ∈ A, w ∈ W ,

• ∥v∥∞ ≤ Bv,α :=
αBf′,α+1

1−γ ,∀v ∈ V .

Single-policy concentrability and only realizability !
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• Strong Convexity: f is Mf -strongly-convex,
• Boundedness: |f ′(x)| ≤ Bf ′,α, |f(x)| ≤ Bf,α,∀0 ≤ x ≤ Bα

w.
• Non-negativity: f(x) ≥ 0,∀x ∈ R.

• Boundedness of the function classes:
• 0 ≤ w(s, a) ≤ Bα

w,∀s ∈ S, a ∈ A, w ∈ W ,

• ∥v∥∞ ≤ Bv,α :=
αBf′,α+1

1−γ ,∀v ∈ V .

Single-policy concentrability and only realizability !
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Statistical error

Statistical error term that arises in analysis:

Definition

ϵstat := (1−γ)Bv·
(
2 log 4|V |

δ

n

) 1
2

+(αBf +BwBe)·
(
2 log 4|V ||W |

δ

n

) 1
2

.

ϵstat characterizes the statistical error L̂α(v, w)− Lα(v, w) based
on elementary concentration (unbiased)!
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Sample complexity

Theorem (Sample complexity of learning π∗
α)

Fix α > 0. Suppose assumptions hold for the said α. Then with at
least probability 1− δ, the output of PRO-RL satisfies:

J(π∗
α)− J(π̂) ≤ 4

1− γ

√
ϵstat
αMf

.

f(x) =
Mf

2 x2 → n = Õ
(

(Bw,α)2

(1−γ)6(αMf )2ϵ4
+

(Bw,α)4

(1−γ)6ϵ4

)
.
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(

(Bw,α)2

(1−γ)6(αMf )2ϵ4
+

(Bw,α)4

(1−γ)6ϵ4

)
.

35



Sample complexity of competing with π∗
0

Corollary (Sample complexity of competing with π∗
0)

Suppose there exists d∗0 ∈ D∗
0 with concentrability (not unique).

Assume the realizability holds for α = αϵ :=
ϵ

2Bf,0
. For

n ≳
(ϵBf,αϵ + 2Bw,αϵBe,αϵBf,0)

2

ϵ6M2
f (1− γ)4

log
4|V||W|

δ
,

the output of PRO-RL with input α = αϵ satisfies

J(π∗
0)− J(π̂) ≤ ϵ,

with probability greater than 1− δ.

Efficient learning with single-policy concentrability and
realizability!
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Comparison with existing algorithms

The first algorithm to achieve efficient learning with single-policy
concentrability and only realizability!

37



Comparison with existing algorithms

The first algorithm to achieve efficient learning with single-policy
concentrability and only realizability!

37



Proof sketch for Theorem

Intuition: invariance of saddle points

Lemma

Suppose (x∗, y∗) is a saddle point of f(x, y) over X × Y, then for
any X ′ ⊆ X and Y ′ ⊆ Y, if (x∗, y∗) ∈ X ′ × Y ′, we have:

(x∗, y∗) ∈ arg min
x∈X ′

argmax
y∈Y ′

f(x, y),

(x∗, y∗) ∈ argmax
y∈Y ′

arg min
x∈X ′

f(x, y).

Optimizing over V ×W instead of R|S| × R|S||A|
+ can still find

(v∗α, w
∗
α).

38



Proof sketch for Theorem

Intuition: invariance of saddle points

Lemma

Suppose (x∗, y∗) is a saddle point of f(x, y) over X × Y, then for
any X ′ ⊆ X and Y ′ ⊆ Y, if (x∗, y∗) ∈ X ′ × Y ′, we have:

(x∗, y∗) ∈ arg min
x∈X ′

argmax
y∈Y ′

f(x, y),

(x∗, y∗) ∈ argmax
y∈Y ′

arg min
x∈X ′

f(x, y).

Optimizing over V ×W instead of R|S| × R|S||A|
+ can still find

(v∗α, w
∗
α).

38



Concentration of L̂α(v, w)

Step 1: bound |L̂α(v, w)− Lα(v, w)| via Hoeffding’s inequality
and union bound.

Lemma

With at least probability 1− δ, for all v ∈ V and w ∈ W we have:

|L̂α(v, w)− Lα(v, w)| ≤ ϵstat.
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Near-optimal ŵ

Step 2: bound ∥ŵ − w∗
α∥2,dD via strong concavity.

Lemma

With at least probability 1− δ,

Lα(v
∗
α, w

∗
α)− Lα(v

∗
α, ŵ) ≤ 2ϵstat.

Lemma

With at least probability 1− δ,

∥ŵ − w∗
α∥2,dD ≤

√
4ϵstat
αMf

.
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Step 2: bound ∥ŵ − w∗
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Near-optimal π̂

Step 3: bound Es∼d∗α [∥π∗
α(s, ·)− π̂(s, ·)∥1] and J(π∗

α)− J(π̂) via
performance difference lemma.

Lemma

Es∼d∗α [∥π∗
α(s, ·)− π̂(s, ·)∥1] ≤ 2∥ŵ − w∗

α∥2,dD .

Lemma

J(π∗
α)− J(π̂) ≤ 1

1− γ
Es∼d∗α [∥π∗

α(s, ·)− π̂(s, ·)∥1].
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Other results (see paper)

• Agnostic Learning I: competes with the best in the
function class.

• Agnostic Learning II: competes with the best policy that
the dataset covers.

• Unknown behavior policy πD: behavior cloning.

• Improved sample complexity: set α = 0, requires stronger
concentration assumptions or asymptotics.

42



Concluding thoughts

Primal-dual formulation is the analog of ERM
for offline RL.

Remaining Questions:

• Optimal sample complexity in ϵ.

• Realizability wrt unregularized value function/density ratio in
non-asymptotic setting.

• Markov games.
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