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Thanks to Mike Weiss for 
making most of these slides for 
an initial presentation



I’m planning an evaluation that will 
randomize 6,000 people within 20 
sites. Can you write the part of the 

analysis plan that describes the 
estimation model for the overall 

average ITT effect?

ALEX 2



Why don’t 
you do 

your own 
job?

O.K.

MIKE 3



Here’s the estimator I have in mind:

𝑌 =#
!"#

$%

𝛼! ∗ 𝑆𝑖𝑡𝑒! + 𝛽 ∗ 𝑇 + 𝜀

Where:
𝑌 = Outcome of interest
𝑆𝑖𝑡𝑒! = Set to 1 if person was at site j and 0 otherwise
𝑇 = Set to 1 if person assigned to treatment and 0
otherwise
𝜀 = error, assumed i.i.d. normal

ALEX 4
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ESTIMAND
What is the target of 
inference?
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Program Effect for a Person
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Program

No Program

Potential Outcome

Potential Outcome

Program
Effect
On
Neyman

Neyman
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= 𝑌! 1 − 𝑌! 0 = 𝛽!

= 𝑌! 1

= 𝑌! 0



Average Program Effect for a 
Group of People at a Site
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𝛽'( =#
)*+

," 1
𝑁(
𝛽)(

Where:
𝛽#! = average ITT effect at site 𝑗
𝛽$! = ITT effect for person 𝑖 at site 𝑗

= site 𝑗𝑁! = 4 = # of persons at site 𝑗
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-
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Estimand: Effect for Average Person or Site?
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𝛽!" = .25

𝛽!# = .50

𝛽%&'()* = 0.416

𝛽+$,& = 0.375



Estimand: Effect for Average Person or Site?

Where:
𝐽 = # of sites in study
𝑁 = total # of persons
𝑁! = # of persons at site 𝑗
𝛽#! = average ITT effect at site 𝑗 12

Target 
Unit

Person 𝛽-&'()* =:
./0

1
𝑁!
𝑁
𝛽#!

Site 𝛽($,& =:
!/0

1
1
𝐽
𝛽#!



Estimand: Effect for Finite or Super Population?

Evaluation Sample (Finite) 13

Relevant Super
Population



Four Estimands

Target Population
Finite Super

Target 
Unit

Person 𝛽2%3-&'()* =:
!/0

1
𝑁!
𝑁
𝛽#! 𝛽+%3-&'()* =:

!/0

1∗ 𝑁!∗

𝑁∗ 𝛽#!
∗

Site 𝛽2%3($,& =:
!/0

1
1
𝐽
𝛽#! 𝛽+%3($,& =:

!/0

1∗
1
𝐽∗
𝛽#!∗
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ESTIMATORS
Rule for calculating an 
estimate based on 
observed data
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!𝛽 =$
!"#

$

𝑤! ∗ !𝛽%!

Convenient way to describe estimators of 𝛽
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;𝛽#!= estimated average ITT effect at site 𝑗 = 0.66

(simple difference-in-means estimator)
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Classes of 
Estimators

1. Design Based

2. Linear Regression

3. Multilevel Modeling
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1. Design-
based 

Estimators 
(4 of them)
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Some nice features of design-based estimators

• Simple
• Clear connection to estimands
• Unbiased
• Specialized software designed for RCTs and for easy use
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Name Estimator 𝒘𝒋 Estimand

Design Based – person
)𝛽%&'()*+,-

"
!"#

$
𝑁!
𝑁
$𝛽%! 𝑤. ∝ 𝑁. 𝛽()*+,-

Design Based – site
)𝛽%&'+/0)

"
!"#

$
1
𝐽
$𝛽%! 𝑤. ∝ 1 𝛽+/0)

Design-based estimators of 𝛽
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Where:
𝑁- = number of people at site j in sample
𝑁 = number of people in full sample
/𝛽.- = estimated average ITT effect at site 𝑗 (simple difference-in-means estimator)
𝐽 = number of sites in sample



