Foundations of Reinforcement Learning

Learning and Games Bootcamp @ Simons Institute

Dylan Foster

Microsoft Research, New England

Learning and decision making

Machine learning: Predicting patterns

Image classification, speech recognition, machine translation

Reinforcement learning: Making decisions

Robotics, game playing, clinical decision systems

Supervised learning

• Step 1: Pick set of models \mathcal{F} that capture domain knowledge.

Supervised learning

- Step 1: Pick set of models \mathcal{F} that capture domain knowledge.
 - Ex: Linear models, neural nets, ...

$$\mathcal{F} = \left\{ \begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \right.$$

Supervised learning

- Step 1: Pick set of models \mathcal{F} that capture domain knowledge.
 - Ex: Linear models, neural nets, ...

$$\mathcal{F} = \left\{ \begin{array}{c} \uparrow \\ \hline \end{array} \right\}$$

Supervised learning

- Step 1: Pick set of models \mathcal{F} that capture domain knowledge.
 - Ex: Linear models, neural nets, ...

$$\mathcal{F} = \left\{ \begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \end{array} \right\}$$

• Step 2: Gather dataset $(x_1, y_1), \ldots, (x_n, y_n)$.

Supervised learning

- Step 1: Pick set of models \mathcal{F} that capture domain knowledge.
 - Ex: Linear models, neural nets, ...

$$\mathcal{F} = \left\{ \begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \end{array} \right\}$$

- Step 2: Gather dataset $(x_1, y_1), \ldots, (x_n, y_n)$.
- Step 3: Return $\widehat{f} \in \mathcal{F}$ that fits data well.

Goal: Maximize total reward

Personalized medicine

Goal: Personalize treatments to improve outcomes

Applications:

- Personalized medicine [Mintz et al. '17, Kallus & Zhou '18, Bastani & Bayati '20]
- Mobile health [Rabbi et al. '15, Tewari & Murphy '17, Yom-Tov et al. '17]
- Online education [Lan & Baraniuk '16, Segal et al. '18, Cai et al. '20]
- Online recommendation [Li et al. '10, Agarwal et al.'16]

Want to use flexible model class \mathcal{F} :

- Treatment effect: (context, treatment) → reward
- f(x, a) models response of user x to treatment a

Want to use flexible model class \mathcal{F} :

- Treatment effect: (context, treatment) → reward
- f(x, a) models response of user x to treatment a

Need to learn a good model from data while making decisions!

Contextual bandits: Actions only influence reward, not context $x^{(t)}$.

Reinforcement learning: Actions influence state $x^{(t)}$.

Contextual bandits: Actions only influence reward, not context $x^{(t)}$.

Reinforcement learning: Actions influence state $x^{(t)}$.

Robotics

Game playing

Complex treatments

Want to use \mathcal{F} to model:

- Dynamics: (state, action) → Prob(next state)
- Long-term rewards (value functions)

•

Machine learning: Good at making predictions.

("Does this image contain a cat or a dog?")

Need to know right answer for each example.

Machine learning: Good at making predictions.

("Does this image contain a cat or a dog?")

Need to know right answer for each example.

Decision making: Introduces feedback loops.

Machine learning: Good at making predictions.

("Does this image contain a cat or a dog?")

Need to know right answer for each example.

Decision making: Introduces feedback loops.

Need to answer <u>counterfactuals</u>.
 ("How would the outcome have changed if I intervened differently?")

Machine learning: Good at making predictions.

("Does this image contain a cat or a dog?")

Need to know right answer for each example.

Decision making: Introduces feedback loops.

- Need to answer <u>counterfactuals</u>.
 ("How would the outcome have changed if I intervened differently?")
- Need to reason about long-term impact.

Naively applying ML to decision making leads to bad decisions.

Goals for this tutorial

Introduce basic concepts

Understand the statistical landscape of RL

- What assumptions on system/models lead to sample efficiency?
- Algorithmic principles and fundamental limits

Prepare for Chi's multi-agent RL tutorial

Talk outline

Statistical landscape of RL

- 1. Basic concepts and solutions
- 2. The frontier

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:

- $x_1 \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

This tutorial: Episodic, finite-horizon setting

Repeatedly:

- $x_1 \sim d_1$.
- For h = 1, ..., H:
 - Observe $x_h \in \mathcal{X}$.

(Markov Decision Process (MDP))

(Sensor measurement)

This tutorial: Episodic, finite-horizon setting

Repeatedly:

- $x_1 \sim d_1$.
- For h = 1, ..., H:
 - Observe $x_h \in \mathcal{X}$.
 - Take action $a_h \in \mathcal{A}$.

```
(Markov Decision Process (MDP))
```

```
(Actuator signal)
```

(Sensor measurement)

This tutorial: Episodic, finite-horizon setting

Repeatedly:

- $x_1 \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

- Observe $x_h \in \mathcal{X}$.
- Take action $a_h \in \mathcal{A}$.
- Observe reward $r_h \sim R(x_h, a_h)$ w/ $r_h \in [0, 1]$.

(Sensor measurement)

(Actuator signal)

(Reached goal?)

This tutorial: Episodic, finite-horizon setting

Repeatedly:

- $x_1 \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

- Observe $x_h \in \mathcal{X}$.
- Take action $a_h \in \mathcal{A}$.
- Observe reward $r_h \sim R(x_h, a_h)$ w/ $r_h \in [0, 1]$.
- Transition: $x_{h+1} \sim P(\cdot \mid x_h, a_h)$.

(Actuator signal)

(Sensor measurement)

(Reached goal?)

(System evolves)

This tutorial: Episodic, finite-horizon setting

Repeatedly:

- $x_1 \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

- Observe $x_h \in \mathcal{X}$.
- Take action $a_h \in \mathcal{A}$.
- Observe reward $r_h \sim R(x_h, a_h)$ w/ $r_h \in [0, 1]$.
- Transition: $x_{h+1} \sim P(\cdot \mid x_h, a_h)$.

(Actuator signal)

(Sensor measurement)

(Reached goal?)

(System evolves)

Goal: Find policy $\widehat{\pi}: \mathcal{X} \to \mathcal{A}$ maximizing $J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{h=1}^{H} r_h \right]$.

 $a_h \sim \pi_h(x_h)$

This tutorial: Episodic, finite-horizon setting

```
For t = 1, ..., T:
```

- $x_1^{(t)} \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

(Sensor measurement)

- Observe $x_h^{(t)} \in \mathcal{X}$.
- Take action $a_h^{(t)} \in \mathcal{A}$. (Actuator signal)
- Observe reward $r_h^{(t)} \sim R(x_h^{(t)}, a_h^{(t)})$ w/ $r_h^{(t)} \in [0, 1]$. (Reached goal?)
- Transition: $x_{h+1}^{(t)} \sim P(\cdot \mid x_h^{(t)}, a_h^{(t)})$. (System evolves)

Goal: Find policy $\widehat{\pi}: \mathcal{X} \to \mathcal{A}$ maximizing $J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{h=1}^{H} r_h \right]$.

This tutorial: Episodic, finite-horizon setting

For t = 1, ..., T:

- $x_1^{(t)} \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

(Sensor measurement)

- Observe $x_h^{(t)} \in \mathcal{X}$.
- (Actuator signal)
- Take action $a_h^{(t)} \in \mathcal{A}$.
 - Observe reward $r_h^{(t)} \sim R(x_h^{(t)}, a_h^{(t)})$ w/ $r_h^{(t)} \in [0, 1]$. (Reached goal?)
- Transition: $x_{h+1}^{(t)} \sim P(\cdot \mid x_h^{(t)}, a_h^{(t)})$. (System evolves)

Goal: Find policy $\widehat{\pi}: \mathcal{X} \to \mathcal{A}$ maximizing $J(\pi) \coloneqq \mathbb{E}^{\pi} \left| \sum_{h=1}^{H} r_h \right|$.

PAC-RL: Find $\widehat{\pi}$ with $\max_{\pi} J(\pi) - J(\widehat{\pi}) \leq \varepsilon$ using minimal # episodes.

This tutorial: Episodic, finite-horizon setting

For t = 1, ..., T:

- $x_1^{(t)} \sim d_1$.
- For h = 1, ..., H:

(Markov Decision Process (MDP))

- Observe $x_h^{(t)} \in \mathcal{X}$.
- Take action $a_h^{(t)} \in \mathcal{A}$.
- Observe reward $r_h^{(t)} \sim R(x_h^{(t)}, a_h^{(t)})$ w/ $r_h^{(t)} \in [0, 1]$. (Reached goal?)
- Transition: $x_{h+1}^{(t)} \sim P(\cdot \mid x_h^{(t)}, a_h^{(t)}).$

(System evolves)

(Actuator signal)

(Sensor measurement)

Goal: Find policy $\widehat{\pi}: \mathcal{X} \to \mathcal{A}$ maximizing $J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{h=1}^{H} r_h \right]$.

PAC-RL: Find $\widehat{\pi}$ with $\max_{\pi} J(\pi) - J(\widehat{\pi}) \leq \varepsilon$ using minimal # episodes.

Regret: Ensure $\operatorname{Reg}(T) \coloneqq \sum_{t=1}^T J(\pi^*) - J(\pi^{(t)}) \le \operatorname{sublinear}$ in T (e.g., \sqrt{T}) w/ $\pi^* \coloneqq \operatorname{arg} \max_{\pi} J(\pi)$.

Variants of the setting:

- Many episodes vs. one big trajectory
- Finite vs. infinite horizon
- Undiscounted vs. discounted rewards
 - Pick discount factor $\gamma \in (0,1)$.
 - Instead of weighing rewards uniformly, weight r_h by γ^{h-1} .
 - Effective horizon: $1/(1-\gamma)$.

•

We will focus on episodic, finite-horizon, and undiscounted.

What does it mean to be sample-efficient?

Consider an exponentially large binary tree with reward at a single leaf.

What does it mean to be sample-efficient?

Consider an exponentially large binary tree with reward at a single leaf.

Need to try all leaves to get reward.

$$\implies |\mathcal{A}|^H$$
 episodes required!

[e.g., Kearns et al. '02, Krishnamurthy et al.'16].

What does it mean to be sample-efficient?

Consider an exponentially large binary tree with reward at a single leaf.

Need to try all leaves to get reward.

$$\Longrightarrow |\mathcal{A}|^H$$
 episodes required!

[e.g., Kearns et al. '02, Krishnamurthy et al.'16].

Conclusions:

Further modeling assumptions required to avoid exponential sample comp.

Challenges of RL

[Credit: John Langford]

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Challenge #1: Credit assignment

Challenge #1: Credit assignment

Value functions:

•
$$V_h^{\star}(x) = \mathbb{E}^{\pi^{\star}} \left[\sum_{h'=h}^{H} r_{h'} \mid x_h = x \right]$$

•
$$Q_h^{\star}(x,a) = \mathbb{E}^{\pi^{\star}} \left[\sum_{h'=h}^{H} r_{h'} \mid x_h = x, a_h = a \right]$$

(state value function)

(state-action value function)

Can define $Q_h^{\pi}(x,a)$, $V_h^{\pi}(x)$ analogously for any π .

Dynamic programming ("value iteration"): [Bellman '54]

Starting with $V_{H+1}^{\star}(x) := 0$, iterate

$$Q_h^{\star}(x,a) = \mathbb{E}[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a], \quad V_h^{\star}(x) = \max_{a \in \mathcal{A}} Q_h^{\star}(x,a).$$

Optimal policy is $\pi_h^{\star}(x) \coloneqq \arg \max_{a \in \mathcal{A}} Q_h^{\star}(x, a)$.

See also: [Puterman '94, Sutton & Barto '98]

Roadmap

Basic challenges and solutions

Credit assignment

- Exploration
- Generalization

Challenge #2: Exploration

Exploration: Multi-armed bandit

Multi-armed bandit

(RL with single state, H = 1)

Basic issue: Only see response for actions we take.

Tension between:

- Exploiting actions we already think are good.
- Exploring new actions to get more information.

Sample complexity: $\frac{|\mathcal{A}|}{\varepsilon^2}$,

$$rac{|\mathcal{A}|}{arepsilon^2},$$

Regret:
$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| \cdot T}$$
.

UCB algorithm: For each time t:

- Let $n^{(t)}(a) \coloneqq \#$ arm pulls for a and $\widehat{f}^{(t)}(a) \coloneqq$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

UCB algorithm: For each time t:

- Let $n^{(t)}(a) := \#$ arm pulls for a and $\widehat{f}^{(t)}(a) :=$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

Proof sketch: Let $f^*(a) = \mathbb{E}[r \mid a]$.

• Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) - f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.

UCB algorithm: For each time t:

- Let $n^{(t)}(a) := \#$ arm pulls for a and $\widehat{f}^{(t)}(a) :=$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \widehat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in A} \bar{f}^{(t)}(a)$.

Proof sketch: Let $f^*(a) = \mathbb{E}[r \mid a]$.

• Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) - f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.

Azuma-Hoeffding

Azuma-Hoeffding
$$\left| \frac{1}{n} \sum_{t=1}^{n} Z_{t} - \mathbb{E}[Z_{t} \mid Z_{1}, ..., Z_{t-1}] \right| \leq \sqrt{\frac{\log(\delta^{-1})}{n}} \quad \text{w.p.} \quad 1 - \delta$$

UCB algorithm: For each time t:

- Let $n^{(t)}(a) := \#$ arm pulls for a and $\widehat{f}^{(t)}(a) :=$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

Proof sketch: Let $f^*(a) = \mathbb{E}[r \mid a]$.

• Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) - f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.

UCB algorithm: For each time t:

- Let $n^{(t)}(a) := \#$ arm pulls for a and $\widehat{f}^{(t)}(a) :=$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

- Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Round t: By optimism,

$$\max_{a} f^{\star}(a) - f^{\star}(a^{(t)})$$

UCB algorithm: For each time t:

- Let $n^{(t)}(a) \coloneqq \#$ arm pulls for a and $\widehat{f}^{(t)}(a) \coloneqq$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

- Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Round t: By optimism,

$$\max_{a} f^{\star}(a) - f^{\star}(a^{(t)}) \le \max_{a} \bar{f}^{(t)}(a) - f^{\star}(a^{(t)})$$

UCB algorithm: For each time t:

- Let $n^{(t)}(a) \coloneqq \#$ arm pulls for a and $\widehat{f}^{(t)}(a) \coloneqq$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

- Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Round t: By optimism,

$$\max_{a} f^{\star}(a) - f^{\star}(a^{(t)}) \le \max_{a} \bar{f}^{(t)}(a) - f^{\star}(a^{(t)}) = \bar{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}),$$

UCB algorithm: For each time t:

- Let $n^{(t)}(a) \coloneqq \#$ arm pulls for a and $\widehat{f}^{(t)}(a) \coloneqq$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

- Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t, \text{ since } |\widehat{f}^{(t)}(a) f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Round t: By optimism,

$$\max_{a} f^{\star}(a) - f^{\star}(a^{(t)}) \le \max_{a} \bar{f}^{(t)}(a) - f^{\star}(a^{(t)}) = \bar{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}),$$

$$\text{ and } \bar{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}) = \widehat{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}) + \mathsf{bon}^{(t)}(a^{(t)}) \leq 2\sqrt{\frac{1}{n^{(t)}(a^{(t)})}}.$$

UCB algorithm: For each time t:

- Let $n^{(t)}(a) \coloneqq \#$ arm pulls for a and $\widehat{f}^{(t)}(a) \coloneqq$ sample mean.
- Upper confidence bound: $\bar{f}^{(t)}(a) \coloneqq \hat{f}^{(t)}(a) + \mathsf{bon}^{(t)}(a)$, w/ $\mathsf{bon}^{(t)}(a) \propto \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Play $a^{(t)} = \arg\max_{a \in \mathcal{A}} \bar{f}^{(t)}(a)$.

Proof sketch: Let $f^*(a) = \mathbb{E}[r \mid a]$.

- Optimism: $\overline{f}^{(t)}(a) \ge f^{\star}(a) \ \forall a, t$, since $|\widehat{f}^{(t)}(a) f^{\star}(a)| \lesssim \sqrt{\frac{1}{n^{(t)}(a)}}$.
- Round t: By optimism,

$$\max_{a} f^{\star}(a) - f^{\star}(a^{(t)}) \le \max_{a} \bar{f}^{(t)}(a) - f^{\star}(a^{(t)}) = \bar{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}),$$

$$\text{ and } \bar{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}) = \widehat{f}^{(t)}(a^{(t)}) - f^{\star}(a^{(t)}) + \mathsf{bon}^{(t)}(a^{(t)}) \leq 2\sqrt{\frac{1}{n^{(t)}(a^{(t)})}}.$$

Regret bound: By pigeonhole,

$$\mathbf{Reg}(T) = \sum_{t=1}^{T} \max_{a} f^{*}(a) - f^{*}(a^{(t)}) \lesssim \sum_{t=1}^{T} \sqrt{\frac{1}{n^{(t)}(a^{(t)})}} \le \sqrt{|\mathcal{A}|T}.$$

Approach: ε -Greedy

Multi-armed bandit

(RL with single state, H = 1)

ε -Greedy: For each time t:

- Get reward estimate $\widehat{f}^{(t)}(a)$ for each action.
- Play $a^{(t)} = \widehat{a}^{(t)} \coloneqq \arg\max_{a} \widehat{f}^{(t)}(a)$ w/ prob. 1ε , else sample $a^{(t)} \sim \mathcal{A}$ uniformly.

Sample complexity: $\frac{|\mathcal{A}|}{\varepsilon^2}$, Regret: $\mathbf{Reg}(T) \leq |\mathcal{A}|^{2/3} T^{2/3}$.

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Challenge #3: Generalization

Approach: Statistical learning

Approach: Statistical learning

Statistical learning: If data is independent/identically distributed, generalize to future examples [Vapnik & Chervonenkis '71].

Approach: Statistical learning

Statistical learning: If data is independent/identically distributed, generalize to future examples [Vapnik & Chervonenkis '71].

Empirical risk minimization ($\widehat{f} = \arg\min_{f \in \mathcal{F}} \mathsf{Error}_{\mathsf{dataset}}(f)$):

$$\mathsf{Error}_{\mathsf{future}}(\widehat{f}) \leq \min_{f \in \mathcal{F}} \mathsf{Error}_{\mathsf{future}}(f) + \sqrt{\frac{\mathsf{comp}(\mathcal{F})}{n}}.$$

Complexity $comp(\mathcal{F})$ reflects statistical capacity of \mathcal{F} .

Statistical learning: Complexity measures

Complexity measures:

- VC Dimension (classification)
- Fat-shattering dimension (regression)
- Rademacher complexity (both)
- Covering numbers (both)

[e.g., Vapnik '95, Anthony & Bartlett '99, Bousquet-Boucheron-Lugosi '03]

Statistical learning: Complexity measures

Complexity measures:

- VC Dimension (classification)
- Fat-shattering dimension (regression)
- Rademacher complexity (both)
- Covering numbers (both)

[e.g., Vapnik '95, Anthony & Bartlett '99, Bousquet-Boucheron-Lugosi '03]

Examples:

- Finite class: $comp(\mathcal{F}) \leq log|\mathcal{F}|$
- Linear classification: $comp(\mathcal{F}) \leq dimension$ (VC dim)
- Linear regression: $comp(\mathcal{F}) \leq (weight norm)^2$ (fat-shattering)
- Similar bounds for neural nets, kernels, ...

Statistical learning: Complexity measures

Complexity measures:

- VC Dimension (classification)
- Fat-shattering dimension (regression)
- Rademacher complexity (both)
- Covering numbers (both)

[e.g., Vapnik '95, Anthony & Bartlett '99, Bousquet-Boucheron-Lugosi '03]

Examples:

- Finite class: $comp(\mathcal{F}) \leq log|\mathcal{F}|$
- Linear classification: $comp(\mathcal{F}) \leq dimension$ (VC dim)
- Linear regression: $comp(\mathcal{F}) \le (weight norm)^2$ (fat-shattering)
- Similar bounds for neural nets, kernels, ...

RL: The need for modeling and generalization

Challenge: States/observations are typically rich/complex/high-dimensional.

• Ex: robotics: x_h = camera image, \mathcal{X} = all possible images $\Rightarrow |\mathcal{X}| = \text{intractably large}$

Approach: Use hypothesis class \mathcal{F} to model:

- Rewards/responses/treatment effects
- Dynamics
- Long-term rewards

In general, model class \mathcal{F} might consist of:

- Deep neural networks
- Generalized linear models
- Kernels

Algorithm design

General-purpose algorithmic principles that work for any \mathcal{F} ?

Algorithm design

General-purpose algorithmic principles that work for any \mathcal{F} ?

• Supervised learning: Minimize empirical risk (take best fitting model)

Algorithm design

General-purpose algorithmic principles that work for any \mathcal{F} ?

- Supervised learning: Minimize empirical risk (take best fitting model)
- Decision making (contextual bandits, RL, ...): ???

Algorithm design

General-purpose algorithmic principles that work for any \mathcal{F} ?

- Supervised learning: Minimize empirical risk (take best fitting model)
- Decision making (contextual bandits, RL, ...): ???

What we want:

Algorithm makes accurate decisions out of the box for any \mathcal{F} .

Sample complexity

How many samples are necessary / sufficient to learn with \mathcal{F} ?

Sample complexity

How many samples are necessary / sufficient to learn with \mathcal{F} ?

Supervised learning: <u>Vapnik-Chervonenkis (VC) theory, PAC learning</u>

Sample complexity

How many samples are necessary / sufficient to learn with \mathcal{F} ?

- Supervised learning: <u>Vapnik-Chervonenkis (VC) theory, PAC learning</u>
- Decision making (contextual bandits, RL, ...): ???

Challenges of RL

Challenges of RL

Challenges of RL

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

- Exploration + credit assignment: <u>Tabular RL</u>
- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

- Exploration + credit assignment: <u>Tabular RL</u>
- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

- Exploration + credit assignment: Tabular RL
- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^*(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^*(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

Non-trivial problem:

• Naive (uniform) exploration has sample complexity $\|\mathscr{A}\|^H$

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^{\star}(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

UCB-VI Algorithm [Azar et al. '17]: For t = 1, ..., T:

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^{\star}(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

UCB-VI Algorithm [Azar et al. '17]: For t = 1, ..., T:

State-action frequencies:

$$n^{(t)}(x, a, x') \coloneqq \sum_{i < t, h} \mathbb{I}\{(x_h^{(i)}, a_h^{(i)}, x_{h+1}^{(i)}) = (x, a, x')\}, \quad n^{(t)}(x, a) \coloneqq \sum_{x'} n^{(t)}(x, a, x').$$

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^{\star}(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

UCB-VI Algorithm [Azar et al. '17]: For t = 1, ..., T:

State-action frequencies:

$$n^{(t)}(x, a, x') \coloneqq \sum_{i < t, h} \mathbb{I}\{(x_h^{(i)}, a_h^{(i)}, x_{h+1}^{(i)}) = (x, a, x')\}, \quad n^{(t)}(x, a) \coloneqq \sum_{x'} n^{(t)}(x, a, x').$$

Estimate transitions/rewards:

$$\widehat{P}^{(t)}(x'\mid x,a)\coloneqq \frac{n^{(t)}(x,a,x')}{n^{(t)}(x,a)},\quad \text{and}\quad \widehat{f}^{(t)}(x,a)\coloneqq \text{sample mean for } (x,a).$$

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^{\star}(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

UCB-VI Algorithm [Azar et al. '17]: For t = 1, ..., T:

State-action frequencies:

$$n^{(t)}(x,a,x') \coloneqq \sum_{i < t,h} \mathbb{I}\{(x_h^{(i)},a_h^{(i)},x_{h+1}^{(i)}) = (x,a,x')\}, \quad n^{(t)}(x,a) \coloneqq \sum_{x'} n^{(t)}(x,a,x').$$

Estimate transitions/rewards:

$$\widehat{P}^{(t)}(x'\mid x,a)\coloneqq \frac{n^{(t)}(x,a,x')}{n^{(t)}(x,a)},\quad \text{and}\quad \widehat{f}^{(t)}(x,a)\coloneqq \text{sample mean for } (x,a).$$

• Exploration bonus: $bon^{(t)}(x,a) \propto H \cdot \sqrt{\frac{1}{n^{(t)}(x,a)}}$.

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^{\star}(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

UCB-VI Algorithm [Azar et al. '17]: For t = 1, ..., T:

• State-action frequencies:

$$n^{(t)}(x, a, x') \coloneqq \sum_{i < t, h} \mathbb{I}\{(x_h^{(i)}, a_h^{(i)}, x_{h+1}^{(i)}) = (x, a, x')\}, \quad n^{(t)}(x, a) \coloneqq \sum_{x'} n^{(t)}(x, a, x').$$

Estimate transitions/rewards:

$$\widehat{P}^{(t)}(x'\mid x,a)\coloneqq \frac{n^{(t)}(x,a,x')}{n^{(t)}(x,a)},\quad \text{and}\quad \widehat{f}^{(t)}(x,a)\coloneqq \text{sample mean for } (x,a).$$

• Exploration bonus: $bon^{(t)}(x,a) \propto H \cdot \sqrt{\frac{1}{n^{(t)}(x,a)}}$.

$$\left\{ \widehat{f}^{(t)} + \mathsf{bon}^{(t)}, \widehat{P}^{(t)}
ight\}$$

Tabular MDP: $|\mathcal{X}| < \infty$, $|\mathcal{A}| < \infty$. Trans. $P(x' \mid x, a)$, rewards $f^{\star}(x, a) \coloneqq \mathbb{E}_{r \sim R(x, a)}[r]$.

UCB-VI Algorithm [Azar et al. '17]: For t = 1, ..., T:

State-action frequencies:

$$n^{(t)}(x,a,x') \coloneqq \sum_{i < t,h} \mathbb{I}\{(x_h^{(i)},a_h^{(i)},x_{h+1}^{(i)}) = (x,a,x')\}, \quad n^{(t)}(x,a) \coloneqq \sum_{x'} n^{(t)}(x,a,x').$$

Estimate transitions/rewards:

$$\widehat{P}^{(t)}(x'\mid x,a)\coloneqq\frac{n^{(t)}(x,a,x')}{n^{(t)}(x,a)},\quad\text{and}\quad \widehat{f}^{(t)}(x,a)\coloneqq\text{sample mean for }(x,a).$$

- Exploration bonus: $bon^{(t)}(x,a) \propto H \cdot \sqrt{\frac{1}{n^{(t)}(x,a)}}$.
- Optimistic value iteration: Starting with $\overline{V}_{H+1}^{(t)}(x) \coloneqq 0$, iterate

$$\overline{Q}_h^{(t)}(x,a)\coloneqq\widehat{f}^{(t)}(x,a)+\mathsf{bon}^{(t)}(x,a)+\mathbb{E}_{x'\sim\widehat{P}^{(t)}(x,a)}[\overline{V}_{h+1}^{(t)}(x')],$$

and
$$\overline{V}_h^{(t)}(x) \coloneqq \max_a \overline{Q}_h^{(t)}(x,a)$$
.

