Foundations of Reinforcement Learning
Learning and Games Bootcamp @ Simons Institute

Dylan Foster
Microsoft Research, New England

Learning and decision making

Machine learning: Predicting patterns

Hi, how can | help?

Image classification, speech recognition, machine translation

Reinforcement learning: Making decisions

Robotics, game playing, clinical decision systems

Three problems

Three problems

Supervised learning

Three problems

Supervised learning

Three problems

Supervised learning
Contextual bandits

Reinforcement learning > o> =

Decision
making

Level 1: Supervised learning

Supervised learning

o Step 1: Pick set of models F that capture domain knowledge.

Level 1: Supervised learning

Neural nets
are a good model

Supervised learning

e Step 1: Pick set of models F that capture domain knowledge. (

e EX: Linear models, neural nets, ... -

SEE TS

Level 1: Supervised learning

Linear functions
are a good model

Supervised learning

e Step 1: Pick set of models F that capture domain knowledge. |
e Ex: Linear models, neural nets, ... @

\

f<:M ot]

/

Level 1: Supervised learning

Linear functions
are a good model

Supervised learning

o Step 1: Pick set of models F that capture domain knowledge. |

e Ex: Linear models, neural nets, .

S AN

o Step 2: Gather dataset (x1,y1), (ajn,yn).

Level 1: Supervised learning

Linear functions
are a good model

Supervised learning

e Step 1: Pick set of models F that capture domain knowledge. |

e Ex: Linear models, neural nets, .

S AN

o Step 2: Gather dataset (x1,y1), (ajn,yn).

e Step 3: Return fe F that fits data well.

Level 2: Contextual bandits

a Environment

(unknown)

QL 4

Learner

[Woodroofe 79, Clayton '89, Sarkar '91, Kaelbling '94, Abe & Long '99, Langford & Zhang '08]

Level 2: Contextual bandits

a —context)
Environment

(unknown)

- .

Learner

[Woodroofe 79, Clayton '89, Sarkar '91, Kaelbling '94, Abe & Long '99, Langford & Zhang '08]

Level 2: Contextual bandits

a —context)

action a'? ; Environment

(unknown)

. 4

Learner

[Woodroofe 79, Clayton '89, Sarkar '91, Kaelbling '94, Abe & Long '99, Langford & Zhang '08]

Level 2: Contextual bandits

a —context)

action a'? ; Environment

(unknown)

| reward r

Learner

[Woodroofe 79, Clayton '89, Sarkar '91, Kaelbling '94, Abe & Long '99, Langford & Zhang '08]

Level 2: Contextual bandits

a ¢ context z*

actlon a() Environment
reward 7 (unknown)
" 4—

Learner

Goal: Maximize total reward

[Woodroofe 79, Clayton '89, Sarkar '91, Kaelbling '94, Abe & Long '99, Langford & Zhang '08]

Level 2: Contextual bandits

Personalized medicine
context " @ ii ‘
actlon a't
reward r ‘ ‘

f

Goal: Personalize treatments to improve outcomes

Applications:
e Personalized medicine [Mintz et al. "17, Kallus & Zhou '18, Bastani & Bayati '20]
e Mobile health [Rabbi et al. ’15, Tewari & Murphy 17, Yom-Tov et al. ’17]
e Online education [Lan & Baraniuk '16, Segal et al. ’18, Cai et al. ‘20]

e Online recommendation [Li et al. '10, Agarwal et al.’16]

Level 2: Contextual bandits

a —context)

action a'? ; Environment

(unknown)

| reward r

Learner

Level 2: Contextual bandits

a —context)

action a'? ; Environment

(unknown)

| reward r

S A

Learner

Want to use flexible model class F:
e Treatment effect: (context, treatment) — reward

® f(x,a) models response of user x to treatment a

Level 2: Contextual bandits

Q —context)

action a'? ; Environment

| reward r

(unknown)

Learner

Want to use flexible model class F:
e Treatment effect: (context, treatment) — reward

® f(x,a) models response of user x to treatment a

Need to learn a good model from data while making decisions!

Level 3: Reinforcement learning

a —context)

action a'? ; Environment

| reward r

Learner

(unknown)

Level 3: Reinforcement learning

state)
action a'?