2. Linear 
Regression
(8 of them)

• See lots of text books

22



The linear regression estimators
Our Name Model 𝒘𝒋 Estimand

Fi
xe

d 
Ef

fe
ct

s

(1) Fixed Effects (FE)
$𝛽'(

𝑌 ="
!"#

$

𝛼! ∗ 𝑆𝑖𝑡𝑒! + 𝛽 ∗ 𝑇 + 𝜀 𝑤! ∝ 𝑁!𝑇! 1 − 𝑇! 𝛽')*+,-./0

(2) FE - heteroskedastic robust
$𝛽'(*1,2

" " 𝛽')*+,-./0

(3) FE - cluster robust
$𝛽'(*34

" " 𝛽5)*+,-./0

(4) FE – club sandwich
$𝛽3678

" " 𝛽5)*+,-./0

W
ei

gh
te

d 
Re

gr
es

sio
n

(5) FE - person-weights
$𝛽'(*9,:;<2*+,-./0

" 
𝜔!"
#$%&'( = 𝑇!"

𝑇))
𝑇)"

+ 1−𝑇!"
1− 𝑇))
1− 𝑇)"

𝑤! ∝ 𝑁! 𝛽')*+,-./0

(6) FE - site-weights
$𝛽'(*9,:;<2*.:2,

"

𝜔!"*!+$ = 𝑇!"
𝑇))
𝑇)"

+ 1−𝑇!"
1− 𝑇))
1− 𝑇)"

𝑁
𝐽
𝑁"

𝑤! ∝ 1 𝛽')*.:2,

Fu
lly

 
In

te
ra

ct
ed

(7) FE - w/ interactions - person
$𝛽'(*:02,-*+,-./0

𝑌 ="
!"#

$

𝛼! ∗ 𝑆𝑖𝑡𝑒! +"
!"#

$

𝛽! ∗ 𝑆𝑖𝑡𝑒!∗ 𝑇 + 𝜀 𝑤! ∝ 𝑁! 𝛽')*+,-./0

(8) FE - w/ interactions - site
$𝛽'(*:02,-*.:2,

" 𝑤! ∝ 1 𝛽')*.:2,
23



3. Multilevel 
Models

(3 of them)

24



The multilevel model estimators
Our Name Model 𝒘𝒋 Estimand

1. Fixed Intercepts Random Treatment 
Coefficient (FIRC) $𝛽=>*'?43

Level 1: 𝑌:! = 𝛼%! + 𝛽%!𝑇:! + 𝑒:!
Level 2: 𝛼%! = 𝛼%!

𝛽%! = 𝛽 + 𝑏!
Where:

𝑒:!~𝑁 0, 𝜎@

𝑏!~𝑁 0, 𝜏8@

𝑤! ∝ 𝜏̂ +
=𝜎@

𝑁!𝑇%! 1 − 𝑇%!

*#

𝛽5)*.:2,

2. Random Intercept Random Treatment 
Coefficient (RIRC) $𝛽=>*4?43

Level 1: 𝑌:! = 𝛼%! + 𝛽%!𝑇:! + 𝑒:!
Level 2: 𝛼%! = 𝛼 + 𝑎!

𝛽%! = 𝛽 + 𝑏!
Where:

𝑒:!~𝑁 0, 𝜎@
𝑎!
𝑏! ~𝑁 0

0 ,
𝜏A@ 𝜏A8
𝜏A8 𝜏8@

Unsure 𝛽5)*.:2,

2. Random intercept, constant coefficient 
( $𝛽=>*4?33)

Level 1: 𝑌:! = 𝛼%! + 𝛽𝑇:! + 𝑒:!
Level 2:

𝛼%! = 𝛼 + 𝑎!
Where:

𝛼!~𝑁 0, 𝜏B@

Basically like fixed 
effects model

𝛽')*+,-./0
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Surprise!