• Final policy: $\pi_h^{(t)}(x) = \arg\max_a \overline{Q}_h^{(t)}(x,a)$, so $a_h^{(t)} = \pi_h^{(t)}(x_h^{(t)})$.

Regret bound for UCB-VI [Azar et al. '17]:*

$$\mathbf{Reg}(T) \le H\sqrt{|\mathcal{X}||\mathcal{A}|T}.$$

 $\Longrightarrow \operatorname{poly}(|\mathcal{X}|,|\mathcal{A}|,H)$ sample complexity and computation.

Regret bound for UCB-VI [Azar et al. '17]:*

$$\mathbf{Reg}(T) \le H\sqrt{|\mathcal{X}||\mathcal{A}|T}.$$

 $\implies \operatorname{poly}(|\mathcal{X}|, |\mathcal{A}|, H)$ sample complexity and computation.

Tabular RL history:

- E^3 [Kearns & Singh '02], $R_{\rm max}$ [Brafman & Tennenholtz '02]: Polynomial sample complexity
- Delayed-Q learning [Strehl et al. '06]: Sample comp. linear in $|\mathcal{X}|$.
- UCRL [Jaksch, Ortner, & Auer '10]: Optimal regret/sample comp w.r.t. T (resp. ε).
- UCB-VI [Azar, Osban, & Munos '17]: Minimax optimal.

Regret bound for UCB-VI [Azar et al. '17]:*

$$\mathbf{Reg}(T) \le H\sqrt{|\mathcal{X}||\mathcal{A}|T}.$$

 $\implies \operatorname{poly}(|\mathcal{X}|, |\mathcal{A}|, H)$ sample complexity and computation.

Tabular RL history:

- E^3 [Kearns & Singh '02], $R_{\rm max}$ [Brafman & Tennenholtz '02]: Polynomial sample complexity
- Delayed-Q learning [Strehl et al. '06]: Sample comp. linear in $|\mathcal{X}|$.
- UCRL [Jaksch, Ortner, & Auer '10]: Optimal regret/sample comp w.r.t. T (resp. ε).
- UCB-VI [Azar, Osban, & Munos '17]: Minimax optimal.
- UCB-Q [Jin et al. '18]: Near-optimal regret for model-free.

"model-based"

Proof sketch: Claim: Optimism. With high prob., $\overline{Q}_h^{(t)}(x,a) \geq Q_h^{\star}(x,a) \ \forall \ (x,a,h)$.

Proof sketch: Claim: Optimism. With high prob., $\overline{Q}_h^{(t)}(x,a) \geq Q_h^{\star}(x,a) \ \forall \ (x,a,h)$.

Proof: Assume $\overline{Q}_{h+1}^{(t)}(x,a) \geq Q_{h+1}^{\star}(x,a)$. $Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$ $Q_h^{\star}(x,a) = \mathbb{E}\big[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a\big]$

$$Q_h^{\star}(x, a) = \mathbb{E}[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a]$$

Proof sketch: Claim: Optimism. With high prob., $\overline{Q}_h^{(t)}(x,a) \geq Q_h^{\star}(x,a) \ \forall \ (x,a,h)$.

$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$

Proof: Assume
$$\overline{Q}_{h+1}^{(t)}(x,a) \geq Q_{h+1}^{\star}(x,a)$$
.
$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$
Bellman Equation
$$Q_h^{\star}(x,a) = \mathbb{E}\big[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a\big]$$

$$\leq \operatorname{err}^{(t)}(x,a) - \operatorname{bon}^{(t)}(x,a) + \mathbb{E}\Big[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x,a\Big],$$

$$\text{W/} \operatorname{err}^{(t)}(x,a) \coloneqq |f^{\star}(x,a) - \widehat{f}^{(t)}(x,a)| + \|P(x,a) - \widehat{P}^{(t)}(x,a)\|_1 \lesssim \operatorname{bon}^{(t)}(x,a)$$

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., $\overline{Q}_h^{(t)}(x,a) \geq Q_h^{\star}(x,a) \ \forall \ (x,a,h)$.

Proof: Assume $\overline{Q}_{h+1}^{(t)}(x,a) \geq Q_{h+1}^{\star}(x,a)$. $Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$ Bellman Equation $Q_h^{\star}(x,a) = \mathbb{E}\big[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a\big]$

$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$

$$Q_h^{\star}(x, a) = \mathbb{E}\left[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a\right]$$

$$\leq \operatorname{err}^{(t)}(x,a) - \operatorname{bon}^{(t)}(x,a) + \mathbb{E}\Big[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x,a\Big],$$

$$\text{W/} \operatorname{err}^{(t)}(x,a) \coloneqq |f^{\star}(x,a) - \widehat{f}^{(t)}(x,a)| + \|P(x,a) - \widehat{P}^{(t)}(x,a)\|_1 \lesssim \operatorname{bon}^{(t)}(x,a)$$

$$\leq \mathbb{E}\Big[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x, a\Big] \leq 0.$$

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., $\overline{Q}_h^{(t)}(x,a) \geq Q_h^{\star}(x,a) \ \forall \ (x,a,h)$.

$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$

Proof: Assume
$$\overline{Q}_{h+1}^{(t)}(x,a) \geq Q_{h+1}^{\star}(x,a)$$
.
$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$
Bellman Equation
$$Q_h^{\star}(x,a) = \mathbb{E}\big[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a\big]$$

$$\leq \operatorname{err}^{(t)}(x,a) - \operatorname{bon}^{(t)}(x,a) + \mathbb{E}\Big[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x,a\Big],$$

$$\text{W/} \operatorname{err}^{(t)}(x,a) \coloneqq |f^{\star}(x,a) - \widehat{f}^{(t)}(x,a)| + \|P(x,a) - \widehat{P}^{(t)}(x,a)\|_{1} \lesssim \operatorname{bon}^{(t)}(x,a)$$

$$\leq \mathbb{E}\left[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x, a\right] \leq 0.$$

Regret bound for optimistic algorithms ("performance difference lemma" [Kakade '03]):

$$J(\pi^{\star}) - J(\pi^{(t)}) = \sum_{h=1}^{H} \mathbb{E}^{\pi^{(t)}} \left[Q_h^{\star}(x, \pi_h^{\star}(x_h)) - Q_h^{\star}(x, \pi_h^{(t)}(x_h)) \right] \lesssim \mathbb{E}^{\pi^{(t)}} \left[\sum_{h=1}^{H} \mathsf{bon}^{(t)}(x_h, a_h) \right]$$

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., $\overline{Q}_h^{(t)}(x,a) \geq Q_h^{\star}(x,a) \ \forall \ (x,a,h)$.

$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$

Proof: Assume
$$\overline{Q}_{h+1}^{(t)}(x,a) \geq Q_{h+1}^{\star}(x,a)$$
.
$$Q_h^{\star}(x,a) - \overline{Q}_h^{(t)}(x,a)$$
Bellman Equation
$$Q_h^{\star}(x,a) = \mathbb{E}\big[r_h + V_{h+1}^{\star}(x_{h+1}) \mid x_h = x, a_h = a\big]$$

$$\leq \operatorname{err}^{(t)}(x,a) - \operatorname{bon}^{(t)}(x,a) + \mathbb{E}\Big[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x,a\Big],$$

$$\text{W/} \operatorname{err}^{(t)}(x,a) \coloneqq |f^{\star}(x,a) - \widehat{f}^{(t)}(x,a)| + \|P(x,a) - \widehat{P}^{(t)}(x,a)\|_{1} \lesssim \operatorname{bon}^{(t)}(x,a)$$

$$\leq \mathbb{E}\left[V_{h+1}^{\star}(x_{h+1}) - \overline{V}_{h+1}^{(t)}(x_{h+1}) \mid x, a\right] \leq 0.$$

Regret bound for optimistic algorithms ("performance difference lemma" [Kakade '03]):

$$J(\pi^{\star}) - J(\pi^{(t)}) = \sum_{h=1}^{H} \mathbb{E}^{\pi^{(t)}} \left[Q_h^{\star}(x, \pi_h^{\star}(x_h)) - Q_h^{\star}(x, \pi_h^{(t)}(x_h)) \right] \lesssim \mathbb{E}^{\pi^{(t)}} \left[\sum_{h=1}^{H} \mathsf{bon}^{(t)}(x_h, a_h) \right]$$

so that by pigeonhole,

$$\mathbf{Reg}(T) \lesssim \sum_{t=1}^{T} \sum_{h=1}^{H} \mathsf{bon}^{(t)}(x_h^{(t)}, a_h^{(t)}) \approx \sum_{t=1}^{T} \sum_{h=1}^{H} \sqrt{\frac{1}{n^{(t)}(x_h^{(t)}, a_h^{(t)})}} \leq \mathsf{poly}(H) \cdot \sqrt{|\mathcal{X}| |\mathcal{A}| T}.$$

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

Exploration + credit assignment: Tabular RL

- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

- Exploration + credit assignment: Tabular RL
- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Contextual bandits:

- Reinforcement learning with H = 1
- Need to generalize across contexts (states)

Ex: Personalized medicine

- **Exploration:** Bandit feedback; data collection introduces bias.
- Generalization: May not see same context $x^{(t)}$ twice.
 - Can't afford to solve separate bandit problem for each $x^{(t)}$.
 - Need to generalize/extrapolate across contexts.
- How to propagate information across contexts?

Assumption: Realizability

Given hypothesis class \mathcal{F} such that

$$\mathbb{E}[r \mid x, a] = f^{\star}(x, a)$$

for unknown $f^* \in \mathcal{F}$. (e.g., $r = f(x, a) + \varepsilon$)

Class \mathcal{F} might consist of linear models, deep neural networks, forests, kernels, ...

Contextual bandits: Upper confidence bound

Contextual bandits: Upper confidence bound

Example: LinUCB [Auer '02, Chu et al. '10, Abbasi-Yadkori et al. '11]

Linear models w/ $f^*(x, a) = \langle \theta^*, \phi(x, a) \rangle$, where $\phi(x, a) \in \mathbb{R}^d$: $\mathbf{Reg}(T) \leq d\sqrt{T}$.

Contextual bandits: Upper confidence bound

Example: LinUCB [Auer '02, Chu et al. '10, Abbasi-Yadkori et al. '11]

Linear models w/ $f^*(x, a) = \langle \theta^*, \phi(x, a) \rangle$, where $\phi(x, a) \in \mathbb{R}^d$: $\mathbf{Reg}(T) \leq d\sqrt{T}$.

In general, no hope of constructing valid/shrinking confidence intervals for all (x, a).

- Good cases: Linear models, nonparametric models.
- Bad cases: Sparse linear, single ReLU [LKFS'21], neural networks, ...

Idea: Reduce contextual bandits to supervised learning.

⇒ Leverage existing algorithms and generalization bounds

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

• Receive context $x^{(t)}$.

SquareCB [F and Rakhlin'20]

For t = 1, ..., T:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.

SquareCB [F and Rakhlin'20]

```
For t = 1, ..., T:
```

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x, a)$ from learning algorithm.
- Assign probability p_a to each action based on $\widehat{f}^{(t)}(x^{(t)}, a)$.

SquareCB [F and Rakhlin'20]

```
For t = 1, ..., T:
```

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Assign probability p_a to each action based on $\widehat{f}^{(t)}(x^{(t)}, a)$.
- Sample $a^{(t)} \sim p$, update learning algorithm w/ $(x^{(t)}, a^{(t)}, r^{(t)}(a^{(t)}))$.

SquareCB [F and Rakhlin'20]

```
For t = 1, ..., T:
```

- Receive context $x^{(t)}$.
- Get reward estimate $\hat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW):

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW): Let $\mathbf{b} = \arg \max_{\mathbf{a}} \widehat{f}^{(t)}(x^{(t)}, \mathbf{a})$.

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW): Let $\mathbf{b} = \arg \max_{\mathbf{a}} \widehat{f}^{(t)}(x^{(t)}, \mathbf{a})$.

$$p_{a} = \frac{1}{|\mathcal{A}| + \gamma \times (\widehat{f}^{(t)}(x^{(t)}, b) - \widehat{f}^{(t)}(x^{(t)}, a))} \quad \forall a \neq b$$

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW): Let $\mathbf{b} = \arg \max_{\mathbf{a}} \widehat{f}^{(t)}(x^{(t)}, \mathbf{a})$.

$$p_{a} = \frac{1}{|\mathcal{A}| + \gamma \times (\widehat{f}^{(t)}(x^{(t)}, \boldsymbol{b}) - \widehat{f}^{(t)}(x^{(t)}, \boldsymbol{a}))} \quad \forall \boldsymbol{a} \neq \boldsymbol{b}$$

$$\text{reward gap between } \boldsymbol{b} \text{ and } \boldsymbol{a}$$

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW): Let $\mathbf{b} = \arg \max_{\mathbf{a}} \widehat{f}^{(t)}(x^{(t)}, \mathbf{a})$.

$$p_{\pmb{a}} = \frac{1}{|\mathcal{A}| + \underbrace{\gamma} \times \underbrace{(\widehat{f}^{(t)}(x^{(t)}, \pmb{b}) - \widehat{f}^{(t)}(x^{(t)}, \pmb{a}))}_{\text{learning rate}} \quad \forall \pmb{a} \neq \pmb{b}$$

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW): Let $\mathbf{b} = \arg\max_{\mathbf{a}} \widehat{f}^{(t)}(x^{(t)}, \mathbf{a})$.

$$p_{a} = \frac{1}{|\mathcal{A}| + \gamma \times (\widehat{f}^{(t)}(x^{(t)}, \mathbf{b}) - \widehat{f}^{(t)}(x^{(t)}, \mathbf{a}))}} \quad \forall a \neq b$$
actions learning rate reward gap between \mathbf{b} and \mathbf{a}

• Sample $a^{(t)} \sim p$, update learning algorithm w/ $(x^{(t)}, a^{(t)}, r^{(t)}(a^{(t)}))$.

