Caltech

Causal Emergence: When Distortions in the Map Obscure the Territory

Frederick Eberhardt & Lin Lin Lee

Causal Representation Learning

Mental Causation: Psychology vs. Neuroscience

Micro- and Macro Causal Description

causal relation

Hoel (2017): When the Map is Better than the Territory

Hoel (2017): When the Map is Better than the Territory

```
\begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 0 & 0 & 0 \\ 1/7 & 3/7 & 1/7 & 0 & 1/7 & 0 & 1/7 & 0 \\ 0 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 0 \\ 1/7 & 0 & 1/7 & 1/7 & 1/7 & 1/7 & 2/7 & 0 \\ 1/9 & 2/9 & 2/9 & 1/9 & 0 & 2/9 & 1/9 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/6 & 1/6 & 0 & 1/6 & 1/6 & 1/6 & 1/6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

[Transition Probability Matrix]

Hoel (2017): When the Map is Better than the Territory

intervention distribution

$$P(do(I)) = MaxEnt(I)$$

effect distribution

$$E(J) = \frac{1}{n} \sum_{I} P(J|do(I))$$

[Transition Probability Matrix]

same state space as I

Difference between effect of specific intervention and (maxent) average intervention:

$$P(J|do(I=i)) \quad \text{ vs. } \quad E(J)$$

intervention distribution

$$P(do(I)) = MaxEnt(I)$$

effect distribution

$$E(J) = \frac{1}{n} \sum_{I} P(J|do(I))$$

[Transition Probability Matrix]

$$EI(I \rightarrow J) = \sum_{I} P(do(I)) D_{KL}(P(J|do(I))||E(J))$$
 KL-divergence

Difference between effect of specific intervention and (maxent) average intervention:

$$P(J|do(I=i)) \quad \text{ vs. } \quad E(J)$$

intervention distribution

$$P(do(I)) = MaxEnt(I)$$

effect distribution

$$E(J) = \frac{1}{n} \sum_{I} P(J|do(I))$$

[Transition Probability Matrix]

same state space as

$$EI(I o J) = I(I_{maxEnt},J_E)$$
 mutual information between maxEnt cause and effect
$$= \sum_I P(do(I))D_{KL}(P(J|do(I))||E(J))$$
 KL-divergence

Difference between effect of specific intervention and (maxent) average intervention:

$$P(J|do(I=i)) \quad \text{ vs. } \quad E(J)$$

intervention distribution

$$P(do(I)) = MaxEnt(I)$$

effect distribution

$$E(J) = \frac{1}{n} \sum_{I} P(J|do(I))$$

[Transition Probability Matrix]

same state space as

What is great about Effective Information?

$$EI(I o J) = I(I_{maxEnt},J_E)$$
 mutual information between maxEnt cause and effect
$$= \sum_I P(do(I))D_{KL}(P(J|do(I))||E(J))$$

- directed information measure (defined in terms of interventions)
- connection between causality and information theory
- explores full cause space / is independent of observed P(I)
- [core feature of characterization of consciousness in Tononi's Integrated Information Theory of Consciousness]

Hoel's Causal Emergence

Hoel's Macro Intervention

Hoel's Macro Intervention

BUT, the El-maximization is subject to:

- subset of possible intervention distributions
- identical state spaces for I and J that change with the coarsening

 $\widetilde{P(J|do(I))}$

Example I

$$\begin{bmatrix} 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}$$

Example I

$$\max_{C(\mathcal{I})} EI(I \to J)$$

$$\begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 0 & 0 & 0 \\ 1/7 & 3/7 & 1/7 & 0 & 1/7 & 0 & 1/7 & 0 \\ 0 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 0 \\ 1/7 & 0 & 1/7 & 1/7 & 1/7 & 1/7 & 2/7 & 0 \\ 1/9 & 2/9 & 2/9 & 1/9 & 0 & 2/9 & 1/9 & 0 \\ 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 1/7 & 0 \\ 1/6 & 1/6 & 0 & 1/6 & 1/6 & 1/6 & 1/6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Ambiguous Manipulation

Ambiguous Manipulation

Ambiguous Manipulation

- the causal effect of Total Cholesterol on Heart Disease is ambiguous
- → Total Cholesterol is over-aggregated, it cannot be described as a cause of Heart Disease

Example 3: collapsing micro states with different causal effects

Example 3: collapsing micro states with different causal effects

Marginalization

Marginalization

Marginalization

Abstraction and Marginalization should commute

$$\begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.4 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.4 & 0.1 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 0.42 & 0.33 & 0.25 \\ 0.41 & 0.34 & 0.25 \\ 0.35 & 0.15 & 0.5 \end{bmatrix}$

The Problem: Introducing MaxEnt distributions

Upshots

- it is worth distinguishing between macro level causes (or causal representations) and mixtures of causal effects
- whether or not there are macro-level causal descriptions is an empirical question determined by P(E | do(C)), independent of P(do(C))

Upshots

- it is worth distinguishing between macro level causes (or causal representations) and mixtures of causal effects
- whether or not there are macro-level causal descriptions is an empirical question determined by P(E | do(C)), independent of P(do(C))
 - this also ensures that abstraction and marginalization commute

Upshots

- it is worth distinguishing between macro level causes (or causal representations) and mixtures of causal effects
- whether or not there are macro-level causal descriptions is an empirical question determined by P(E | do(C)), independent of P(do(C))
 - this also ensures that abstraction and marginalization commute
- (although I have not discussed this in detail here) there is a distinction between how one determines the macro cause and how one determines the macro effect, though of course they are related

Specifically for Hoel's account

 the suggested relation between information theory and causality via effective information is tenuous and suggestive at best

Specifically for Hoel's account

- the suggested relation between information theory and causality via effective information is tenuous and suggestive at best
- channel capacity is a normative concept; whether or not it is exhausted is an empirical question; so the described causal emergence here is a possible emergence that may never be exhibited by the system in question
- effective information is uniquely maximized, but it is not clear that the implied partition of the state space is unique; this cuts both ways: either one wants uniqueness, or one wants non-uniqueness but not in the way implied by this theory: one wants many very different levels of aggregation

References

• Erik P Hoel. When the map is better than the territory. Entropy, 19(5):188, 2017.

Other useful references

- Joe Dewhurst. Causal emergence from effective information: Neither causal nor emergent? Thought: A Journal of Philosophy, 2021.
- Paul Rubenstein, Sebastian Weichwald et al. Causal consistency of structural equation models. UAI 2017
- Cosma Shalizi & Cristopher Moore. What is a macrostate? Subjective observations and objective dynamics. arXiv preprint cond-mat/0303625, 2003.
- Peter Spirtes & Richard Scheines. Causal inference of ambiguous manipulations.
 Philosophy of Science, 71(5):833–845, 2004.
- Sander Beckers & Joseph Halpern. Abstracting causal models. AAAI, 2019.
- Scott Aaronson, Higher-level causation exists (but I wish it didn't). https://www.scottaaronson.com/blog/?p=3294 (and reply by Hoel)
- F.E. Rosas, et al. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data. PLOS Computational Biology, 2020.

Attemps at an alternative account (i.e. shameless self-promotion)

- Krzysztof Chalupka, Pietro Perona, & Frederick Eberhardt. Visual causal feature learning. UAI, 2015.
- Krzysztof Chalupka, Frederick Eberhardt, and Pietro Perona. Multi-level cause-effect systems. AISTATS, 2016.
 Thank you!