ESTIMATES
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The 12 Studies

27

Early Childhood-
Element. School

Middle School-High 
School

Post-secondary 
Education

Labor Market
Programs

Head Start 
Impact Study

Enhanced Reading 
Opportunity 

mdrc

Learning Communities 

mdrc

Welfare-to-Work
Programs
mdrc

After School – Reading 
Program
mdrc

Career Academies

mdrc

Performance-based 
Scholarships 

mdrc

After School – Math 
Program
mdrc

Communities in Schools Encouraging Summer 
Enrollment (1)

mdrc

Early College H.S. Encouraging Summer 
Enrollment (2)

mdrc



RQ1: 
Does choice of estimand/estimator 
matter for the estimate of 𝛽?
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Range = 0.02σ
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Meh OK, I’m paying 
attention

Yikes?

Notes: Each dot represents a single outcome for a single study. 
The x-axis is the range of point estimates (𝑚𝑎𝑥 $𝛽 −𝑚𝑖𝑛 $𝛽 ) across all 14 estimators, in effect size units.

Impacts in effect size units.
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Notes: Each dot represents a single outcome for a single study. 
The x-axis is the range of point estimates (𝑚𝑎𝑥 $𝛽 −𝑚𝑖𝑛 $𝛽 ) across all 14 estimators, in effect size units.
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C𝛽/1.3$!45+.#$%&'(&
C𝛽/1.6(+$%.#$%&'(&

C𝛽78.96::
C𝛽,-.*0.#$%&'(&

C𝛽/1.:9
C𝛽/1.:;<=

C𝛽,-.*0.&!+$&
C𝛽78./69:

C𝛽,-./0.&!+$&
C𝛽/1.3$!45+.&!+$&
C𝛽/1.!(+$%.&!+$&

Group estimators by whether they are person or site targeting 

The person weighting ones are all basically the same.  Site, less so.

Ok, sometimes there 
can be a shift



RQ2: 
Does choice of estimand/estimator 
matter for the estimate of SE $𝛽 ?
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Some of these intervals 
seem wider than others



Notes: Each dot represents a single outcome for a single study.  
The x-axis is the ratio of largest to smallest estimated SE ( C𝑚𝑎𝑥 D𝑆𝐸 $𝛽 𝑚𝑖𝑛 D𝑆𝐸 $𝛽 ) across all estimators, in effect size units.
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The largest estimated SE can be a lot different 
than the smallest

For this outcome, the 
largest SE was more than 3 
times larger than the 
smallest!
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Notes: Each dot represents a single outcome for a single study.  
The x-axis is the ratio of largest to smallest estimated SE ( C𝑚𝑎𝑥 D𝑆𝐸 $𝛽 𝑚𝑖𝑛 D𝑆𝐸 $𝛽 ) across all 13 estimators, in effect size units.

!𝛽!"#$%#&'()*+)
!𝛽$,

!𝛽$,#-'.
!𝛽$,#/'012.#&'()*+)
!𝛽$,#0+.'(#&'()*+)

!𝛽34#5677

!𝛽!"#$%#)0.')
!𝛽$,#/'012.#)0.')
!𝛽$,#0+.'(#)0.')

!𝛽!"#8%#&'()*+)
!𝛽$,#75
!𝛽$,#79:;

!𝛽!"#8%#)0.')
!𝛽34#$657

What a mess!

Mostly no real 
difference, but 
can reach +20% 
or so, worst case



Are the Standard Error 
estimates calibrated?

Generally yes, if you are 
in the right framework.

Boxplots show calibration across 
simulation scenarios

36

3.1 Are the standard errors calibrated?

We first investigate whether the standard errors of a method equal, on average, the true
(appropriately chosen) standard error. We find that yes, all the methods roughly have
standard errors close to the appropriately selected true standard errors.

In Figure 7 we, for each method, compare the average estimated standard errors to the
actual superpopulation standard error and the actual finite sample standard error. These
boxplots show the distribution of the ratios across all the simulation scenarios. We see
that the inflation factor generally hovers around 1 (corresponding to the average estimated
standard error being the same as the true standard error) when compared to the appropriate
context (finite or superpopulation).