SquareCB [F and Rakhlin'20]

For
$$t = 1, ..., T$$
:

- Receive context $x^{(t)}$.
- Get reward estimate $\widehat{f}^{(t)}(x,a)$ from learning algorithm.
- Inverse Gap Weighting (IGW): Let $\mathbf{b} = \arg \max_{\mathbf{a}} \widehat{f}^{(t)}(x^{(t)}, \mathbf{a})$.

$$p_{\pmb{a}} = \frac{1}{\underbrace{|\mathcal{A}| + \gamma \times (\widehat{f}^{(t)}(x^{(t)}, \pmb{b}) - \widehat{f}^{(t)}(x^{(t)}, \pmb{a}))}}_{\text{# actions learning rate}} \quad \forall \pmb{a} \neq \pmb{b}$$

with p_b = remaining probability.

• Sample $a^{(t)} \sim p$, update learning algorithm w/ $(x^{(t)}, a^{(t)}, r^{(t)}(a^{(t)}))$.

SquareCB algorithm: [F & Rakhlin '20]

Optimally solve regression \implies Optimally solve contextual bandits

- Can form estimates $\widehat{f}^{(t)}$ using online regression.
- Theorem: SquareCB attains optimal rate for any \mathcal{F} .

SquareCB algorithm: [F & Rakhlin '20]

Optimally solve regression -> Optimally solve contextual bandits

- Can form estimates $\widehat{f}^{(t)}$ using online regression.
- Theorem: SquareCB attains optimal rate for any \mathcal{F} .

Regret bound: With appropriate learning rate $\gamma > 0$, SquareCB has

$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| T \cdot \mathbf{Est}_{\mathsf{Sq}}(T)}, \quad \mathsf{W/} \quad \mathbf{Est}_{\mathsf{Sq}}(T) \coloneqq \sum_{t=1}^T \left(\widehat{f}^{\scriptscriptstyle(t)}(x^{\scriptscriptstyle(t)}, a^{\scriptscriptstyle(t)}) - f^\star(x^{\scriptscriptstyle(t)}, a^{\scriptscriptstyle(t)})\right)^2.$$

SquareCB algorithm: [F & Rakhlin '20]

Optimally solve regression \implies Optimally solve contextual bandits

- Can form estimates $\widehat{f}^{(t)}$ using online regression.
- Theorem: SquareCB attains optimal rate for any \mathcal{F} .

Regret bound: With appropriate learning rate $\gamma > 0$, SquareCB has

$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| T \cdot \mathbf{Est}_{\mathsf{Sq}}(T)}, \quad \mathsf{W/} \quad \mathbf{Est}_{\mathsf{Sq}}(T) \coloneqq \sum_{t=1}^T \left(\widehat{f}^{\scriptscriptstyle(t)}(x^{\scriptscriptstyle(t)}, a^{\scriptscriptstyle(t)}) - f^\star(x^{\scriptscriptstyle(t)}, a^{\scriptscriptstyle(t)})\right)^2.$$

Examples:

- $\mathbf{Est}_{\mathsf{Sq}}(T) \leq \log |\mathcal{F}|$ for finite $\mathcal{F} \implies \mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}|T \cdot \log |\mathcal{F}|}$.
- $\mathbf{Est}_{\mathsf{Sq}} \leq \widetilde{O}(d)$ for linear models $\implies \mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}|T \cdot d}$.

SquareCB algorithm: [F & Rakhlin '20]

Optimally solve regression \Longrightarrow Optimally solve contextual bandits

- Can form estimates $\widehat{f}^{(t)}$ using online regression.
- Theorem: SquareCB attains optimal rate for any \mathcal{F} .

Regret bound: With appropriate learning rate $\gamma > 0$, SquareCB has

$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| T \cdot \mathbf{Est}_{\mathsf{Sq}}(T)}, \quad \mathsf{W/} \quad \mathbf{Est}_{\mathsf{Sq}}(T) \coloneqq \sum_{t=1}^T \left(\widehat{f}^{(t)}(x^{(t)}, a^{(t)}) - f^{\star}(x^{(t)}, a^{(t)})\right)^2.$$

Examples:

- $\mathbf{Est}_{\mathsf{Sq}}(T) \leq \log |\mathcal{F}|$ for finite $\mathcal{F} \implies \mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}|T \cdot \log |\mathcal{F}|}$.
- $\mathbf{Est}_{\mathsf{Sq}} \leq \widetilde{O}(d)$ for linear models $\Longrightarrow \mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}|T \cdot d}$.

In general: $\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}|T \cdot \mathrm{comp}(\mathcal{F})}$.

(no explicit $|\mathcal{X}|$ dependence!)

SquareCB solves: For all rounds t, with learning rate γ :

$$\underset{\text{action dist. }p}{\operatorname{arg\,min}} \quad \underset{\text{reward fn. }f^{\star}}{\operatorname{max}} \Big\{ \mathbb{E} \big[\mathsf{CB-Regret}^{\scriptscriptstyle(t)} \big] - \gamma \cdot \mathbb{E} \big[\mathsf{Est-Error}^{\scriptscriptstyle(t)} \big] \Big\}.$$

Agnostic to structure of \mathcal{F} !

SquareCB solves: For all rounds t, with learning rate γ :

$$\underset{\text{action dist. }p}{\operatorname{arg\,min}} \quad \underset{\text{reward fn. }f^{\star}}{\operatorname{max}} \Big\{ \mathbb{E} \big[\mathsf{CB-Regret}^{\scriptscriptstyle(t)} \big] - \gamma \cdot \mathbb{E} \big[\mathsf{Est-Error}^{\scriptscriptstyle(t)} \big] \Big\}.$$

Agnostic to structure of \mathcal{F} !

Contextual bandit history:

- Classification reductions: [Langford & Zhang'07, Dudik et al.'11, Agarwal et al.'14]
- Specific models: [Abe & Long'99], [Rigollet & Zeevi'10], [Krause & Ong '11], [Filippi, Cappe, Garivier, Szepesvari '11], [Chu, Li, Reyzin, Schapire'11], [Perchet & Rigollet'13], [Russo & Van Roy '13, '14, '16], [Goldenshluger & Zeevi'13], [Bastani & Bayati '15], [Osband et al. '16], [Sen et al. '17], [GTKM '17], [Jun et al. '17], ...
- Regression: [F & Rakhlin '20], [Simchi-Levi & Xu'20], [FRSX'20], [FKRQ '21] ← RL

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

• Exploration + credit assignment: Tabular RL

- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

• Exploration + credit assignment: Tabular RL

- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Credit Assignment + Generalization: Policy Gradient

RL as stochastic optimization

- Parameterize policies via $\theta \mapsto \pi_{\theta}$, $\theta \in \mathbb{R}^d$.
- Optimization goal: $\max_{\theta} J(\pi_{\theta}) = \max_{\theta} \mathbb{E}^{\pi_{\theta}} [\sum_{h=1}^{H} r_h].$

Credit Assignment + Generalization: Policy Gradient

RL as stochastic optimization

- Parameterize policies via $\theta \mapsto \pi_{\theta}$, $\theta \in \mathbb{R}^d$.
- Optimization goal: $\max_{\theta} J(\pi_{\theta}) = \max_{\theta} \mathbb{E}^{\pi_{\theta}} [\sum_{h=1}^{H} r_h]$.

Key idea: stochastic policies $\pi_{\theta}: \mathcal{X} \to \Delta(\mathcal{A})$.

- Typically, $\pi_{\theta}(a \mid x) \propto \exp(f_{\theta}(x, a))$.
- Ex: $f_{\theta}(x, a) = \langle \theta, \phi(x, a) \rangle$ (linear), $f_{\theta}(x, a) = \mathsf{DNN}(x, a; \theta)$ (Deep RL).

- Optimization goal: $\max_{\theta} J(\pi_{\theta})$.
- Gradient ascent:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \cdot \nabla_{\theta} J(\pi_{\theta^{(t)}}).$$

- Optimization goal: $\max_{\theta} J(\pi_{\theta})$.
- Gradient ascent:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \cdot \nabla_{\theta} J(\pi_{\theta^{(t)}}).$$

Policy gradient theorem [Williams '92, Sutton et al. '99]:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}^{\pi_{\theta}} \left[\left(\sum_{h=1}^{H} r_h \right) \cdot \sum_{h=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_h \mid x_h) \right] \tag{1}$$

- Optimization goal: $\max_{\theta} J(\pi_{\theta})$.
- Gradient ascent:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \cdot \nabla_{\theta} J(\pi_{\theta^{(t)}}).$$

Policy gradient theorem [Williams '92, Sutton et al. '99]:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}^{\pi_{\theta}} \left[\left(\sum_{h=1}^{H} r_h \right) \cdot \sum_{h=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_h \mid x_h) \right]$$
 (1)

• REINFORCE [Williams '92]: Approximate (1) w/ trajectories sampled from π_{θ} .

- Optimization goal: $\max_{\theta} J(\pi_{\theta})$.
- Gradient ascent:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \cdot \nabla_{\theta} J(\pi_{\theta^{(t)}}).$$

Policy gradient theorem [Williams '92, Sutton et al. '99]:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}^{\pi_{\theta}} \left[\left(\sum_{h=1}^{H} r_h \right) \cdot \sum_{h=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_h \mid x_h) \right] \tag{1}$$

• REINFORCE [Williams '92]: Approximate (1) w/ trajectories sampled from π_{θ} .

Log Derivative Trick

$$\nabla_{\theta} g(\theta) = g(\theta) \cdot \nabla_{\theta} \log g(\theta)$$

Policy gradient theory

Representative result [Agarwal et al. '19]:

Tabular setting, $\pi_{\theta}(a \mid x) = \theta_{x,a}$.

Policy gradient theory

Representative result [Agarwal et al. '19]:

Tabular setting, $\pi_{\theta}(a \mid x) = \theta_{x,a}$.

$$J(\pi^{\star}) - J(\pi_{\theta^{(t)}}) \leq C_{\text{mismatch}}(\theta^{(t)}) \cdot \|\nabla_{\theta} J(\pi_{\theta^{(t)}})\|,$$

where

$$C_{\text{mismatch}}(\theta) \coloneqq \max_{x,a,h} \frac{\mathbb{P}^{\pi_{\theta}}(x_h = x, a_h = a)}{\mathbb{P}^{\pi^{\star}}(x_h = x, a_h = a)}.$$

Policy gradient theory

Representative result [Agarwal et al. '19]:

Tabular setting, $\pi_{\theta}(a \mid x) = \theta_{x,a}$.

$$J(\pi^*) - J(\pi_{\theta^{(t)}}) \le C_{\text{mismatch}}(\theta^{(t)}) \cdot \|\nabla_{\theta} J(\pi_{\theta^{(t)}})\|,$$

where

$$C_{\text{mismatch}}(\theta) \coloneqq \max_{x,a,h} \frac{\mathbb{P}^{\pi_{\theta}}(x_h = x, a_h = a)}{\mathbb{P}^{\pi^{\star}}(x_h = x, a_h = a)}.$$

General function approximation: For appropriate policy gradient variant,

$$J(\pi^{\star}) - J(\pi_{\theta^{(t)}}) \lesssim C_{\text{mismatch}} \cdot \underbrace{\varepsilon_{\text{opt}}}_{\text{opt/stat error (generalization)}} + \underbrace{\varepsilon_{\text{bias}}}_{\text{quality of function approx.}}$$

Ideally, $\varepsilon_{\mathrm{opt}} \propto \mathrm{comp}(\mathcal{F})$ (no explicit $|\mathcal{X}|$ dependence).

Policy gradient: History

- Basic principles: REINFORCE [Williams '92], function approximation [Sutton et al. '99], actor-critic [Konda & Tsitsiklis '00], natural policy gradient [Kakade '01]
- Empirical improvements (deep RL): Trust regions (TRPO, PPO) [Schulman et al. '15, Schulman et al. '17], Regularization (e.g., SAC) [Haarnoja et al. '18], ...
- Asymptotic convergence: [Bellman & Dreyfus '51, Sutton et al. '99]
- Non-asymptotic guarantees: [Kakade & Langford '02], [Scherrer & Geist '14], [Fazel et al. '18], [Agarwal et al. '19], . . .

Roadmap

Basic challenges and solutions

- Credit assignment
- Exploration
- Generalization

Intermediate level

- Exploration + credit assignment: Tabular RL
- Exploration + generalization: Contextual bandits
- Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Foundations of Reinforcement Learning

Learning and Games Bootcamp @ Simons Institute

Dylan Foster

Microsoft Research, New England

Our goal

Our goal

Our goal

Goal: Exploration + credit assignment + generalization:

Explore unknown systems with long horizon (credit assignment)

...while generalizing: No dependence on $|\mathcal{X}|$ (ideally not $|\mathcal{A}|$ either).

[Credit: John Langford]

RL: The need for modeling and generalization

Challenge: States/observations are typically rich/complex/high-dimensional.

