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Interesting Problems

Multiagent Games + Sequential decision making



Classical Game Theory

� Normal-form games, Extensive-form games, ...

They don’t handle sequential games with long horizon efficiently.



Single-agent Reinforcement Learning

Agent

Environment

Action State,
Reward

� Goal: find the best policy within a fixed environment.

Opponents in MARL are not fixed, and can be adaptive!



Multiagent Reinforcement Learning

Game theory Reinforcement learning

+

A newer and less developed field, with its own unique challenges and

opportunities.



Main Question

Can we establish a solid theoretical foundation
for MARL?



Efficiency

Sample efficiency and computational efficiency

AlphaGo Zero: trained on ≥ 107 games, and took ≥ 1 month.

Statistics + Computer Science



Outline

� Formulation and Objectives

� Direct Combinations of Game Theory & Single-agent RL

� Two-player Zero-sum Games

� Multiplayer General-sum Games

� Advanced Topics



Formulation and Objectives



Markov Games (Stochastic Games)
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Two-player zero-sum Markov Game (S,A,B,P, r ,H) [Shapley 1953].

� S: set of states; A,B: set of actions for the max-player/the min-player.

� Ph(sh+1|sh, ah, bh): transition probability.

� rh(sh, ah, bh) ∈ [0, 1]: reward for the max-player (loss for the min-player).

� H: horizon/the length of the game.



Interaction Protocol
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Interaction protocol

Environment samples initial state s1.

for step h = 1, . . . ,H,

two agents take their own actions (ah, bh) simultaneously.

both agents receive their own immediate reward ±rh(sh, ah, bh).
environment transitions to the next state sh+1 ∼ Ph(·|sh, ah, bh).



Our Setup

In this talk, we mostly focus on fully observable tabular Markov games.

� Fully observable: joint actions and states are revealed to both agents.

� Tabular: the size of S,A,B is finite and small.

serve as a foundation for more advanced setups in the future



Policy and Value

� General policy for the max-player (depends on the entire history):

π1,h : (S ×A× B)h−1 × S → ∆A

� Markov policy for the max-player (depends on the current state):

π1,h : S → ∆A

Policy of the min-player can be defined by symmetry.

� Value V π for joint policy π = (π1, π2): the expected cumulative reward

received by the max-player if both agents follow the joint policy π:

V π = Eπ

[
H∑

h=1

rh(sh, ah, bh)

]



Special Cases

� Normal-form games: no state, no transition.

� Extensive-form games: tree-structured transition.



Solution Concepts

What policy is good?

� Beat the world champion by a large margin?

� Beat all players by a large margin?



Best Responses

The policy that best exploits the opponent’s policy.

BR(π2) := argmax
π1

V π1,π2

Good against a fixed opponent, but can be bad against others.



Nash Equilibria

Nash Equilibria

The policies (π⋆1 , π
⋆
2 ) is a Nash equilibrium if no player has incentive to

deviate from her current policy. That is, for any π1, π2

V π1,π
⋆
2 ≤ V π⋆

1 ,π
⋆
2 ≤ V π⋆

1 ,π2

In two-player zero-sum Markov games, minimax theorem holds:

max
π1

min
π2

V π1,π2 = min
π2

max
π1

V π1,π2

� not due to von Neueman’s theorem as V π1,π2 is not convex-concave.

� can be proved via dynamical programming.



Nash Equilibria II

The optimal strategy if always facing best responses.

“We may not win by a large margin, but no one beats us.”

Objective: find ϵ-approximate Nash equilibria (π̂1, π̂2) using a small number of

samples with mild dependency on S ,A1,A2, ϵ,H.

max
π1

V π1,π̂2 −min
π2

V π̂1,π2 ≤ ϵ.



Challenges

To name a few:

� Large size of policy space:

Ω((1/ϵ)HSA) Markov policies in the tabular setting

� Nash equilibrium policy is Markov, but the best response may not be.

� MGs do not allow efficient no-regret learning [Bai, Jin, Yu, 2020].

max
π1

T∑
t=1

V
π1×πt

2
1 −

T∑
t=1

V
πt
1×π

t
2

1 ≤ poly(H,S ,A,B)T 1−α.