> Environment
reward r" (unknown)
S e

Learner

Contextual bandits: Actions only influence reward, not context z‘*.
Reinforcement learning: Actions influence state =",

Level 3: Reinforcement learning

a state)

action a'" ; Environment
reward " (uninown)
. J L*t———

Learner

Contextual bandits: Actions only influence reward, not context z‘*.
Reinforcement learning: Actions influence state =",

Game playing Complex treatments

Level 3: Reinforcement learning

state "
action a'? Environment
reward 7" (unknown)

—

Level 3: Reinforcement learning

state ‘"
—
Q action a”

> Environment
reward r" (unknown)
N e

Learner

Want to use to model:
® Dynamics: (state, action) — Prob(next state)

® | ong-term rewards (value functions)

Three problems

Supervised learning

Contextual bandits

Reinforcement learning 22

Three problems

Supervised learning

Contextual bandits \ 8= .
Decision

making

Reinforcement learning 22 2>

Gap between ML and decision making

S
—— 43
Data Algorithm PredictiorD
-

Machine learning: Good at making predictions.

(“Does this image contain a cat or a dog?”)

Need to know right answer for each example.

Gap between ML and decision making

&

—— 43
Data Algorithm PredictiorD
- 4—I
T—{ Decision

Machine learning: Good at making predictions.

(“Does this image contain a cat or a dog?”)

Need to know right answer for each example.

Decision making: Introduces feedback loops.

Gap between ML and decision making

S
—— 43
Data Algorithm PredictiorD
- 4—I
T—{ Decision

Machine learning: Good at making predictions.

(“Does this image contain a cat or a dog?”)

Need to know right answer for each example.

Decision making: Introduces feedback loops.

e Need to answer counterfactuals.
(“How would the outcome have changed if | intervened differently?”)

Gap between ML and decision making

S
—— 43
Data Algorithm PredictiorD
- 4—I
T—{ Decision

Machine learning: Good at making predictions.

(“Does this image contain a cat or a dog?”)

Need to know right answer for each example.

Decision making: Introduces feedback loops.

e Need to answer counterfactuals.
(“How would the outcome have changed if | intervened differently?”)

e Need to reason about long-term impact.

Gap between ML and decision making

&
) .
| o4 —
@j—’ Algorlthr;j—>(Predlct|orD
_

;{ Decision <—|

Naively applying ML to decision making leads to bad decisions.

Goals for this tutorial

Introduce basic concepts

Understand the statistical landscape of RL
¢ \What assumptions on system/models lead to sample efficiency?
e Algorithmic principles and fundamental limits

Prepare for Chi’s multi-agent RL tutorial

Talk outline

Statistical landscape of RL
1. Basic concepts and solutions

2. The frontier

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:

® 11 ~dj.

® Forh=1,...,H: (Markov Decision Process (MDP))

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:

® 11 ~dj.

® Forh=1,... H: (Markov Decision Process (MDP))
e Observe xp € X. (Sensor measurement)

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:
® 11 ~dj.

® Forh=1,... H: (Markov Decision Process (MDP))

e Observe xp € X. (Sensor measurement)

e Jake action a;, € A. (Actuator signal)

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:
® 11 ~ dj.

® Forh=1,... H: (Markov Decision Process (MDP))

e Observe z;, € X. (Sensor measurement)

e Take action a5, € A. (Actuator signal)

e Observe reward r, ~ R(xp,an) W/ rp € (0, 1]. (Reached goal?)

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:
® 11 ~ dj.

® Forh=1,... H: (Markov Decision Process (MDP))

e Observe z;, € X. (Sensor measurement)

e Take action a5, € A. (Actuator signal)

e Observe reward r, ~ R(xp,an) W/ rp € (0, 1]. (Reached goal?)

e Transition: xpy1 ~ P(- | xp,ap). (System evolves)

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Repeatedly:
® 11 ~dj.