• Ex: robotics: $x_h = \text{camera image}$, $\mathcal{X} = \text{all possible images}$

```
\implies |\mathcal{X}| = \text{intractably large}
```

Approach: Use hypothesis class \mathcal{F} to model:

- Rewards/responses/treatment effects
- Dynamics
- Long-term rewards

In general, model class \mathcal{F} might consist of:

- Deep neural networks
- Generalized linear models
- Kernels

State space \mathcal{X} is intractably large. Use hypothesis class \mathcal{F} to restrict soln. space.

State space \mathcal{X} is intractably large. Use hypothesis class \mathcal{F} to restrict soln. space.

Policy-based methods: $\mathcal{F} = \text{policies}$

- Use restricted policy class $\Pi \subset \{\mathcal{X} \to \mathcal{A}\}$.
 - Ex: Policy gradient with $\theta \mapsto \pi_{\theta}$ parameterized by neural net.

State space \mathcal{X} is intractably large. Use hypothesis class \mathcal{F} to restrict soln. space.

Policy-based methods: $\mathcal{F} = \text{policies}$

- Use restricted policy class $\Pi \subset \{\mathcal{X} \to \mathcal{A}\}.$
 - Ex: Policy gradient with $\theta \mapsto \pi_{\theta}$ parameterized by neural net.

Value-based methods: $\mathcal{F} = \text{value functions}$

• Model state-action value functions with value fn. class $Q \subset \{\mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$.

$$Q_h^{\pi}(x,a) \coloneqq \mathbb{E}^{\pi} \left[\sum_{h' \ge h}^{H} r_{h'} \mid x_h = x, a_h = a \right].$$

• Can use Q to model Q^{π} for all π , or just for optimal policy π^{*} .

State space \mathcal{X} is intractably large. Use hypothesis class \mathcal{F} to restrict soln. space.

Policy-based methods: $\mathcal{F} = \text{policies}$

- Use restricted policy class $\Pi \subset \{\mathcal{X} \to \mathcal{A}\}.$
 - Ex: Policy gradient with $\theta \mapsto \pi_{\theta}$ parameterized by neural net.

Value-based methods: $\mathcal{F} = \text{value functions}$

• Model state-action value functions with value fn. class $Q \subset \{\mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$.

$$Q_h^{\pi}(x,a) := \mathbb{E}^{\pi} \left[\sum_{h' \ge h}^{H} r_{h'} \mid x_h = x, a_h = a \right].$$

• Can use Q to model Q^{π} for all π , or just for optimal policy π^{*} .

Model-based methods: $\mathcal{F} = \text{transition dynamics}$

• Model class \mathcal{M} ; MDPs $M=(P,R)\in\mathcal{M}$ parameterize transition dynamics+rewards.

State space \mathcal{X} is intractably large. Use hypothesis class \mathcal{F} to restrict soln. space.

Policy-based methods: $\mathcal{F} = \text{policies}$

- Use restricted policy class $\Pi \subset \{\mathcal{X} \to \mathcal{A}\}.$
 - Ex: Policy gradient with $\theta \mapsto \pi_{\theta}$ parameterized by neural net.

Value-based methods: $\mathcal{F} = \text{value functions}$

• Model state-action value functions with value fn. class $Q \subset \{\mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$.

$$Q_h^{\pi}(x,a) \coloneqq \mathbb{E}^{\pi} \left[\sum_{h' \ge h}^{H} r_{h'} \mid x_h = x, a_h = a \right].$$

• Can use Q to model Q^{π} for all π , or just for optimal policy π^{*} .

Model-based methods: $\mathcal{F} = \text{transition dynamics}$

• Model class \mathcal{M} ; MDPs $M=(P,R)\in\mathcal{M}$ parameterize transition dynamics+rewards.

RL: Formal setup

For t = 1, ..., T:

- $\bullet \ x_1^{(t)} \sim d_1.$
- For h = 1, ..., H:

(Markov Decision Process (MDP))

- Observe $x_h^{(t)} \in \mathcal{X}$.
- Take action $a_h^{(t)} \in \mathcal{A}$.
- Observe reward $r_h^{(t)} \sim R(x_h^{(t)}, a_h^{(t)})$ w/ $r_h^{(t)} \in [0, 1]$.
- Transition: $x_{h+1}^{(t)} \sim P(\cdot \mid x_h^{(t)}, a_h^{(t)})$.

(Actuator signal)

(Sensor measurement)

(Reached goal?)

(System evolves)

Goal: Given hypothesis class $\mathcal{F} \in \{\text{policies}, \text{value fns.}, \text{dynamics}\} + \text{realizability:}$

Find $\widehat{\pi}$ with $J(\pi^*) - J(\widehat{\pi}) \leq \varepsilon$ using $\operatorname{poly}(\operatorname{comp}(\mathcal{F}), H, \varepsilon^{-1})$ episodes,

or achieve, e.g., $\mathbf{Reg}(T) \leq \sqrt{\mathrm{poly}(\mathrm{comp}(\mathcal{F}), H) \cdot T}$.

Statistical learning: Complexity measures

Complexity measures:

- VC Dimension (classification)
- Fat-shattering dimension (regression)
- Rademacher complexity (both)
- Covering numbers (both)

[e.g., Vapnik '95, Anthony & Bartlett '99, Bousquet-Boucheron-Lugosi '03]

Examples:

- Finite class: $comp(\mathcal{F}) \leq log|\mathcal{F}|$
- Linear classification: $comp(\mathcal{F}) \leq dimension$ (VC dim)
- Linear regression: $comp(\mathcal{F}) \le (weight norm)^2$ (fat-shattering)
- Similar bounds for neural nets, kernels, ...

RL: Distribution shift

What we would like:

- 1. Gather data from distribution \mathcal{D} using policy $\pi^{(t)}$.
- 2. Fit hypothesis $\hat{f} \in \mathcal{F}$ (e.g., value fn., transition dynamics) using dataset (via supervised learning).
- 3. Update policy $\pi^{(t+1)}$ using \widehat{f} .
- 4. Performance improves?

RL: Distribution shift

What we would like:

- 1. Gather data from distribution \mathcal{D} using policy $\pi^{(t)}$.
- 2. Fit hypothesis $\hat{f} \in \mathcal{F}$ (e.g., value fn., transition dynamics) using dataset (via supervised learning).
- 3. Update policy $\pi^{(t+1)}$ using \widehat{f} .
- 4. Performance improves?

Why doesn't this work?

1. Statistical learning gives us

$$\mathsf{Error}_{\mathcal{D}}(\widehat{f}) \leq \sqrt{\frac{\mathsf{comp}(\mathcal{F})}{n}}.$$

- 2. No guarantee on performance on dataset \mathcal{D}' induced by $\pi^{(t+1)}$.
- → fail to improve performance or explore.

RL: Distribution shift

Solution 1: Control # effective distributions

RL: Distribution shift

Solution 1: Control # effective distributions

For general contextual bandits, SquareCB has

$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| \cdot T \cdot \mathbf{comp}(\mathcal{F})}$$
possible action distributions

- Idea: Can only be "suprised" |A| times if we explore deliberately.
- No assumption on \mathcal{F} , but requires strong assumption on \mathcal{A} .

RL: Distribution shift

Solution 1: Control # effective distributions

For general contextual bandits, SquareCB has

$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| \cdot T \cdot \mathbf{comp}(\mathcal{F})}$$
possible action distributions

- Idea: Can only be "suprised" |A| times if we explore deliberately.
- No assumption on \mathcal{F} , but requires strong assumption on \mathcal{A} .

Naively extending reasoning gives $|\mathcal{A}|^H$.

RL: Distribution shift

Solution 1: Control # effective distributions

For general contextual bandits, SquareCB has

$$\mathbf{Reg}(T) \leq \sqrt{|\mathcal{A}| \cdot T \cdot \mathbf{comp}(\mathcal{F})}$$
possible action distributions

- Idea: Can only be "surprised" |A| times if we explore deliberately.
- No assumption on \mathcal{F} , but requires strong assumption on \mathcal{A} .

Naively extending reasoning gives $|\mathcal{A}|^H$.

Solution 2: Extrapolation

• For linear contextual bandits $(\mathbb{E}[r(a) \mid x, a] = \langle \phi(x, a), \theta \rangle)$, LinUCB has

$$\mathbf{Reg}(T) \le d \cdot \sqrt{T}$$

- Idea: Can extrapolate once we have info from d dimensions.
- No assumption on \mathcal{A} , but strong assumption on \mathcal{F} .

Valued-based setting. Hypothesis class:

$$Q = \left\{ Q_h(x, a) = \left\langle \phi(x, a), \theta_h \right\rangle \mid \theta_h \in \mathbb{R}^d \right\}$$

for fixed feature map $\phi(x, a) \in \mathbb{R}^d$.

Valued-based setting. Hypothesis class:

$$Q = \left\{ Q_h(x, a) = \left\langle \phi(x, a), \theta_h \right\rangle \mid \theta_h \in \mathbb{R}^d \right\}$$

for fixed feature map $\phi(x, a) \in \mathbb{R}^d$.

Assumption: Realizability.

Assume $Q^* \in \mathcal{Q}$.

Valued-based setting. Hypothesis class:

$$Q = \left\{ Q_h(x, a) = \left\langle \phi(x, a), \theta_h \right\rangle \mid \theta_h \in \mathbb{R}^d \right\}$$

for fixed feature map $\phi(x, a) \in \mathbb{R}^d$.

Assumption: Realizability.

Assume $Q^* \in \mathcal{Q}$.

• Contextual bandits (H = 1): $\mathbf{Reg}(T) \leq d\sqrt{T}$.

Valued-based setting. Hypothesis class:

$$Q = \left\{ Q_h(x, a) = \left\langle \phi(x, a), \theta_h \right\rangle \mid \theta_h \in \mathbb{R}^d \right\}$$

for fixed feature map $\phi(x, a) \in \mathbb{R}^d$.

Assumption: Realizability.

Assume $Q^* \in \mathcal{Q}$.

- Contextual bandits (H = 1): $\mathbf{Reg}(T) \leq d\sqrt{T}$.
- RL: $\mathbf{Reg}(T) \ge \overline{\min\{\exp(d), \exp(H)\}}$. [Weisz et al. '20, '21]

Valued-based setting. Hypothesis class:

$$Q = \left\{ Q_h(x, a) = \left\langle \phi(x, a), \theta_h \right\rangle \mid \theta_h \in \mathbb{R}^d \right\}$$

for fixed feature map $\phi(x, a) \in \mathbb{R}^d$.

Assumption: Realizability.

Assume $Q^* \in \mathcal{Q}$.

- Contextual bandits (H = 1): $\mathbf{Reg}(T) \leq d\sqrt{T}$.
- RL: $\mathbf{Reg}(T) \ge \min\{\exp(d), \exp(H)\}\$. [Weisz et al. '20, '21]

Low-Rank MDP. Have (i)
$$P(x' \mid x, a) = \langle \phi(x, a), \mu(x') \rangle$$
, (ii) $R(x, a) = \langle \phi(x, a), \theta \rangle$. $(\phi(\cdot, \cdot) \text{ known}, \mu(\cdot) \& \theta \text{ unknown})$

$$x' \left[P(x' \mid x, a) \right] = \left[\mu(x') \right] \cdot \left[\phi(x, a) \right]$$
Rank-d

Linear/Low Rank MDPs: Upper confidence bounds

LSVI-UCB [Jin et al. '20]

• With $\overline{Q}_{H+1}^{(t)}(x,a)=0$, solve

$$\widehat{\theta}_h^{(t)} = \arg\min_{\theta} \sum_{i < t} \left(\left\langle \phi(x_h^{(i)}, a_h^{(i)}), \theta \right\rangle - \left(r_h^{(i)} + \max_{a} \overline{Q}_{h+1}^{(t)}(x_{h+1}^{(i)}, a) \right) \right)^2.$$

- $\bullet \ \overline{Q}_h^{(t)}(x,a) = \left\langle \phi(x,a), \widehat{\theta}_h^{(t)} \right\rangle + \mathsf{bon}_h^{(t)}(x,a).$
- Play $\pi_h^{(t)}(x) = \arg\max_a \overline{Q}_h^{(t)}(x,a)$.

Linear/Low Rank MDPs: Upper confidence bounds

LSVI-UCB [Jin et al. '20]

• With
$$\overline{Q}_{H+1}^{(t)}(x,a) = 0$$
, solve

Motivation
$$Q_h^{\star}(x,a) = \mathbb{E}\big[r_h + \max_{a'} Q_{h+1}^{\star}(x_{h+1},a') \mid x_h = x, a_h = a\big]$$

$$\widehat{\theta}_{h}^{(t)} = \arg\min_{\theta} \sum_{i < t} \left(\left\langle \phi(x_{h}^{(i)}, a_{h}^{(i)}), \theta \right\rangle - \left(r_{h}^{(i)} + \max_{a} \overline{Q}_{h+1}^{(t)}(x_{h+1}^{(i)}, a) \right) \right)^{2}.$$

- $\bullet \ \overline{Q}_h^{(t)}(x,a) = \left\langle \phi(x,a), \widehat{\theta}_h^{(t)} \right\rangle + \mathsf{bon}_h^{(t)}(x,a).$
- Play $\pi_h^{(t)}(x) = \arg\max_a \overline{Q}_h^{(t)}(x, a)$.