Direct Combinations



General Recipe

Key observation: given a fixed opponent, computing best response (BR) is a

single-agent RL problem.

Nash finding algorithms

with BR oracle

self-play

fictitious play

double oracle

. . .

Single-agent RL algorithms

value-iteration

Q-learning

DQN

PPO

. . .

commonly used in practice.



Self-play

Self-play

for k = 1, . . . ,K ,

πk+1
1 = BR(πk

2 ).

πk+1
2 = BR(πk+1

1 ).

πk
i : the policy of the i th player at

the k th iteration

Does not converge to Nash equilibria even in rock-paper-scissor!

Averaging won’t help.



Fictitious play

Fictitious play [Brown, 1949]

for k = 1, . . . ,K ,

πk+1
1 = BR[(1/k) · (π1

2 + . . .+ πk
2 )].

πk+1
2 = BR[(1/(k + 1)) · (π1

1 + . . .+ πk+1
1 )].

πk
i : the policy of the i th player at the k th iteration

Computing the best response to the average policy of the opponent.

makes more sense in rock-paper-scissor.



Theory of fictitious play

Asymptotic convergence of fictitious play [Robinson 1951]

Ficitious play indeed converges to Nash equilibrium!

However, how fast?

� inspecting the proof of [Robinson 1951], it requires (1/ϵ)Ω(A) iterations to

converge to ϵ-Nash equilibrium for a normal-form game with A actions.

� Karlin conjectured in 1959 that this rate can be improved to O(1/ϵ2).

� Daskalakis and Pan [2014] refute the conjecture, and prove that (1/ϵ)Ω(A)

is real in the worst case.



Double Oracle

Let Mk ∈ Rk×k be the reward matrix of subgame whose row actions are

{πi
1}ki=1 and column actions are {πj

2}
k
j=1.

Mk =


... π

j
2 ...

...
...

πi
1 . . . V πi

1,π
j
2 . . .

...
...


Double Oracle

for k = 1, . . . ,K ,

p, q ← a Nash equilibrium of Mk .

πk+1
1 = BR[

∑k
i=1 piπ

i
1].

πk+1
2 = BR[

∑k
j=1 qjπ

j
2].



Theory of Double Oracle

Double oracle represents a class of general approach which uses more informed

weights than fictitious play.

Convergence of double oracle [McMahan 2003]

Double oracle algorithm finds Nash equilibrium of a normal-form game with A

actions in O(A) iterations.

� This is because MA is the full game matrix.

� Directly converting a MG into a norm-form game gives A = (1/ϵ)HSA′

—the size of policy space.



Drawbacks of Direct Combinations

� Algorithms are designed based on black-box usage of single-agent RL,

which does not exploit the detailed structure of MGs.

� Converting a MG into a norm-form game gives a number of action

A = (1/ϵ)HSA
′
.

� Finding BR is NOT a easy single-agent RL problem:

� When the min-player deploys a fixed non-Markovian policy, the game is

NOT an MDP from the perspective of the max-player.

� Existing single-agent RL results do not apply.



Two-player Zero-sum Markov Games



Planning

We start with the setting of known transition P and reward r .

A Nash equilibrium of a MG is a Markov policy.

We define V ⋆
h (s), Q

⋆
h (s, a, b) which satisfies the Bellman optimality equation:

Q⋆
h (s, a, b) =rh(s, a, b) + Es′∼Ph(·|s,a,b)V

⋆
h+1(s

′)

V ⋆
h (s) = max

µ∈∆A
min
ν∈∆B

∑
a,b

µ(a)ν(b)Q⋆
h (s, a, b)

:=Nash Value(Q⋆
h (s, ·, ·))



Nash Value Iteration

A dynamical programming approach to find a Nash equilibrium.