® Forh=1,... H: (Markov Decision Process (MDP))

e Observe z;, € X. (Sensor measurement)

e Take action a;, € A. (Actuator signal)

e Observe reward r, ~ R(xp,an) W/ rp € (0, 1]. (Reached goal?)

e Transition: xpi1 ~ P(- | zp,ap). (System evolves)

Goal: Find policy 7 : X — A maximizing J () == E {zhﬂzl rh} |

Clh ~ ﬂh(xh)

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Fort=1,...,T:

o 513(1t) ~ dl.

® Forh=1,... H: (Markov Decision Process (MDP))
e Observe :C;Lt) c X. (Sensor measurement)
e Jake action a;:) c A. (Actuator signal)
e Observe reward ;" ~ R(z;”,a;”) w/ r;” € [0,1]. (Reached goal?)
e [ransition: CIJ;:_)H ~ P(- ‘ 37;:),&;:)). (System evolves)

Goal: Find policy 7 : X — A maximizing J () == E {zhﬂzl rh} |

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Fort=1,...,T:

o 513(1t) ~ dl.

® Forh=1,... H: (Markov Decision Process (MDP))
e Observe :C;Lt) c X. (Sensor measurement)
e Jake action a;:) c A. (Actuator signal)
e Observe reward ;" ~ R(z;”,a;”) w/ r;” € [0,1]. (Reached goal?)
o Transition: =, ~ P(- |z}, a;”). (System evolves)

Goal: Find policy 7 : X — A maximizing J () == E {zhﬂzl rh} |

PAC-RL: Find 7 with max,. J(7) — J(7) < € using minimal # episodes.

Reinforcement learning: Setup

This tutorial: Episodic, finite-horizon setting

Fort=1,...,T:

o 513(1t) ~ dl.

® Forh=1,... H: (Markov Decision Process (MDP))
e Observe :C;Lt) c X. (Sensor measurement)
e Jake action a;:) c A. (Actuator signal)
e Observe reward ;" ~ R(z;”,a;”) w/ r;” € [0,1]. (Reached goal?)
o Transition: =, ~ P(- |z}, a;”). (System evolves)

Goal: Find policy 7 : X — A maximizing J () == E {zhﬂzl rh} |
PAC-RL: Find 7 with max,. J(7) — J(7) < € using minimal # episodes.

Regret: Ensure Reg(7T') := Zle J(m*) — J(n®) < sublinearin T (e.g., V'T)
w/ m* = argmax_ J(m).

Reinforcement learning: Setup

Variants of the setting:

¢ Many episodes vs. one big trajectory
e [inite vs. infinite horizon

e Undiscounted vs. discounted rewards

e Pick discount factor v € (0,1).

o Instead of weighing rewards uniformly, weight r;, by "~ 1.

o Effective horizon: 1/(1 — 7).

We will focus on episodic, finite-horizon, and undiscounted.

What does it mean to be sample-efficient?

Consider an exponentially large binary
tree with reward at a single leaf.

000 'hH
XXX XX8

.

| o/ | leaves

™

What does it mean to be sample-efficient?

h=1
Consider an exponentially large binary
tree with reward at a single leaf. h=2
Need to try all leaves to get reward.
: : h=H
— | A|"” episodes required! 0000 @
A" ep k X X X X X8 X X

le.g., Kearns et al. ’02, Krishnamurthy et al.’16]. ™ — —

| o/ | leaves

What does it mean to be sample-efficient?

h=1
Consider an exponentially large binary
tree with reward at a single leaf. h=2
Need to try all leaves to get reward.
: : h=H
— | A|"” episodes required! 0000 @
A" ep 3 X X X X X8 X X
le.g., Kearns et al. ’02, Krishnamurthy et al.’16]. ™ — —
| o/ | leaves

Conclusions:

e [Further modeling assumptions required to avoid exponential sample comp.

Challenges of RL

Exploration

Credit
assignment

Generalization

[Credit: John Langford]

Roadmap

Basic challenges and solutions
e (Credit assignment
e [Exploration

e (Generalization

Challenge #1: Credit assignment

Challenge #1: Credit assignment

Approach: Dynamic programming

Approach: Dynamic programming

Approach: Dynamic programming

H

Value functions:

* Vi(x)=E"™ [Zf/:h rhe | Xp = x} (state value function)

® Qr(x,a)= E™ [Zf,:h | xn = x,an = a] (state-action value function)

Can define Q7 (z, a), V,' (x) analogously for any .