Linear/Low Rank MDPs: Upper confidence bounds

LSVI-UCB [Jin et al. '20]

• With
$$\overline{Q}_{H+1}^{(t)}(x,a) = 0$$
, solve

Motivation
$$Q_h^{\star}(x,a) = \mathbb{E} \big[r_h + \max_{a'} Q_{h+1}^{\star}(x_{h+1},a') \mid x_h = x, a_h = a \big]$$

$$\widehat{\theta}_h^{(t)} = \arg\min_{\theta} \sum_{i < t} \left(\left\langle \phi(x_h^{(i)}, a_h^{(i)}), \theta \right\rangle - \left(r_h^{(i)} + \max_{a} \overline{Q}_{h+1}^{(t)}(x_{h+1}^{(i)}, a) \right) \right)^2.$$

- $\bullet \ \overline{Q}_h^{(t)}(x,a) = \left\langle \phi(x,a), \widehat{\theta}_h^{(t)} \right\rangle + \mathsf{bon}_h^{(t)}(x,a).$
- Play $\pi_h^{(t)}(x) = \arg\max_a \overline{Q}_h^{(t)}(x,a)$.

Theorem: LSVI-UCB has

$$\mathbf{Reg}(T) \le \sqrt{d^3 H^4 T}.$$

Optimism. With high probability (least squares + low rank MDP structure),

$$\overline{Q}_h^{(t)}(x,a) \ge Q_h^{\star}(x,a) \quad \forall x, a.$$

Optimism. With high probability (least squares + low rank MDP structure),

$$\overline{Q}_h^{(t)}(x,a) \ge Q_h^{\star}(x,a) \quad \forall x, a.$$

Bonus: Let $\Sigma_h^{(t)} = \sum_{i < t} \phi(x_h^{(i)}, a_h^{(i)}) \phi(x_h^{(i)}, a_h^{(i)})^{\top} + \varepsilon \cdot I_{d \times d}$ and set

$$\mathsf{bon}_h^{(t)}(x,a) \propto \sqrt{\phi(x,a)^\top (\Sigma_h^{(t)})^{-1} \phi(x,a)} =: \|\phi(x,a)\|_{(\Sigma_h^{(t)})^{-1}}.$$

Optimism. With high probability (least squares + low rank MDP structure),

$$\overline{Q}_h^{(t)}(x,a) \ge Q_h^{\star}(x,a) \quad \forall x, a.$$

Bonus: Let $\Sigma_h^{(t)} = \sum_{i < t} \phi(x_h^{(i)}, a_h^{(i)}) \phi(x_h^{(i)}, a_h^{(i)})^{\top} + \varepsilon \cdot I_{d \times d}$ and set

$$\mathsf{bon}_h^{(t)}(x,a) \propto \sqrt{\phi(x,a)^\top (\Sigma_h^{(t)})^{-1} \phi(x,a)} =: \|\phi(x,a)\|_{(\Sigma_h^{(t)})^{-1}}.$$

Regret decomposition. As in tabular setting, $\overline{Q}_h^{(t)} \geq Q_h^{\star}$ pointwise implies

$$\mathbf{Reg}(T) \lesssim \text{poly}(H) \cdot \sum_{t=1}^{T} \sum_{h=1}^{H} \mathsf{bon}_{h}^{(t)}(x_{h}^{(t)}, a_{h}^{(t)}).$$

Optimism. With high probability (least squares + low rank MDP structure),

$$\overline{Q}_h^{(t)}(x,a) \ge Q_h^{\star}(x,a) \quad \forall x, a.$$

Bonus: Let $\Sigma_h^{(t)} = \sum_{i < t} \phi(x_h^{(i)}, a_h^{(i)}) \phi(x_h^{(i)}, a_h^{(i)})^{\top} + \varepsilon \cdot I_{d \times d}$ and set

$$\mathsf{bon}_h^{(t)}(x,a) \propto \sqrt{\phi(x,a)^\top (\Sigma_h^{(t)})^{-1} \phi(x,a)} =: \|\phi(x,a)\|_{(\Sigma_h^{(t)})^{-1}}.$$

Regret decomposition. As in tabular setting, $\overline{Q}_h^{(t)} \geq Q_h^{\star}$ pointwise implies

$$\mathbf{Reg}(T) \lesssim \text{poly}(H) \cdot \sum_{t=1}^{T} \sum_{h=1}^{H} \mathsf{bon}_{h}^{(t)}(x_{h}^{(t)}, a_{h}^{(t)}).$$

Potential argument.

$$\sum_{t=1}^{T} \mathsf{bon}_h^{(t)}(x_h^{(t)}, a_h^{(t)}) \approx \sum_{t=1}^{T} \lVert \phi(x_h^{(t)}, a_h^{(t)}) \rVert_{(\Sigma_h^{(t)})^{-1}} \lesssim \sqrt{dT}.$$

Optimism. With high probability (least squares + low rank MDP structure),

$$\overline{Q}_h^{(t)}(x,a) \ge Q_h^{\star}(x,a) \quad \forall x, a.$$

Bonus: Let $\Sigma_h^{(t)} = \sum_{i < t} \phi(x_h^{(i)}, a_h^{(i)}) \phi(x_h^{(i)}, a_h^{(i)})^{\top} + \varepsilon \cdot I_{d \times d}$ and set

$$\mathsf{bon}_h^{(t)}(x,a) \propto \sqrt{\phi(x,a)^\top (\Sigma_h^{(t)})^{-1} \phi(x,a)} =: \|\phi(x,a)\|_{(\Sigma_h^{(t)})^{-1}}.$$

Regret decomposition. As in tabular setting, $\overline{Q}_h^{(t)} \geq Q_h^{\star}$ pointwise implies

$$\mathbf{Reg}(T) \lesssim \text{poly}(H) \cdot \sum_{t=1}^{T} \sum_{h=1}^{H} \mathsf{bon}_{h}^{(t)}(x_{h}^{(t)}, a_{h}^{(t)}).$$

Potential argument.

$$\sum_{t=1}^{T} \mathsf{bon}_h^{(t)}(x_h^{(t)}, a_h^{(t)}) \approx \sum_{t=1}^{T} \lVert \phi(x_h^{(t)}, a_h^{(t)}) \rVert_{(\Sigma_h^{(t)})^{-1}} \lesssim \sqrt{dT}.$$

Intuition: $\Sigma_h^{(t+1)} \leftarrow \Sigma_h^{(t)} + \phi(x_h^{(t)}, a_h^{(t)}) \phi(x_h^{(t)}, a_h^{(t)})^{\top}$.

Eluder dimension: Combinatorial parameter controlling extrapolation.

Eluder dimension: Combinatorial parameter controlling extrapolation.

For a class $\mathcal{F} \subseteq (\mathcal{Z} \to \mathbb{R})$, eluder dimension $d_{\mathcal{E}}(\mathcal{F}, \varepsilon)$ is the length of the longest sequence $z^{(1)}, \ldots, z^{(N)}$ such that for all $t \leq N$,

$$\exists f, f' \in \mathcal{F}: \quad \left| f(z^{(t)}) - f'(z^{(t)}) \right| > \varepsilon, \quad \text{and} \quad \sqrt{\sum_{i < t} \left| f(z^{(i)}) - f'(z^{(i)}) \right|^2} \le \varepsilon.$$

Eluder dimension: Combinatorial parameter controlling extrapolation.

For a class $\mathcal{F} \subseteq (\mathcal{Z} \to \mathbb{R})$, eluder dimension $d_{\mathcal{E}}(\mathcal{F}, \varepsilon)$ is the length of the longest sequence $z^{(1)}, \ldots, z^{(N)}$ such that for all $t \leq N$,

$$\exists f, f' \in \mathcal{F}: \quad \left| f(z^{(t)}) - f'(z^{(t)}) \right| > \varepsilon, \quad \text{and} \quad \sqrt{\sum_{i < t}} \left| f(z^{(i)}) - f'(z^{(i)}) \right|^2 \le \varepsilon.$$

Results:

- Russo & Van Roy '13: $\sqrt{d_{\mathsf{E}}(\mathcal{Q}) \cdot T}$ regret for bandits.
- Wang et al '20: $\sqrt{\operatorname{poly}(d_{\mathsf{E}}(\mathcal{Q}), H) \cdot T}$ regret for RL (w/ additional assumptions).

Eluder dimension: Combinatorial parameter controlling extrapolation.

For a class $\mathcal{F} \subseteq (\mathcal{Z} \to \mathbb{R})$, eluder dimension $d_{\mathcal{E}}(\mathcal{F}, \varepsilon)$ is the length of the longest sequence $z^{(1)}, \ldots, z^{(N)}$ such that for all $t \leq N$,

$$\exists f, f' \in \mathcal{F}: \quad \left| f(z^{(t)}) - f'(z^{(t)}) \right| > \varepsilon, \quad \text{and} \quad \sqrt{\sum_{i < t}} \left| f(z^{(i)}) - f'(z^{(i)}) \right|^2 \le \varepsilon.$$

Results:

- Russo & Van Roy '13: $\sqrt{d_{\mathsf{E}}(\mathcal{Q}) \cdot T}$ regret for bandits.
- Wang et al '20: $\sqrt{\operatorname{poly}(d_{\mathsf{E}}(\mathcal{Q}), H) \cdot T}$ regret for RL (w/ additional assumptions).

Examples:

- Linear: $d_{\mathsf{E}}(\mathcal{Q}, \varepsilon) = \widetilde{O}(d)$.
- Generalized linear:
 - $Q(x,a) = \sigma(\langle \phi(x,a), \theta \rangle)$ for $\sigma : \mathbb{R} \to \mathbb{R}$
 - $d_{\mathsf{E}}(\mathcal{Q}, \varepsilon) = \widetilde{O}(d)$ when $0 < c \le \sigma' \le C$
- ReLU: $d_{\mathsf{E}}(\mathcal{Q}, \varepsilon) = \exp(d)$ [LK**F**S'21].

$$(\sigma(z) = \max\{z, 0\})$$

Tighter variants: [FRSX'20], [FKQR'21]. Connection to RKHS: [Huang et al '21]

$$P(x' \mid x, a) = \left[\mu(x') \right] \cdot \left[\phi(x, a) \right]$$

Observation: In a low rank MDP, for any function f(x), can write $\mathbb{E}^{\pi}[f(x_h)]$ as

$$\mathbb{E}^{\pi} \Big[\mathbb{E} \big[f(x_h) \mid x_{h-1}, a_{h-1} \big] \Big] = \mathbb{E}^{\pi} \Big[\int \langle \phi(x_{h-1}, a_{h-1}), \mu(x) f(x) \rangle dx \Big]$$
$$= \left\langle \mathbb{E}^{\pi} \big[\phi(x_{h-1}, a_{h-1}) \big], \int \mu(x) f(x) dx \right\rangle = \langle X(\pi), W(f) \rangle.$$

$$P(x' \mid x, a) = \mu(x') \cdot \phi(x, a)$$

Observation: In a low rank MDP, for any function f(x), can write $\mathbb{E}^{\pi}[f(x_h)]$ as

$$\mathbb{E}^{\pi} \left[\mathbb{E} \left[f(x_h) \mid x_{h-1}, a_{h-1} \right] \right] = \mathbb{E}^{\pi} \left[\int \left\langle \phi(x_{h-1}, a_{h-1}), \mu(x) f(x) \right\rangle dx \right]$$
$$= \left\langle \mathbb{E}^{\pi} \left[\phi(x_{h-1}, a_{h-1}) \right], \int \mu(x) f(x) dx \right\rangle = \left\langle X(\pi), W(f) \right\rangle.$$

Bellman residual: For $Q \in \mathcal{Q}$ and π , define

 $(\pi_Q = \text{opt policy for } Q)$

$$\mathcal{E}_{h}(\pi, Q) = \mathbb{E}_{x_{h} \sim \pi, a_{h} \sim \pi_{Q}(x_{h})} \left[Q_{h}(x_{h}, a_{h}) - \left(r_{h} + \max_{a} Q_{h+1}(x_{h+1}, a) \right) \right].$$

$$P(x' \mid x, a) = \mu(x') \cdot \phi(x, a)$$

Observation: In a low rank MDP, for any function f(x), can write $\mathbb{E}^{\pi}[f(x_h)]$ as

$$\mathbb{E}^{\pi} \left[\mathbb{E} \left[f(x_h) \mid x_{h-1}, a_{h-1} \right] \right] = \mathbb{E}^{\pi} \left[\int \left\langle \phi(x_{h-1}, a_{h-1}), \mu(x) f(x) \right\rangle dx \right]$$
$$= \left\langle \mathbb{E}^{\pi} \left[\phi(x_{h-1}, a_{h-1}) \right], \int \mu(x) f(x) dx \right\rangle = \left\langle X(\pi), W(f) \right\rangle.$$

Bellman residual: For $Q \in \mathcal{Q}$ and π , define

$$(\pi_Q = \text{opt policy for } Q)$$

$$\mathcal{E}_{h}(\pi, Q) = \mathbb{E}_{x_{h} \sim \pi, a_{h} \sim \pi_{Q}(x_{h})} \left[Q_{h}(x_{h}, a_{h}) - \left(r_{h} + \max_{a} Q_{h+1}(x_{h+1}, a) \right) \right].$$