Nash Value Iteration (Nash VI)

Initialize V ⋆
H+1(s) = 0 for all s.

for h = H, . . . , 1,

for all (s, a, b),

Q⋆
h (s, a, b)← rh(s, a, b) + Es′∼Ph(·|s,a,b)V

⋆
h+1(s

′)

for all s

(π⋆1,h(·|s), π⋆2,h(·|s))← Nash(Q⋆
h (s, ·, ·))

V ⋆
h (s)← ⟨π⋆1,h(·|s)× π⋆2,h(·|s),Q⋆

h (s, ·, ·)⟩

Nash VI computes the Nash equilibrium of MGs in poly(H, S ,A,B) steps!



More about Planning and Simulator Setting

Known P, r :

� Nash Q-learning also finds Nash equilibrium. [Hu & Wellman 2003]

� ...

Simulator setting (query any s, a, b, receive reward r and next state s ′):

� query all (s, a, b) uniformly and use sample average to estimate P and r .

� variants of Nash-VI [Zhang et al. 2020]

� variants of Nash Q-learning [Sidford et al. 2019]

� ...

Practical setting (agent can’t choose state s):

� need to tradeoff exploration vs. exploitation.

� will be our focus next.



Interaction Protocol
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Interaction protocol

Environment samples initial state s1.

for step h = 1, . . . ,H,

two agents take their own actions (ah, bh) simultaneously.

both agents receive their own immediate reward ±rh(sh, ah, bh).
environment transitions to the next state sh+1 ∼ Ph(·|sh, ah, bh).



Collecting Samples

Supervised learning: samples are given at the beginning.

RL: agent picks actions/policies to collect samples during training.

Agent

Environment

Action State,
Reward



Exploration

ϵ-greedy: take

random action, with probability ϵ

greedy action, otherwise

needs exponential number of samples in the worst case!



Upper Confidence Bound (UCB)

UCB Algorithm: be optimistic! Pick the action with the largest upper bound

on the confidence interval.



Optimistic Nash-VI

Optimistic Nash VI [Liu, Yu, Bai, Jin, 2020]

for k = 1, . . . ,K ,

for h = H, . . . , 1,

for all (s, a, b),

Qh(s, a, b)← rh(s, a, b) + Es′∼P̂h(·|s,a,b)V h+1(s
′) + β

Q
h
(s, a, b)← rh(s, a, b) + Es′∼P̂h(·|s,a,b)V h+1(s

′)− β
for all s

πh(·, ·|s)← CCE(Qh(s, ·, ·),Qh
(s, ·, ·))

V h(s)← ⟨πh(·, ·|s),Qh(s, ·, ·)⟩
V h(s)← ⟨πh(·, ·|s),Qh

(s, ·, ·)⟩
execute policy π, collect samples, and update estimation P̂.

P̂h(s
′|s, a, b) = N(s, a, b, s ′)

N(s, a, b)

can be viewed as a multiagent version of UCB-VI algorithm [Azar et al. 2017].



Main techniques

� Use sample average P̂ to estimate transition.

� Maintain upper and lower bound Q and Q to be optimistic.

� The choice of bonus β is different from single-agent RL for sharp guarantee.

� Compute coarse correlated equilibrium (CCE) of (Q,Q) instead of Nash.
[Xie et al. 2020]

� computing Nash equilibria of general-sum games is PPAD-hard.

[Daskalakis et al. 2008]



Theory of Optimistic Nash VI

Theorem [Liu, Yu, Bai, Jin 2020]

With high probability, optimistic Nash VI finds an ϵ-Nash equilibrium in

Õ(H3SAB/ϵ2) episodes.

H: horizon; S : number of states; A,B: number of actions for each player.

Optimistic Nash VI finds ϵ-Nash in polynomial time and samples!

Information theoretical lower bound: Ω(H3S max{A,B}/ϵ2)



Unique Challenge I: Centralized vs. Decentralized Algorithms

Optimistic Nash VI is a centralized algorithm

� at each step, centralized solver finds CCE of

Qh(s, ·, ·),Qh
(s, ·, ·)

Decentralized algorithms: each agent runs the same algorithm using her own

observations as if in the single-agent setting.

� easier to implement.

� more versatile, agnostic to the actions of other agents.

� faster, less communication.



Unique Challenge II: Bypassing the estimation of Q-value

� Most single-agent RL algorithm relies on estimating Q⋆.