Inflation (Finite) Inflation (Superpop)

1 2 3 0.25 0.50 0.75 1.00

DB−FP−Persons

DB−FP−Sites

DB−SP−Persons

DB−SP−Sites

FE

FE−Club

FE−CR

FE−Het

FE−Int−Persons

FE−Int−Sites

FE−IPTW

FE−IPTW−Sites

FIRC

RICC

RIRC

Ratios of average SE.hat to true SE across scenarios

Figure 7. On left, comparing the average estimated standard error to the true finite-sample standard error,
averaged across datasets within each scenario. At right, comparing to the true superpopulation standard
error. Note that standard errors are independent of person-weighted vs. site weighted choices.

For finite-sample inference, while most standard errors are very well calibrated, some are
not as well calibrated as others. In particular, the standard errors for FE-IPTW-Sites tend
to be too small, as do those for FE-Int-Sites and DB-FP-Sites. We also see that interpreting
a superpopulation method’s standard error as the standard error for a finite sample estimand
is quite conservative.

For superpopulation targeting estimators, Figure 7 shows trends towards a bit too small
for the cluster-robust and design based superpopulation methods, and generally correct cal-
ibration overall for FIRC and RIRC. To unpack when this occurs, see Figure 8, where we

16



How well can we 
estimate our standard 
errors anyway?

For superpopulation, not well.

For finite, almost perfectly in some 
cases.

Site average estimation does have a 
price, as usual.
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DB−FP−Persons

DB−FP−Sites

DB−SP−Persons

DB−SP−Sites

FE

FE−Club
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FE−Int−Persons

FE−Int−Sites

FE−IPTW

FE−IPTW−Sites

FIRC

RICC

RIRC

0 10 20 30 40 50
100*Ratio of Standard deviation of the standard errors to actual SEs

population finite superpop

Figure 9. Ratio of standard deviation of dSE estimates to true SE across methods.

plot the proportion of time the nominal superpopulation estimated SE was 10% or more
smaller. See figure below. We see that, even with cross site variation amounts of around
0.10, we frequently see superpopulation standard errors being smaller more than 25% of the
time. For very precisely estimated sites (more sites, or larger sites), this is less of a concern.

The cluster-robust estimator, in particular, is quite unstable and can return very low
standard errors. The FIRC model, however, regularly returns lower standard errors, but
very rarely undershoots the design based estimator by more than 10%.

3.4 Discussion

Overall, we have seen that the standard error estimates for the finite sample estimators are
generally stable and well calibrated. We do not uncover any serious issues, with the possible
exception of the inverse probability of treated site weighted estimator.

The superpopulation standard errors, on the other hand, are more di�cult to estimate
and there are some biases in estimation. In fact, we have seen that these estimators can be so
unstable that we can actually end up with estimates that are smaller than the corresponding
finite sample estimates in some cases, even though the true finite sample uncertainty is
always less.
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SE Estimate from Fixed Effects Cluster Robust (βFE-CR) Estimator

Some odd things happen with superpopulation SEs

Cluster robust FE targets 
superpop person weighted.  
We expect the SEs to be 
LARGER than the finite 
person weighted

This often does not happen.

(The other superpopulation 
estimators suffer the 
same.)

Superpopulation SE estimates vary a lot, causing trouble.

Superpopulation 
SE bigger
(as we would expect)

Superpopulation 
SE smaller than finite
(which is nonsensical)



From Simulation:
How often do we get a 
smaller finite population 
standard error than a 
superpopulation one?

Not infrequently.

Instability of all estimators at the 
superpopulation level in the face of 
cross site impact variation makes 
life difficult.
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Figure 10. Proportion of time superpopulation estimator has smaller dSE than finite-sample design-based
estimator. The dotted lines show proportion of time it is 10% smaller or more.

no matter how poor the point estimate, the confidence interval will cover. This can o↵set
the standard error being too small for other times. (The t-distribution is used to account for
this in some contexts.) This arguably is what is occurring for some of our superpopulation
estimators.