Approach: Dynamic programming

......

Dynamic programming (“value iteration”): [Bellman '54]

Starting with Vi () == 0, iterate
Qn(@,a) = Elrn + Viip1 (Thr) | 2n = ,an = o], Vi) (2) = max Qx(, a).

Optimal policy is 77 (x) = argmax,. 4 Qr(z, a).

See also: [Puterman 94, Sutton & Barto '98]

Roadmap

Basic challenges and solutions

e Credit assignment /
e [Exploration

e (Generalization

Challenge #2: Exploration

Exploration: Multi-armed bandit

Multi-armed bandit
(RL with single state, H = 1)

>
=
OO0

action space </

reward

Basic issue: Only see response for actions we take.

Tension between:

e Exploiting actions we already think are good.

e [xploring new actions to get more information.

Approach: Upper Confidence Bound

T
v
8

[Lai & Robbins '85, Agrawal '95, Auer et al. '02]

Approach: Upper Confidence Bound

/ | 7 @
Sample complexity: =5, Regret: Reg(T) < VIAl-T.

[Lai & Robbins '85, Agrawal '95, Auer et al. '02]

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f(a) > f*(a) Va,t, since |F(a) — f*(a)| < \/ﬁ()

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f®(a) > f*(a) Va,t, since | (a) — f*(a)] < \/ﬁ()

Azuma-Hoeffding

1 « log(s~h
—Y 2-E[Z]|Z,.....2,)] w.p. 1-6
n —1 n

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f(a) > f*(a) Va,t, since |F(a) — f*(a)| < \/ﬁ()

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f(a) > f*(a) Va,t, since |F(a) — f*(a)| < \/ﬁ()

¢ Round ¢: By optimism,

max f*(a) - /*(a®)

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f(a) > f*(a) Va,t, since |F(a) — f*(a)| < \/ﬁ()

¢ Round ¢: By optimism,

max f*(a) — f*(a(t>) < max]?(t)(a) o f*(a(t))

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f(a) > f*(a) Va,t, since |F(a) — f*(a)| < \/ﬁ()

¢ Round ¢: By optimism,

max f*(a) B f*(a(t)) < max f(t)(a) . f*(a(t)) _]?(t)(a(t)) . f*(a(t)),

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

+ Optimism: /) (a) > /*(a) Ya.t, since |F(a) — 1*(a)] < /=

n (1) (a)’

¢ Round ¢: By optimism,

max f*(a) B f*(a(t)) < max f(t)(a) . f*(a(t)) _]?(t)(a(t)) . f*(a(t)),

and f©(a®) - £*(a®) = F9(a) = f*(a”) +bon (a®) < 2, [l

Approach: Upper Confidence Bound

UCB algorithm: For each time ¢:
o Letn™(a) :=#arm pulls for a and f® (a) := sample mean.

e Upper confidence bound: f®(a) := f(a) + bon® (a), W/ bon™® (a) \/m

® Play o' = argmax,_ . o f“(a).

Proof sketch: Let f*(a) = E[r | a].

e Optimism: f®(a) > f*(a) Va,t, since | (a) — f*(a)] < \/ﬁ()
¢ Round ¢: By optimism,

max f*(a) B f*(a(t)) < max f(t)(a) . f*(a(t)) _]?(t)(a(t)) . f*(a(t)),

and ' (a") = f*(a®) = FV(a®) = f*(a") + bon® (@) < 2, /oy
¢ Regret bound: By pigeonhole,

Reg(T) = » max f*(a) — f*(a")

-

\/n(t) a,(t) - |A|T

Approach: =-Greedy

Multi-armed bandit
(RL with single state, H = 1)

>
~ P
00O

action space </

reward

e-Greedy: For each time t:
* Get reward estimate f)(a) for each action.

 Play q” =@ := argmax_ f'*(a) w/ prob. 1 — ¢, else sample a'* ~ A uniformly.

Sample complexity: |€—“§, Regret: Reg(T) < |A|*/3T?/?.

