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Mental Causation: Psychology vs. Neuroscience
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Micro- and Macro Causal Description
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Hoel (2017): When the Map is Better than the Territory

C_ | Dy J O

finite state space same statespace as |



Hoel (2017): When the Map is Better than the Territory

finite state space

(1/5
1/7
0
1/7
1/9
1/7
1/6
0

 [Transition Probability Matrix] )

1/5
3/7
1/6
0
2/9
1/7
1/6
0

1/5
1/7
1/6
1/7
2/9
1/7
0
0

1/5
0
1/6
1/7
1/9
1/7
1/6
0

1/5
1/7
1/6
1/7
0
1/7
1/6
0

0
0
1/6
1/7
2/9
1/7
1/6
0

0
1/7
1/6
2/7
1/9
1/7
1/6

0

HOOOOOOOI

same statespace as |



Hoel (2017): When the Map is Better than the Territory
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Effective Information El

intervention distribution effect distribution
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Effective Information El
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Effective Information El

EI(I —J)= P(do(I))Dgr(P(J|do(I))||E(J))
1 X KL-divergence y
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*this slide has been corrected for a typo that was in the original



Effective Information El

E[([ — J) ](ImaazEnt, JE) mutual information between

maxEnt cause and effect
» P(do(I))Dg(P(J|do(I))||E(J))
1

X KL-divergence y
Difference between effect of ,
specific intervention and (maxent) P(J|d0(] — Z)) VS. E(J)

average intervention:

intervention distribution effect distribution
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What is great about Effective Information!?

E[([ — J) ](ImaacEnt; JE) mutual information between

maxEnt cause and effect

> P(do(I))Drcr.(P(J|do(I))||E(]))

® directed information measure (defined in terms of interventions)
® connection between causality and information theory
® explores full cause space / is independent of observed P(l)

® [core feature of characterization of consciousness in Tononi’s
Integrated Information Theory of Consciousness]
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Hoel’s Causal Emergence
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Hoel’s Macro Intervention
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Causal Emergence in Hoel 2017
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Causal Emergence in Hoel 2017
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Causal Emergence in Hoel 2017
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Causal Emergence in Hoel 2017
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Ambiguous Manipulation
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Ambiguous Manipulation

Total Cholesterol

HDL +

LDL ) @rt Dis@

e the causal effect of Total Cholesterol on Heart Disease is
ambiguous

= Total Cholesterol is over-aggregated, it cannot be described as a
cause of Heart Disease

Spirtes & Scheines (2002)
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Example 3: collapsing micro states with different causal effects
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Example 3: collapsing micro states with different causal effects
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Abstraction and Marginalization should commute

marginalization
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Abstraction and Marginalization DO NOT commute in Hoel 2017
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The Problem: Introducing MaxEnt distributions

P(do(I")) = MaxEnt(I")
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Upshots

® it is worth distinguishing between macro level causes (or causal
representations) and mixtures of causal effects

® whether or not there are macro-level causal descriptions is an

empirical question determined by P(E | do(C)), independent of
P(do(C))
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Upshots

® it is worth distinguishing between macro level causes (or causal
representations) and mixtures of causal effects

® whether or not there are macro-level causal descriptions is an
empirical question determined by P(E | do(C)), independent of

P(do(C))

B this also ensures that abstraction and marginalization
commute

® (although | have not discussed this in detail here) there is a
distinction between how one determines the macro cause and
how one determines the macro effect, though of course they
are related



Specifically for Hoel’s account

® the suggested relation between information theory and
causality via effective information is tenuous and suggestive at
best



Specifically for Hoel’s account

® the suggested relation between information theory and

causality via effective information is tenuous and suggestive at
best

® channel capacity is a normative concept; whether or not it is
exhausted is an empirical question; so the described causal
emergence here is a possible emergence that may never be
exhibited by the system in question

® effective information is uniquely maximized, but it is not clear
that the implied partition of the state space is unique; this cuts
both ways: either one wants uniqueness, or one wants non-
uniqueness but not in the way implied by this theory: one
wants many very different levels of aggregation
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