� In MGs, Q⋆ has Ω(HAB) entries, which requires at least Ω(HAB) samples

to estimate.

� We need new mechanism to match the lower bound Ω(H3S max{A,B}/ϵ2)

Can we design decentralized MARL algorithms that achieves

O(max{A,B}) sample complexity?



Simple Case: Normal-form Games

Yes! but in a much simplier setting.

Each agent runs no-regret algorithm for adversarial bandit (e.g. EXP3)

independently.

T∑
t=1

⟨µt , ℓt⟩ −min
a∈A

T∑
t=1

⟨a, ℓt⟩ ≤ poly(A)T 1−α.

� two-player zero-sum games: (Et∼Unif(T )µ
(1)
t )× (Et∼Unif(T )µ

(2)
t )→ Nash.

� sample complexity scales with Õ(A+ B).



Extension to Markov Games?

Why not just run no-regret algorithms for MGs?

max
π1

T∑
t=1

V
π1×πt

2
1 −

T∑
t=1

V
πt
1×π

t
2

1 ≤ poly(H, S ,A,B)T 1−α.

WE CANNOT! MGs do not allow efficient no-regret learning.

� Computational hardness [Bai, Jin, Yu, 2020]:

The existence of polynomial time no-regret algorithm for MGs implies the

existence of polynomial time algorithm for learning party with noise.

� Statistical hardness [Liu, Wang Jin, 2022]:

No regret learning in MGs is at least as hard as learning the best Markov

policy in partial observable MDPs.



V-learning

V-learning [Bai, Jin, Yu, 2020] [Jin, Liu, Wang, Yu, 2021]

for k = 1, . . . ,K , receive s1,

for step h = 1, . . . ,H,

take action ah ∼ πh(·|sh), observe reward rh and next state sh+1.

t = Nh(sh)← Nh(sh) + 1.

Vh(sh)← (1− αt)Vh(sh) + αt(rh + Vh+1(sh+1) + βt).

πh(·|sh)← Adv Bandit Update(ah, rh + Vh+1(sh+1))

on the (sh, h)
th adversarial bandit.

� Incremental updates of V instead of Q!

� Learning rate αt = (H + 1)/(H + t) same as Q-learning.



Properties of V-learning

� Is a single-agent algorithm.

� Use adversarial bandit algorithms (with weighted regret guarantee) as

black-box.

T∑
t=1

αt
T ⟨µt , ℓt⟩ −min

a∈A

T∑
t=1

αt
T ⟨a, ℓt⟩ ≤ poly(A)T 1−α.

� Has no regret guarantee for each state with feeded loss.

� is NOT a no-regret algorithm for Markov games.



Guarantees

� Multiagent setting: both agents run V-learning independently.

� Adversarial bandit subroutine: FTRL.

Theorem [Bai, Jin, Yu, 2020]

In two-player zero-sum Markov games, V-learning with FTRL finds ϵ-Nash in

Õ(H5S max{A,B}/ϵ2) episodes.

V-learning is a decentralized algorithm that achieves optimal O(max{A,B})
sample complexity!

Sharp H dependency waits for future work.



Summary of Algorithms

Algorithm Training Main estimand Sample complexity

Nash-VI centralized Ph(s
′|s, a, b) Õ(H3SAB/ϵ2)

Nash Q-Learning centralized Q⋆h (s, a, b) Õ(H5SAB/ϵ2)

V-Learning decentralized V ⋆h (s) Õ(H5S max{A,B}/ϵ2)

Lower bound - - Ω(H3S max{A,B}/ϵ2)



Multiplayer General-Sum Markov Games



General-Sum Markov Games
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Markov Game (S, {Ai}mi=1,P, {ri}mi=1,H) [Shapley 1953].

� S: set of states; Ai : set of actions for the i th player.

let ah = (a
(1)
h , . . . , a

(m)
h ) be the joint action of all players at step h.

� Ph(sh+1|sh, ah): transition probability.

� ri,h(sh, ah) ∈ [0, 1]: reward for the i th player.

� H: horizon/the length of the game.