Roadmap

Basic challenges and solutions
e Credit assignment /

e Exploration /

e (Generalization

Challenge #3: Generalization

Approach: Statistical learning

Data

~

_

Algorithm

(Fits model in &)

o
&

-
Hypothesi

~

S

4>(PredictiorD

Approach: Statistical learning

~

Data

_

Algorithm

(Fits model in &)

o
&

-
Hypothesi

~

S

H(PredictiorD

Statistical learning: If data is independent/identically distributed,
generalize to future examples [Vapnik & Chervonenkis '71].

Approach: Statistical learning

Data

~

_

Algorithm

(Fits model in &)

o
&

-
Hypothesi

~

S

HCPredictiorD

Statistical learning: If data is independent/identically distributed,

Empirical risk minimization (f = arg min ;. » Errorgataset (f)):

P

AN

- feF

generalize to future examples [Vapnik & Chervonenkis '71].

Complexity comp(F) reflects statistical capacity of F.

Erroriuiure (f) < min Errorsyiure (f) + \/comp(]—“).

n

Statistical learning: Complexity measures

;{" E R ;

?/ Neural Network
- . Learning:
Complexity measures: N i

S

| N Martin Anthony and Peter L. Bartett
b ! 550

The Nature
e \/C Dimension (classification) gt

Learning Theory

st e
4 = ‘-2 A
P AT NN

® Fat-shattering dimension (regression)
¢ Rademacher complexity (both)

e (Covering numbers (both)

le.q., Vapnik '95, Anthony & Bartlett 99, Bousquet-Boucheron-Lugosi '03]

Statistical learning: Complexity measures

~ Neural Network
~ Learning:

\. Theoretical

% Foundations

\ Martin Anthony and Peter L Bartlett |

Complexity measures:

The Nature

e \/C Dimension (classification) of Statistical

Learning Theory

® Fat-shattering dimension (regression)

e Rademacher complexity (both)

e (Covering numbers (both)

le.q., Vapnik '95, Anthony & Bartlett 99, Bousquet-Boucheron-Lugosi '03]

Examples:
® Finite class: comp(F) < log|.F|

¢ Linear classification: comp(F) < dimension (VC dim) Tii
® [inear regression: comp(F) < (weight norm)2 (fat-shattering) |

® Similar bounds for neural nets, kernels, ...

Statistical learning: Complexity measures

- Neural Network
~ Learning:

% Theoretical

% Foundations

| Martin Anthony and Peter L. Bartiett |

Complexity measures:

The Nature

e \/C Dimension (classification) of Statistical

Learning Theory

® Fat-shattering dimension (regression)

e Rademacher complexity (both)

e (Covering numbers (both)

le.q., Vapnik '95, Anthony & Bartlett 99, Bousquet-Boucheron-Lugosi '03]

Examples:
® Finite class: comp(F) < log|.F|

¢ Linear classification: comp(F) < dimension (VC dim) Tii
® [inear regression: comp(F) < (weight norm)2 (fat-shattering) |

® Similar bounds for neural nets, kernels, ...

No explicit dependence on | X|!

RL: The need for modeling and generalization

Challenge: States/observations are typically rich/complex/high-dimensional.

e [EX: robotics: x;, = camera image, X = all possible images
— |X| = intractably large

Approach: Use hypothesis class F to model:
e Rewards/responses/treatment effects
® Dynamics

¢ | ong-term rewards

In general, model class F might consist of:
® Deep neural networks
e (Generalized linear models
e Kernels

Research questions: Supervised learning vs. RL

Algorithm design

General-purpose algorithmic principles that work for any F7?

Research questions: Supervised learning vs. RL

Algorithm design

General-purpose algorithmic principles that work for any F7?

e Supervised learning: Minimize empirical risk (take best fitting model)

Research questions: Supervised learning vs. RL

Algorithm design

General-purpose algorithmic principles that work for any F7?

e Supervised learning: Minimize empirical risk (take best fitting model)

e Decision making (contextual bandits, RL, ...): 2?7

Research questions: Supervised learning vs. RL

Algorithm design

General-purpose algorithmic principles that work for any F7?

e Supervised learning: Minimize empirical risk (take best fitting model)

e Decision making (contextual bandits, RL, ...): 2?7

What we want:
Algorithm makes accurate decisions out of the box for any F.