Future work should more throughly investigate the above with appropriate degrees of
freedom adjustments. These would lead to lower power and wider intervals. Overall, this
further suggests that not only are superpopulation targeting estimators more unstable in
truth, in the face of cross site impact variation, but that measuring and testing in this
context has an additional layer of di�culty on top of that.

5 Comparing FIRC to DB-Super-Sites

In our empirical analysis we identified the most amount of variation in estimated standard
errors within the domain of the site-weighted, superpopulation estimand. The two estimators
in this domain are FIRC and DB-SP-Site. We wanted to investigate to what degree these
di↵erences are due to di↵erent actual standard errors, or di↵erent instability in estimating
standard errors. In this section we therefore look at all the above results with an eye
to comparing how FIRC, which is adaptive in that it tends towards precision-weighted to
stabilize its estimates of the superpopulation site average impact, performs relative to the

21

Superpopulation estimated SEs are lower than finite estimated SEs quite often



RQ3: 
Bias Precision Trade-off?

40



Unbiased vs. Fixed Effects models

41

RQ3: Bias Precision Trade-off?
Part I: The estimand of 𝛽!"#$%&'()
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Fixed Effects Estimator of β – Little Potential for Bias
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Unbiased Design Based vs. FIRC
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RQ3: Bias Precision Trade-off?
Part II: The estimand of 𝛽*"#'+,%
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FIRC Estimator - Potential for Bias?

We are seeing some 
differences between 
FIRC (adaptive in 
nature) and design 
based
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FIRC Estimator - Precision Gains?

FIRC has lower SE
So at least we think we are more 
precise?

FIRC actually ended up
with a higher SE.
Possibly because  one or 
the other had a poor 
estimate.



Simulation Commentary: Infinite Site is hard and
the 𝛽&'()*+,-. is a troublemaker
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Figure 13. Relative performance in estimating SEs vs relative performance in RMSE for FIRC vs. DB-Site
(both targeting the superpopulation site estimand). We see FIRC generally outperforms on both metrics
except with many sites and large degrees of variation correlated with site size.
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• FIRC is adaptive, clinging to 
fixed effect fairly strongly 
unless there is a large 
amount of cross site 
variation.

• That being said, FIRC is 
quite unstable.

• Unbiased approaches are 
even more unstable, 
however.

• Across of all simulation 
scenarios we consider, the 
RMSE of FIRC was higher 
than DB-SP-Site in only 2% 
of them.



And what about covariate 
adjustment?
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0.000 0.025 0.050 0.075 0.000 0.025 0.050 0.075

0.000 0.025 0.050 0.075

Covariate Shift

Small changes in point 
estimate means small 
change in our findings.

(Grey line is a shift of 0.01)
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FIRC RICC

FE−Int−Persons FE−Int−Sites FE−IPTW FE−IPTW−Sites

FE FE−Club FE−CR FE−Het

DB−FP−Persons DB−FP−Sites DB−SP−Persons DB−SP−Sites

0.8 1.0 1.2 0.8 1.0 1.2

0.8 1.0 1.2 0.8 1.0 1.2

Ratio of adjusted SE to unadjusted SE

SE estimates not improved 
much.

Dotted line is 10% 
improvement.

Note stability
here

And here

And here



Two additional resources with our paper 
(3 papers for the price of one?)

A) Technical appendix gives overview of all estimators 
with some details and notes on their use

B) Multifactor simulation appendix explores estimator 
performance under hypothetical MLM DGP
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The stand we take

• Estimand choice matters.

• 𝛽 estimator choice matters for site-
super estimand, otherwise not much

• SE /𝛽 estimator matters for site 
estimands, much less for person 
estimands

• The superpopulation site estimators 
differ the most, and are the most 
unstable (difficult).



Thank you

Luke Miratrix
lmiratrix@g.harvard.edu

Michael Weiss
Michael.Weiss@mdrc.org

Brit Henderson
Brit.Henderson@mdrc.org
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Thanks to Mike Weiss for 
making most of these slides for 
an initial presentation
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