Policy and Value

� General policy for the i th player (depends on the entire history):

πi,h : (S × (⊗m
i=1Ai ))

h−1 × S → ∆Ai

� Markov policy for the i th player (depends on the current state):

πi,h : S → ∆Ai

� Value V π
i for joint policy π = (π1, . . . , πm): the expected cumulative

reward received by the i th player if all agents follow the joint policy π:

V π
i = Eπ

[
H∑

h=1

ri,h(sh, ah)

]



General-sum Nash Equilibria

Nash Equilibria

The product policies π⋆ = (π⋆1 × . . .× π⋆m) is a Nash equilibrium if no player

has incentive to deviate from her current policy. That is, for any π and any

i ∈ [m] we have

V
πi×π⋆

−i

i ≤ V
π⋆
i ×π⋆

−i

i

Even in the special case of normal-form games, computing Nash equilibria of

general-sum games is PPAD-hard. [Daskalakis et al. 2008]



Other Equilibria

� Correlated equilibrium (CE): a correlated policy π, where no player can

gain by deviating from her own policy if she can still observe her sampled

actions from the correlated policy.

� Coarse correlated equilibirum (CCE): a correlated policy π, where no

player can gain by deviating ... if she can not observe ...

� Nash ⊂ CE ⊂ CCE hold true in both normal-form games and MGs.

� CEs and CCEs can be solved by linear programming.



Optimistic Nash-VI (zero-sum)

Recall:

Optimistic Nash VI [Liu, Yu, Bai, Jin, 2020]

for k = 1, . . . ,K ,

for h = H, . . . , 1,

for all (s, a, b),

Qh(s, a, b)← rh(s, a, b) + Es′∼P̂h(·|s,a,b)V h+1(s
′) + β

Q
h
(s, a, b)← rh(s, a, b) + Es′∼P̂h(·|s,a,b)V h+1(s

′)− β
for all s

πh(·, ·|s)← CCE(Qh(s, ·, ·),Qh
(s, ·, ·))

V h(s)← ⟨πh(·, ·|s),Qh(s, ·, ·)⟩
V h(s)← ⟨πh(·, ·|s),Qh

(s, ·, ·)⟩
execute policy π, collect samples, and update estimation P̂.



Optimistic Nash VI (general-sum)

� Maintain an upper bound Q i,h(s, ·).

� CCE subroutine changed to (Equilibrium = Nash or CE or CCE)

πh(·|s)← Equilibrium(Q1,h(s, ·), . . . ,Qm,h(s, ·))

Theorem [Liu, Yu, Bai, Jin 2020]

With high probability, optimistic Nash VI finds an ϵ-{Nash, CE, CCE} of a
general-sum MG in Õ(H4S

∏m
i=1 Ai/ϵ

2) episodes.

H: horizon; S : number of states; Ai : number of actions for the i th player.



Unique Challenge: Curse of Multiagents

The sample complexity scales with Ω(
∏m

i=1 Ai ) ≈ Ω(Am).

—the size of joint action space.

� grows exponentially w.r.t. number of agents m.

� the size of Q-table Q(s, a): Ω(S
∏m

i=1 Ai ).

Can we achieve poly(m) sample complexity?



Simple Case: Normal-form Games

Each agent runs no-regret algorithm for adversarial bandit independently.

T∑
t=1

⟨µt , ℓt⟩ −min
a∈A

T∑
t=1

⟨a, ℓt⟩ ≤ poly(A)T 1−α.

� Et∼Unif(T )(µ
(1)
t × . . .× µ

(m)
t )→ CCE.

� sample complexity scales with Õ(maxi∈[m] Ai ).

Each agent runs no-swap-regret algorithm for adversarial bandit independently.

T∑
t=1

⟨µt , ℓt⟩ − min
ψ∈Ψ

T∑
t=1

⟨ψ ⋄ µt , ℓt⟩ ≤ poly(A)T 1−α.

Ψ = {f : A → A} all possible swap of actions.

� Et∼Unif(T )(µ
(1)
t × . . .× µ

(m)
t )→ CE.

� sample complexity scales with Õ((maxi∈[m] Ai )
2).



