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Representations of GL and SL

{Irreducible representations of SL(n)}
↔

{Young diagrams with at most n− 1 rows}

{Irreducible representations of GL(n)}
↔

{Young diagrams with at most n− 1 rows and an integer}
The correspondence is very classical using Schur functors. To any Young
diagram λ one associates a Schur functor Sλ. The irreducible
representation of SL(V ) is Sλ(V ).
What is it? We take the tensor power of V (to the number of boxes in λ)
and we act with Young symmetrizer on it (that is we permute with some
coefficients the tensors).
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Representations of GL and SL - examples

Of course we can apply Sλ to any other representation (not only the trivial
one) using the same construction. In this case we will usually obtain a
reducible representation.

Example

We can consider the symmetric power of a wedge power Sd(
∧k(V )). This

is an example of plethysm. In general, the composition of two Schur
functors Sµ(Sλ) is called the plethysm.

S4(S3(C3)) = S4,4,4 + . . .
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Aims

What is the combinatorial formula for plethysm?

This is the hard part. There is no good, combinatorial formula. The
problem is (very) open even for Sd(Sk(V )).
Aim: Understand polynomials in coefficients of polynomials
Modest, reasonable aim: Understand low degree polynomials in coefficients
of arbitrary polynomials
Not much is known...
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Notable exceptions

Proposition (Thrall 1942)

One has GL(W )-modules decompositions

S2(SnW ) =
⊕

SλW,
∧

2(SnW ) =
⊕

SδW,

where the first sum runs over representations corresponding to λ of weight
2n with two rows of even length and the second sum runs over
representations corresponding to δ of weight 2n with two rows of odd
length.

There are similar formulas for S3(Sk) obtained by Agaoka, Chen, Duncan,
Foulkes, Garsia, Howe, Plunkett, Remmel, Thrall and others. Some
approaches to the formulas for S4(Sk) are presented.
Problem: the formulas are more and more complicated.
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Characters

Characters are (symmetric) polynomials that are associated to (and
completely determine) a representation.

The trace of a representation
provides a function that is a symmetric polynomial in the eigenvalues.
Traces of Sλ(V ) are called Schur polynomials. They form a basis of the
space of symmetric polynomials in dimV variables.

Example
Consider V =< e1, e2 >. The trace of the action of the diagonal matrix
with eigenvalues x1, x2 on S2(V ) equals x2

1 + x1x2 + x2
2.

Decomposing a representation is equivalent to decomposing its character.
Precisely:

W =
∑

(SλV )⊕aλ if and only ifPW =
∑

aλPλ,

where PW is the character of W and Pλ are Schur polynomials.
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Algebraic approach to plethysm

Plethysm can be defined on the level of symmetric polynomials.

Proposition
For any symmetric polynomial f , the mapping g → g ◦ f is an
endomorphism of the ring of symmetric polynomials. For any n ∈ N, the
mapping g → ψn ◦ g is an endomorphism of the ring of symmetric
polynomials. Moreover,

ψn ◦ g = g ◦ ψn = g(xn1 , x
n
2 , . . . ).

This provides an explicit formula for the character of plethysm.
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Character of plethysm

Proposition

For a partition µ of d the character of the representation Sµ(SkW ) equals

PSµ(SkW ) =
∑

χµ(α)
Dα

d!
ψα ◦ hk,

where the sum is taken over all partitions α of d and Dα is the number of
permutations of cycle type α in the group Sd.

Proof.
Instead of presenting Schur polynomials in monomial basis express them in
power series:

Pµ =
∑
α`d

Dα

d!
χµ(α)ψα.

Substitute in Pµ ◦ h and apply previous remarks.

Here, ψα ◦ hk is just a product of complete symmetric polynomials in
powers of variables.
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Linear algebra?

Decomposing plethysm is equivalent to presenting ψα ◦ hk as a linear
combination of Schur polynomials.

Why this problem is not completely solved?
The combinatorial formulas become more and more complicated.
What can we do?
There are two possibilities to approach such problems:

1 provide explicit answers using methods, that mathematicians did not
use before,

2 hope for weaker qualitative results.
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Computational approach

We reduce computation of plethysm to computations of the number of
fibers in projections of (many) convex polyhedral cones.

More precisely, we have to compute the number of ’magic’ rectangular
tables, with nonnegative integral entries, where row and column sums are
parameters.

Definition ((α, λ)-matrix)

Fix partitions α, λ and suppose that α has a parts. An a× (d− 1) matrix
M with nonnegative integral entries is an (α, λ)-matrix if

1 each row sums up to k, i.e.
∑d−1

j=1 Mi,j = k for each 1 ≤ i ≤ a, and
2 the α-weighted entries of the j-th column sum up to λj , i.e.∑a

i=1 αiMi,j = λj for each 1 ≤ j ≤ d− 1.
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Computational approach

This is a perfect job for a computer! (We use Barvinok program through isl
library)

We obtain completely explicit formulas for Sµ(Sk) where µ is any partition
of 4 or 5.
(Hence also for Sµ(

∧k))
The result is a piecewise quasipolynomial. That is we obtain a chamber
decomposition of the parameter space and in each chamber the result is a
quasipolynomial, that is a polynomial with coefficients that depend on the
rest of the parameter modulo a fixed number.
Such chamber decomposition is already necessary for the case of cubics.
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Assymptotics

The coefficient of Sλ inside Sµ(Sk) for fixed µ is a piecewise
quasipolynomial in λi.

What is the assymptotic bahaviour/the leading term?
There is a very natural candidate

dim |µ|
d!

LR

observed already by Howe in ’80 and identified by him for S4(Sk).
We can prove that this is in fact the leading term (it is obvious that the
term appears, it is not obvious that the ’error terms’ are smaller).
I will be more than happy to discuss other approaches/remarks after the
talk.
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term appears, it is not obvious that the ’error terms’ are smaller).

I will be more than happy to discuss other approaches/remarks after the
talk.
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Conclusions and future plans

When the inner functor is fixed see ’Computing multiplicities of Lie
group representations’ Christandl, Doran, Walter
The multiplicities kλ in Sµ(Skn) are a quasipolynomial in k.
Explicit results are on: http://www.thomas-kahle.de/plethysm.html
Symbolic evaluation
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Example
The multiplicity of the isotypic component of

λ =

(616036908677580244, 1234567812345678, 12345671234567, 123456123456)

in S5(S123456789123456789) equals

24096357040623527797673915801061590529381724384546352415930440743659968070016051.

The evaluation of our formula on this example takes under one second and
this time is almost entirely constant overhead for dealing with the data
structure. Evaluation on much larger arguments (for instance with a million
digits) is almost as quick.

Well... to be honest...
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