Motivation
$$Q_h^{\star}(x,a) = \mathbb{E}\left[r_h + \max_{a'} Q_{h+1}^{\star}(x_{h+1},a') \mid x_h = x, a_h = a\right]$$

$$P(x' \mid x, a) = \mu(x') \cdot \phi(x, a)$$

Observation: In a low rank MDP, for any function f(x), can write $\mathbb{E}^{\pi}[f(x_h)]$ as

$$\mathbb{E}^{\pi} \left[\mathbb{E} \left[f(x_h) \mid x_{h-1}, a_{h-1} \right] \right] = \mathbb{E}^{\pi} \left[\int \left\langle \phi(x_{h-1}, a_{h-1}), \mu(x) f(x) \right\rangle dx \right]$$
$$= \left\langle \mathbb{E}^{\pi} \left[\phi(x_{h-1}, a_{h-1}) \right], \int \mu(x) f(x) dx \right\rangle = \left\langle X(\pi), W(f) \right\rangle.$$

Bellman residual: For $Q \in \mathcal{Q}$ and π , define

$$(\pi_Q = \text{opt policy for } Q)$$

$$\mathcal{E}_{h}(\pi, Q) = \mathbb{E}_{x_{h} \sim \pi, a_{h} \sim \pi_{Q}(x_{h})} \left[Q_{h}(x_{h}, a_{h}) - \left(r_{h} + \max_{a} Q_{h+1}(x_{h+1}, a) \right) \right].$$

Low Rank MDP has $\mathcal{E}_h(\pi, Q) = \langle X_h(\pi), W_h(Q) \rangle$.

$$\Pi$$
 $\mathscr{E}_h(\pi,Q)$

$$P(x' \mid x, a) = \mu(x') \cdot \phi(x, a)$$

Observation: In a low rank MDP, for any function f(x), can write $\mathbb{E}^{\pi}[f(x_h)]$ as

$$\mathbb{E}^{\pi} \left[\mathbb{E} \left[f(x_h) \mid x_{h-1}, a_{h-1} \right] \right] = \mathbb{E}^{\pi} \left[\int \left\langle \phi(x_{h-1}, a_{h-1}), \mu(x) f(x) \right\rangle dx \right]$$
$$= \left\langle \mathbb{E}^{\pi} \left[\phi(x_{h-1}, a_{h-1}) \right], \int \mu(x) f(x) dx \right\rangle = \left\langle X(\pi), W(f) \right\rangle.$$

Bellman residual: For $Q \in \mathcal{Q}$ and π , define

$$(\pi_Q = \text{opt policy for } Q)$$

$$\mathcal{E}_{h}(\pi, Q) = \mathbb{E}_{x_{h} \sim \pi, a_{h} \sim \pi_{Q}(x_{h})} \left[Q_{h}(x_{h}, a_{h}) - \left(r_{h} + \max_{a} Q_{h+1}(x_{h+1}, a) \right) \right].$$

Low Rank MDP has $\mathcal{E}_h(\pi, Q) = \langle X_h(\pi), W_h(Q) \rangle$.

Bellman rank: [Jiang et al. '17]

$$d_{\mathsf{Be}} = \max_{h} \mathrm{rank}(\mathcal{E}_h(\cdot, \cdot)).$$

 Π $\mathscr{E}_h(\pi,Q)$

Low Bellman rank implies sample efficiency

Theorem [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

When $Q^* \in \mathcal{Q}$, can learn an ε -optimal policy with

$$\operatorname{poly}(d_{\mathsf{Be}}, |\mathcal{A}|, H, \operatorname{comp}(\mathcal{Q}), \varepsilon^{-1})$$

samples.

Low Bellman rank implies sample efficiency

Theorem [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

When $Q^* \in \mathcal{Q}$, can learn an ε -optimal policy with

$$\operatorname{poly}(d_{\mathsf{Be}}, |\mathcal{A}|, H, \operatorname{comp}(\mathcal{Q}), \varepsilon^{-1})$$

samples.

Remarks

• comp(Q) = supervised learning complexity.

(e.g., $\log |Q|$ for finite)

Low Bellman rank implies sample efficiency

Theorem [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

When $Q^* \in \mathcal{Q}$, can learn an ε -optimal policy with

$$\operatorname{poly}(d_{\mathsf{Be}}, |\mathcal{A}|, H, \operatorname{comp}(\mathcal{Q}), \varepsilon^{-1})$$

samples.

Remarks

- comp(Q) = supervised learning complexity. (e.g., log|Q| for finite)
- $|\mathcal{A}|$ can be removed with slightly different variant of d_{Be} . [Jin et al '21, Du et al '21]
- Not computationally efficient in general. [cf. Dann et al. '18]

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

BilinUCB. [Du et al. '21]

Maintain "plausible" set $Q^{(t)} \subseteq Q$.

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

BilinUCB. [Du et al. '21]

Maintain "plausible" set $Q^{(t)} \subseteq Q$.

Repeat:

- Let $\overline{Q}^{(t)} = \arg\max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q)$, where $J_Q(\pi) \coloneqq \mathbb{E}[Q_1(x_1, \pi(x_1))]$.
- ullet Set $\pi^{(t)}(x)=\pi_{\overline{Q}^{(t)}}(x).$ (opt policy for $\overline{Q}^{(t)}$)

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

BilinUCB. [Du et al. '21]

Maintain "plausible" set $Q^{(t)} \subseteq Q$.

Repeat:

- Let $\overline{Q}^{(t)} = \arg\max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q)$, where $J_Q(\pi) \coloneqq \mathbb{E}[Q_1(x_1, \pi(x_1))]$.
- ullet Set $\pi^{(t)}(x)=\pi_{\overline{Q}^{(t)}}(x).$ (opt policy for $\overline{Q}^{(t)}$)
- Estimate $\mathcal{E}_h(\pi^{(t)}, Q)$ by running $\pi^{(t)}$ and gathering $O(\varepsilon^{-2})$ trajectories.

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

BilinUCB. [Du et al. '21]

Maintain "plausible" set $Q^{(t)} \subseteq Q$.

Repeat:

- Let $\overline{Q}^{(t)} = \operatorname{arg} \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q)$, where $J_Q(\pi) \coloneqq \mathbb{E}[Q_1(x_1, \pi(x_1))]$.
- ullet Set $\pi^{(t)}(x)=\pi_{\overline{Q}^{(t)}}(x).$ (opt policy for $\overline{Q}^{(t)}$)
- Estimate $\mathcal{E}_h(\pi^{(t)}, Q)$ by running $\pi^{(t)}$ and gathering $O(\varepsilon^{-2})$ trajectories.
- Set $Q^{(t+1)} = \left\{ Q \in Q \mid \sum_{i \le t} (\mathcal{E}_h(\pi^{(i)}, Q)) \lesssim \varepsilon^2 \ \forall h \right\}$

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '17]

BilinUCB. [Du et al. '21]

Maintain "plausible" set $Q^{(t)} \subseteq Q$.

Repeat:

- Let $\overline{Q}^{(t)} = \operatorname{arg} \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q)$, where $J_Q(\pi) \coloneqq \mathbb{E}[Q_1(x_1, \pi(x_1))]$.
- ullet Set $\pi^{(t)}(x)=\pi_{\overline{Q}^{(t)}}(x).$ (opt policy for $\overline{Q}^{(t)}$)
- Estimate $\mathcal{E}_h(\pi^{(t)}, Q)$ by running $\pi^{(t)}$ and gathering $O(\varepsilon^{-2})$ trajectories.
- Set $Q^{(t+1)} = \left\{ Q \in Q \mid \sum_{i \le t} (\mathcal{E}_h(\pi^{(i)}, Q)) \lesssim \varepsilon^2 \ \forall h \right\}$

Each iteration requires only $poly(|\mathcal{A}|, H, comp(\mathcal{Q}), \varepsilon^{-1})$ episodes.

Recall:

$$\mathcal{E}_h(\pi, Q) \coloneqq \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

Recall:

$$\mathcal{E}_h(\pi, Q) := \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

 Q^* is never eliminated. $Q^* \in \mathcal{Q}^{(t)} \ \forall t$

(Bellman optimality: $\mathcal{E}_h(\pi, Q^*) = 0$ for all π)

Recall:

$$\mathcal{E}_h(\pi, Q) := \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

 Q^{\star} is never eliminated. $Q^{\star} \in \mathcal{Q}^{(t)} \ \forall t$

(Bellman optimality: $\mathcal{E}_h(\pi, Q^*) = 0$ for all π)

Average optimism. As a result,

$$(\text{recall } J_Q(\pi) = \mathbb{E}[Q_1(x_1, \pi(x_1))])$$

$$J(\pi^*) = J_{Q^*}(\pi_{Q^*}) \le \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q) = J_{\overline{Q}^{(t)}}(\pi^{(t)}).$$

Recall:

$$\mathcal{E}_h(\pi, Q) \coloneqq \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

 Q^{\star} is never eliminated. $Q^{\star} \in \mathcal{Q}^{(t)} \ \forall t$

(Bellman optimality: $\mathcal{E}_h(\pi, Q^*) = 0$ for all π)

(recall $J_Q(\pi) = \mathbb{E}[Q_1(x_1, \pi(x_1))]$)

Average optimism. As a result,

$$J(\pi^*) = J_{Q^*}(\pi_{Q^*}) \le \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q) = J_{\overline{Q}^{(t)}}(\pi^{(t)}).$$

Regret decomposition. For all Q-functions,

$$J_Q(\pi_Q) - J(\pi_Q) = \sum_{h=1}^{H} \mathcal{E}_h(\pi_Q, Q)$$

Recall:

$$\mathcal{E}_h(\pi, Q) \coloneqq \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

 Q^{\star} is never eliminated. $Q^{\star} \in \mathcal{Q}^{(t)} \ \forall t$

(Bellman optimality: $\mathcal{E}_h(\pi, Q^*) = 0$ for all π)

Average optimism. As a result,

$$(\text{recall } J_Q(\pi) = \mathbb{E}\big[Q_1(x_1, \pi(x_1))\big])$$

$$J(\pi^*) = J_{Q^*}(\pi_{Q^*}) \le \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q) = J_{\overline{Q}^{(t)}}(\pi^{(t)}).$$

Regret decomposition. For all Q-functions,

$$J_Q(\pi_Q) - J(\pi_Q) = \sum_{h=1}^H \mathcal{E}_h(\pi_Q, Q) = \sum_{h=1}^H \langle X_h(\pi_Q), W_h(Q) \rangle$$

Recall:

$$\mathcal{E}_h(\pi, Q) \coloneqq \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

 Q^{\star} is never eliminated. $Q^{\star} \in \mathcal{Q}^{(t)} \ \forall t$

(Bellman optimality: $\mathcal{E}_h(\pi, Q^*) = 0$ for all π)

Average optimism. As a result,

$$(\text{recall } J_Q(\pi) = \mathbb{E}\big[Q_1(x_1, \pi(x_1))\big])$$

$$J(\pi^*) = J_{Q^*}(\pi_{Q^*}) \le \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q) = J_{\overline{Q}^{(t)}}(\pi^{(t)}).$$

Regret decomposition. For all Q-functions,

$$J_Q(\pi_Q) - J(\pi_Q) = \sum_{h=1}^H \mathcal{E}_h(\pi_Q, Q) = \sum_{h=1}^H \langle X_h(\pi_Q), W_h(Q) \rangle$$

so
$$J(\pi^\star) - J(\pi^{(t)}) \leq \sum_{h=1}^H \langle X_h(\pi^{(t)}), W_h(\overline{Q}^{(t)}) \rangle$$
.

Recall:

$$\mathcal{E}_h(\pi, Q) := \mathbb{E}_{x_h \sim \pi, a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_{h+1}, a) \right] = \langle X_h(\pi), W_h(Q) \rangle.$$

 Q^* is never eliminated. $Q^* \in \mathcal{Q}^{(t)} \ \forall t$

(Bellman optimality: $\mathcal{E}_h(\pi, Q^*) = 0$ for all π)

Average optimism. As a result,

$$(\text{recall } J_Q(\pi) = \mathbb{E}\big[Q_1(x_1, \pi(x_1))\big])$$

$$J(\pi^*) = J_{Q^*}(\pi_{Q^*}) \le \max_{Q \in \mathcal{Q}^{(t)}} J_Q(\pi_Q) = J_{\overline{Q}^{(t)}}(\pi^{(t)}).$$

Regret decomposition. For all Q-functions,

$$J_Q(\pi_Q) - J(\pi_Q) = \sum_{h=1}^{H} \mathcal{E}_h(\pi_Q, Q) = \sum_{h=1}^{H} \langle X_h(\pi_Q), W_h(Q) \rangle$$

so
$$J(\pi^\star) - J(\pi^{(t)}) \leq \sum_{h=1}^H \langle X_h(\pi^{(t)}), W_h(\overline{Q}^{(t)}) \rangle$$
.

Confidence bound. Bound residuals using potential argument.

$$\langle X_h(\pi^{(t)}), W_h(\overline{Q}^{(t)}) \rangle \lesssim \|X_h(\pi^{(t)})\|_{(\Sigma_h^{(t)})^{-1}}, \quad \text{w/} \quad \Sigma_h^{(t)} = \sum_{i < t} X_h(\pi^{(i)}) X_h(\pi^{(i)})^{\top}.$$

Bellman rank: Examples

Tabular: #states

Low-Rank MDP: Dimension (even w/ ϕ unknown)

Linear-Quadratic Regulator (LQR): state*action dimension

Block MDP: # latent states

Further examples: [Jiang et al. '17, Jin et al. '21, Du et al.'21]

- Low occupancy complexity
- Linear *Q** & *V**
- State abstraction

- Linear Bellman-Complete
- Predictive state representations
- Reactive POMDP

Example: Block MDP

Rich Observation Markov Decision Process

[Krishnamurthy et al.'16, Jiang et al.'17, Dann et al.'18, Du et al.'19]

- Markov decision process (MDP) with large/high-dimensional state space \mathcal{X} .
- Assumption: States can be uniquely mapped down into small latent MDP in state space S, with $|S| < \infty$ states.