V-learning

Not a no-regret algorithm for MGs, but enjoys similar properties.

Theorem (CCE & CE) [Song et al. 2021][Jin, Liu, Wang, Yu, 2021]

In general-sum Markov games,

(1) V-learning with FTRL finds ϵ-CCE in Õ(H5S(maxi∈[m] Ai )/ϵ
2) episodes;

(2) V-learning with FTRL swap finds ϵ-CE in Õ(H5S(maxi∈[m] Ai )
2/ϵ2)

episodes.

*Mao & Basar [2021] achieves similar results for CCE with slightly worse rate.

V-learning is a decentralized alg that breaks the curse of multiagents!



Summary of the Results

Sample complexity of V-learning for learning MGs.

Objective
Multi-player general-sum

Two-player zero-sum -

Nash Õ(H5SA/ϵ2) PPAD-complete

CCE Õ(H5SA/ϵ2)

CE Õ(H5SA2/ϵ2)

where A = maxi∈[m] Ai .



Advanced Topics



Challenge: Large State Space

Classical RL: Tabular Case

The numbers of states & actions

are finite and small.

Strategy: visit all “reachable”

states, and learn directly.

Many existing theoretical results.



Challenge: Large State Space II

Modern RL:

Function Approximation

The number of states in practice

is typically ≥ 10100.

Most states are not visited even

once.

Strategy: approximate “value” or “policy” by functions in a parameteric class

F (such as deep nets).

Objective: sample complexity depends on complexity of F instead of S .



Linear MGs

Linear MGs:

Ph(s
′|s, a, b) = ⟨ϕ(s, a, b), µh(s

′)⟩,

rh(s, a, b) = ⟨ϕ(s, a, b), θh⟩,

Theorem (linear MGs) [Xie et al. 2020]

For zero-sum linear MGs with ambient dimension d , there exists an algorithm

that learns an ϵ-Nash within Õ(d3H4/ϵ2) episodes.

Algorithm combines Optimistic Nash VI with least-squares.



General Function Approximation

Theorem (general function approximation) [Jin, Liu, Yu, 2021]

For zero-sum MGs equipped with a Q-function class F whose multiagent

Bellman Eluder dimension is d̃ , GOLF with Exploiter learns an ϵ-Nash within

Õ(H2d̃ log(|F|)/ϵ2) episodes.

Exploiter style of exploration:

� Main agent: play optimistic Nash policy.

� Exploiter: play optimistic best response to the main agent.

Applies to a rich class of models including tabular MGs, MGs with linear or

kernel function approximation, and MGs with rich observations.

Computationally inefficient.



Partial Observability

Common in the real world.

Require agents to maintain memories, and infer based on the entire history.



Imperfect Information Extensive-form game

Algorithm OMD CFR Sample Complexity

Farina and Sandholm [2021] ✓ Õ(poly (X ,Y ,A,B) /ε4)

Farina et al. [2021] ✓ Õ
((
X 4A3 + Y 4B3

)
/ε2

)
Kozuno et al. [2021] ✓ Õ

((
X 2A+ Y 2B

)
/ε2

)
[Bai, Jin, Mei, Yu, 2022] ✓ ✓ Õ

(
(XA+ YB) /ε2

)
Lower bound - - Ω

(
(XA+ YB) /ε2

)
X , Y are number of info sets for each player.



General POMG

POMDP/POMG is hard if observation contains no information about states.

Theorem [Liu, Szepesvari, Jin, 2022]

For general POMGs where observation contains proper infomation about the

states, there exists an algorithm that learns the ϵ-NE of POMG in a

polynomial number of samples.



Other Topics

� Further design and analysis of decentralized algorithms.

� Policy optimization algorithms for Markov Games.

� Other notions of equilibria (e.g. Stackelberg equilibria).

� Markov potential games.

� ...



Conclusion



Road Map

� Formulation and Objectives

� Direct Combinations of Game Theory & Single-agent RL

� Tabular Markov Games (Zero-sum & General-sum)

� Optimistic Nash VI

� V-learning

� Advanced Topics

� Function approximation

� Partial observability

� Other topics

� ...

Thank you!
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