Research questions: Supervised learning vs. RL

Sample complexity
How many samples are necessary / sufficient to learn with F7?

Research questions: Supervised learning vs. RL

Sample complexity
How many samples are necessary / sufficient to learn with F7?

e Supervised learning: Vapnik-Chervonenkis (VC) theory, PAC learning

Research questions: Supervised learning vs. RL

Sample complexity
How many samples are necessary / sufficient to learn with F7?

e Supervised learning: Vapnik-Chervonenkis (VC) theory, PAC learning

e Decision making (contextual bandits, RL, ...): 2?7

risk

samples

interactivity

Challenges of RL

Exploration

eXeXcle]

Credit
Assignment

Generalization

Challenges of RL

Exploration

Generalization + Exploration:
Contextual Bandits

Exploration + Credit:
Tabular PAC-RL

Generalization + Credit:
Policy Gradient

Credit
Assignment

Generalization

Challenges of RL

Exploration

Generalization + Exploration:
Contextual Bandits

Exploration + Credit:
Tabular PAC-RL

Generalization + Credit:
Policy Gradient

Credit
Assignment

Generalization

Roadmap

Basic challenges and solutions
e Credit assignment /

e Exploration /
e Generalization V

Roadmap

Basic challenges and solutions
e Credit assignment /

e Exploration /
e Generalization V

Intermediate level

e Exploration + credit assignment: Tabular BL

e Exploration + generalization: Contextual bandits

e (Generalization + credit assignment: Policy gradient

Roadmap

Basic challenges and solutions
e Credit assignment /

e Exploration /
e Generalization V

Intermediate level

e Exploration + credit assignment: Tabular BRL

e Exploration + generalization: Contextual bandits

e (Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Roadmap

e Exploration + credit assignment: Tabular BL

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

Non-trivial problem:
. Naive (uniform) exploration has sample complexity | & |*

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

UCB-VI Algorithm [Azaretal. "17]: Fort=1,...,T"

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

UCB-VI Algorithm [Azaretal. "17]: Fort=1,...,T"
® State-action frequencies:

n(x,a,z’) = Z]I{(a;h ,ah ,a:h+1) (z,a,2")}, nP(x,a) = Zn(t)(a: a,x’)

1<t,h

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

UCB-VI Algorithm [Azaretal. "17]: Fort=1,...,T"
® State-action frequencies:

n(x,a,z’) = Z]I{(a;h ,ah ,a:h+1) (z,a,2))}, n'P(x,a) = Zn(t)(a:,a,a:’).

1<t,h

® [stimate transitions/rewards:

n)(x,a,z’)

n®(x,a)

PO | z,a) = and]?(t)(az,a) := sample mean for (x,a).

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

UCB-VI Algorithm [Azaretal. "17]: Fort=1,...,T"
® State-action frequencies:

n(x,a,z’) = Z]I{(a;h ,ah ,a:h+1) (z,a,2))}, n'P(x,a) = Zn(t)(a:,a,a:’).

1<t,h

® [stimate transitions/rewards:

n)(x,a,z’)

n®(x,a)

PO | z,a) = and]?(t)(az,a) := sample mean for (x,a).

® Exploration bonus: bon'® (x,a) o< H - \/

n(t) (.’,U a)

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

UCB-VI Algorithm [Azaretal. "17]: Fort=1,...,T"
® State-action frequencies:

n(x,a,z’) = Z]I{(a;h ,ah ,a:h+1) (z,a,2))}, n'P(x,a) = Zn(t)(az,a,a}’).

1<t,h

® [stimate transitions/rewards:

n)(x,a,z’)

, and]?(t)(a;,a) :— sample mean for (z,a).
n® (z,a)

POz | z,a) =

® Exploration bonus: bon'® (x,a) o< H - \/

n(t) (.CU a)

Value iteration with

{]?m + bon® ﬁ(t)}

Exploration + Credit Assignment: Tabular RL

Tabular MDP: | X| < oo, |A| < co. Trans. P(z' | z,a), rewards f*(x,a) = E,wr(z.a)[7]-

UCB-VI Algorithm [Azaretal. "17]: Fort=1,...,T"
® State-action frequencies:

n(x,a,z’) = Z]I{(a;h ,ah ,a:h+1) (z,a,2))}, n'P(x,a) = Zn(t)(a:,a,a:’).