 $\mathcal{X} = \text{images (pixels)}, \, \mathcal{S} = \text{game state}$

Example: Block MDP

Rich Observation Markov Decision Process

[Krishnamurthy et al.'16, Jiang et al.'17, Dann et al.'18, Du et al.'19]

- Markov decision process (MDP) with large/high-dimensional state space \mathcal{X} .
- Assumption: States can be uniquely mapped down into small latent MDP in state space S, with $|S| < \infty$ states.

Bellman rank depends only on # latent states:

Bellman Rank $\leq |\mathcal{S}|$.

Achieve $\operatorname{poly}(|\mathcal{S}|, |\mathcal{A}|, H, \operatorname{comp}(\mathcal{Q}), \varepsilon^{-1})$ sample complexity. (no $|\mathcal{X}|$ dependence!)

• comp(Q) will generally depend on mapping from observed to latent states

Example: Block MDP

Rich Observation Markov Decision Process

[Krishnamurthy et al.'16, Jiang et al.'17, Dann et al.'18, Du et al.'19]

- Markov decision process (MDP) with large/high-dimensional state space \mathcal{X} .
- Assumption: States can be uniquely mapped down into small latent MDP in state space S, with $|S| < \infty$ states.

Bellman rank depends only on # latent states:

Bellman Rank $\leq |\mathcal{S}|$.

Achieve $\operatorname{poly}(|\mathcal{S}|, |\mathcal{A}|, H, \operatorname{comp}(\mathcal{Q}), \varepsilon^{-1})$ sample complexity. (no $|\mathcal{X}|$ dependence!)

• comp(Q) will generally depend on mapping from observed to latent states

Idea:

$$\mathcal{E}_h(\pi, Q) \coloneqq \sum_{s \in \mathcal{S}} \mathbb{P}^{\pi}(s_h = s) \cdot \mathbb{E}_{a_h \sim \pi_Q(x_h)} \left[Q_h(x_h, a_h) - r_h - \max_a Q_{h+1}(x_h, a) \mid s_h = s \right]$$

Example: Low-Rank MDP

$$P(x' \mid x, a) = \mu(x') \cdot \phi(x, a)$$

Already saw:

$$\mathcal{E}_h(\pi, Q) = \left\langle \mathbb{E}^{\pi} \left[\phi(x_{h-1}, a_{h-1}) \right], \int \mu(x) \operatorname{err}_h(x; Q) dx \right\rangle$$

Implication: Sample-efficient learning is possible even when ϕ is unknown.

Discussion

Only considered value-based methods (hypothesis class = Q)

- For some classes, modeling transitions (hypothesis class = \mathcal{M}) is required.
 - Factored MDP, Linear Mixture MDP
- Model-based generalization: "Witness Rank" [Sun et al. '19, Du et al. '21]

Discussion

Only considered value-based methods (hypothesis class = Q)

- For some classes, modeling transitions (hypothesis class = \mathcal{M}) is required.
 - Factored MDP, Linear Mixture MDP
- Model-based generalization: "Witness Rank" [Sun et al. '19, Du et al. '21]

Further generalizations

- Bilinear dimension [Du et al. '21]
- Bellman rank + eluder [Jin et al. '21]

Landscape of RL

Landscape of RL

Setup:

- Hypothesis class of MDPs \mathcal{M} , $M \in \mathcal{M}$ has M = (P, R).
- $M^* \in \mathcal{M}$ (realizability)

Setup:

- Hypothesis class of MDPs \mathcal{M} , $M \in \mathcal{M}$ has M = (P, R).
- $M^{\star} \in \mathcal{M}$ (realizability)
- $M(\pi) =$ distribution over trajectories when we run policy π
- $J_M(\pi) =$ expected reward for π under M
- $\pi_M^* = \text{optimal policy for } M$

Setup:

- Hypothesis class of MDPs \mathcal{M} , $M \in \mathcal{M}$ has M = (P, R).
- $M^{\star} \in \mathcal{M}$ (realizability)
- $M(\pi) =$ distribution over trajectories when we run policy π
- $J_M(\pi) =$ expected reward for π under M
- $\pi_M^* = \text{optimal policy for } M$

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \bigg[J_{M}(\pi_{M}^{\star}) - J_{M}(\pi) - \gamma \cdot D_{\mathsf{H}}^{2} \big(M(\pi), \overline{M}(\pi) \big) \bigg],$$

where
$$D^2_{\mathsf{H}}(P,Q) \coloneqq \int (\sqrt{p(z)} - \sqrt{q(z)})^2 dz$$
.

Setup:

- Hypothesis class of MDPs \mathcal{M} , $M \in \mathcal{M}$ has M = (P, R).
- $M^{\star} \in \mathcal{M}$ (realizability)
- $M(\pi) =$ distribution over trajectories when we run policy π
- $J_M(\pi) =$ expected reward for π under M
- $\pi_M^* = \text{optimal policy for } M$

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{J_{M}(\pi_{M}^{\star}) - J_{M}(\pi)}_{\text{regret of decision}} - \gamma \cdot D_{\mathsf{H}}^{2} \left(M(\pi), \overline{M}(\pi) \right) \right],$$

where $D^2_{\mathsf{H}}(P,Q) \coloneqq \int (\sqrt{p(z)} - \sqrt{q(z)})^2 dz$.

Setup:

- Hypothesis class of MDPs \mathcal{M} , $M \in \mathcal{M}$ has M = (P, R).
- $M^{\star} \in \mathcal{M}$ (realizability)
- $M(\pi) =$ distribution over trajectories when we run policy π
- $J_M(\pi) =$ expected reward for π under M
- $\pi_M^* = \text{optimal policy for } M$

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{J_{M}(\pi_{M}^{\star}) - J_{M}(\pi)}_{\text{regret of decision}} - \gamma \cdot \underbrace{D_{H}^{2}(M(\pi), \overline{M}(\pi))}_{\text{estimation error for obs.}} \right],$$

where $D^2_{\mathsf{H}}(P,Q) \coloneqq \int (\sqrt{p(z)} - \sqrt{q(z)})^2 dz$.

Setup:

- Hypothesis class of MDPs \mathcal{M} , $M \in \mathcal{M}$ has M = (P, R).
- $M^{\star} \in \mathcal{M}$ (realizability)
- $M(\pi) =$ distribution over trajectories when we run policy π
- $J_M(\pi) =$ expected reward for π under M
- $\pi_M^* = \text{optimal policy for } M$

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{J_{M}(\pi_{M}^{\star}) - J_{M}(\pi)}_{\text{regret of decision}} - \gamma \cdot \underbrace{D_{H}^{2}(M(\pi), \overline{M}(\pi))}_{\text{estimation error for obs.}} \right],$$

where
$$D^2_{\mathrm{H}}(P,Q)\coloneqq\int (\sqrt{p(z)}-\sqrt{q(z)})^2dz$$
.

$$\operatorname{\mathsf{dec}}_\gamma(\mathcal{M}) \coloneqq \max_{\overline{M} \in \mathcal{M}} \operatorname{\mathsf{dec}}_\gamma(\mathcal{M}, \overline{M}).$$

DEC: Lower bound [F, Kakade, Qian, Rakhlin '21]

Any algorithm must have

$$\mathbf{Reg}(T) \ge \max_{\gamma>0} \min \{ \mathsf{dec}_{\gamma}(\mathcal{M}) \cdot T, \gamma \}.$$

DEC: Lower bound [F, Kakade, Qian, Rakhlin '21]

Any algorithm must have

$$\operatorname{\mathbf{Reg}}(T) \ge \max_{\gamma>0} \min \{ \operatorname{\mathsf{dec}}_{\gamma}(\mathcal{M}) \cdot T, \gamma \}.$$

Examples:

• Multi-armed bandit:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \frac{|\mathcal{A}|}{\gamma} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}(T) \geq \max_{\gamma > 0} \min \left\{ \frac{|\mathcal{A}|T}{\gamma}, \gamma \right\} = \sqrt{|\mathcal{A}|T}.$$

DEC: Lower bound [F, Kakade, Qian, Rakhlin '21]

Any algorithm must have

$$\operatorname{\mathbf{Reg}}(T) \ge \max_{\gamma > 0} \min \{ \operatorname{\mathsf{dec}}_{\gamma}(\mathcal{M}) \cdot T, \gamma \}.$$

Examples:

• Multi-armed bandit:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \frac{|\mathcal{A}|}{\gamma} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}(T) \geq \max_{\gamma > 0} \min \left\{ \frac{|\mathcal{A}|T}{\gamma}, \gamma \right\} = \sqrt{|\mathcal{A}|T}.$$

• Bellman rank d:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \geq rac{d}{\gamma} \quad \Longrightarrow \quad \mathbf{Reg}(T) \geq \sqrt{d \cdot T}.$$

DEC: Lower bound [F, Kakade, Qian, Rakhlin '21]

Any algorithm must have

$$\operatorname{\mathbf{Reg}}(T) \ge \max_{\gamma > 0} \min \{ \operatorname{\mathsf{dec}}_{\gamma}(\mathcal{M}) \cdot T, \gamma \}.$$

Examples:

Multi-armed bandit:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \frac{|\mathcal{A}|}{\gamma} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}(T) \geq \max_{\gamma > 0} \min \left\{ \frac{|\mathcal{A}|T}{\gamma}, \gamma \right\} = \sqrt{|\mathcal{A}|T}.$$

Bellman rank d:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \geq rac{d}{\gamma} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}(T) \geq \sqrt{d \cdot T}.$$

• Linear Q^* (dimension d):

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \geq \mathbb{I}\{\gamma \leq \exp(d)\} \implies \operatorname{\mathbf{Reg}}(T) \geq \exp(d).$$

Estimation-to-Decisions (E2D):

Estimation-to-Decisions (E2D):

```
For t = 1, ..., T:
```

• Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.

Estimation-to-Decisions (E2D):

For t = 1, ..., T:

- Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.
- Solve min-max optimization problem:

(corresponds to $\operatorname{dec}_{\gamma}(\mathcal{M},\widehat{M}^{(t)})$)

$$p^{(t)} = \underset{p \in \Delta(\Pi)}{\arg\min} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \Big[J_M(\pi_M^{\star}) - J_M(\pi) - \gamma \cdot D_{\mathsf{H}}^2 \big(M(\pi), \widehat{M}^{(t)}(\pi) \big) \Big].$$

Estimation-to-Decisions (E2D):

For t = 1, ..., T:

- Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.
- Solve min-max optimization problem:

(corresponds to $\operatorname{dec}_{\gamma}(\mathcal{M},\widehat{M}^{(t)})$)

$$p^{(t)} = \underset{p \in \Delta(\Pi)}{\operatorname{arg\,min}} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \Big[J_M(\pi_M^{\star}) - J_M(\pi) - \gamma \cdot D_{\mathsf{H}}^2 \big(M(\pi), \widehat{M}^{(t)}(\pi) \big) \Big].$$

• Sample $\pi^{(t)} \sim p^{(t)}$ and update estimation algorithm with trajectory.

Estimation-to-Decisions (E2D):

For t = 1, ..., T:

- Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.
- Solve min-max optimization problem:

(corresponds to $\operatorname{dec}_{\gamma}(\mathcal{M},\widehat{M}^{(t)})$)

$$p^{(t)} = \underset{p \in \Delta(\Pi)}{\operatorname{arg\,min}} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \Big[J_M(\pi_M^{\star}) - J_M(\pi) - \gamma \cdot D_{\mathsf{H}}^2 \big(M(\pi), \widehat{M}^{(t)}(\pi) \big) \Big].$$

• Sample $\pi^{(t)} \sim p^{(t)}$ and update estimation algorithm with trajectory.

DEC: Upper bound [F, Kakade, Qian, Rakhlin '21]

The E2D algorithm has

$$\operatorname{\mathbf{Reg}}(T) \le \min_{\gamma>0} \max \{ \operatorname{\mathsf{dec}}_{\gamma}(\mathcal{M}) \cdot T, \gamma \cdot \operatorname{\mathbf{Est}}_{\mathsf{H}}(T) \},$$

where
$$\mathbf{Est}_{\mathsf{H}}(T) \coloneqq \sum_{t=1}^T D^2_{\mathsf{H}} \left(M^{\star}(\pi^{(t)}), \widehat{M}^{(t)}(\pi^{(t)}) \right)$$
.

$\mathbf{Est}_{\mathsf{H}}(T) \leq \operatorname{comp}(\mathcal{M})$:

• $\operatorname{comp}(\mathcal{M}) = \log |\mathcal{M}|$ (finite), $\operatorname{comp}(\mathcal{M}) = \widetilde{O}(d)$ (parametric).

Frontier: Summary

Multiple ways to handle distribution shift:

- Extrapolation: Linear models, eluder dimension.
- Effective # distributions: Bellman rank and friends.

Decision-estimation coefficient provides necessary conditions.

Conclusion

Challenges for RL

- Credit assignment
- Exploration
- Generalization

The frontier: Exploration + generalization + credit assignment

- Lots of room for new theoretical/algorithmic insights.
- Bridging theory + practice.

Multi-agent RL (Markov games/stochastic games)

- What function approximation/modeling assumptions?
 (how well do I need to model my opponent's behavior?)
- Min-max optimization perspective? (policy gradient)
- Competitive vs. cooperative, centralized vs. decentralized, ...
- Communication

•