1<t,h

® [stimate transitions/rewards:

n)(x,a,z’)

n®(x,a)

PO | z,a) = and]?(t)(az,a) := sample mean for (x,a).

® Exploration bonus: bon'® (x,a) o< H - \/

n(t) (.’,U a)

¢ Optimistic value iteration: Starting with V}{ L1 (z) =0, iterate
Q) (@, a) = [(z,a) + bon(z,0) + E_, _5) 4.V hts (@],

and V;Lt) (z) := maxg @;Lt) (z,a).

® Final policy: 7{" (x) = argmax, Q" (z,a), so a\” = 7" (x}").

Tabular RL: UCB-VI

Regret bound for UCB-VI [Azar et al. "17]:*

Reg(T) < H\/|X||A|T.

— poly(X|,|A], H) sample complexity and computation.

Tabular RL: UCB-VI

Regret bound for UCB-VI [Azar et al. "17]:*

Reg(T) < H\/|X||A|T.

— poly(X|,|A], H) sample complexity and computation.

Tabular RL history:

o F° [Kearns & Singh ’02], Rmax [Brafman & Tennenholtz *02]:
Polynomial sample complexity

® Delayed-Q learning [Strehl et al. ’06]: Sample comp. linear in|X|.

e UCRL [Jaksch, Ortner, & Auer '10]:
Optimal regret/sample comp w.r.t. T' (resp. e).

e UCB-VI [Azar, Osban, & Munos '17]: Minimax optimal.

Tabular RL: UCB-VI

Regret bound for UCB-VI [Azar et al. "17]:*

Reg(T) < H\/|X||A|T.

— poly(X|,|A], H) sample complexity and computation.

Tabular RL history:

o F° [Kearns & Singh ’02], Rmax [Brafman & Tennenholtz *02]:
Polynomial sample complexity

® Delayed-Q learning [Strehl et al. ’06]: Sample comp. linear in|X|.

e UCRL [Jaksch, Ortner, & Auer '10]:
Optimal regret/sample comp w.r.t. T' (resp. e).

e UCB-VI [Azar, Osban, & Munos '17]: Minimax optimal.

e UCB-Q [Jin et al. '18]: Near-optimal regret for model-free.

“model-based”

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., Q\" (z,a) > Q}(z,a) ¥ (z,a,h).

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., Q\" (z,a) > Q}(z,a) ¥ (z,a,h).

Proof: Assume @;;)Ll(ac, a) > Qhii(z,a).

QZ(xa CL) o _S) (ZE, CL)

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., Q\" (z,a) > Q}(z,a) ¥ (z,a,h).

~ Bellman Equation
Proof: Assume Q;;)Ll(ac, a) > Qhii(z,a). q
QZ(xa CL) o _S) (ZE, CL)

< err(t)(af;, CL) _ bon(t)(xa CL) + E[V;—I-l(xh—l-l) o ngt—)l—l(xh—l-l) ‘ Ly CL],

Q]/T(.X,Cl) — [E[rh+vlf+l(xh+l) | xh=x,ah=a]

W/ err® (z,a) = | f*(z,a) = [(z,a)| + || P(x,a) = PO (z,a) |1 S bon™(,a)

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., Q\" (z,a) > Q}(z,a) ¥ (z,a,h).

~ Bellman Equation
Proof: Assume Q;;)Ll(ac, a) > Qhii(z,a). q
QZ(xa CL) o _S) (ZE, CL)

< err(t)(af;, CL) _ bon(t)(xa CL) + E[V;—I-l(xh—l-l) o ngt—)l—l(xh—l-l) ‘ Ly CL],

Qr(x,a) = [Ve o) | X, =X, 0 = a]

AN

W/ erc® (z,a) = | f*(z,a) — [(z,a)| + || P(x,a) = P (z,a) |1 < bon™ (z,a)

< E[Vgﬂ(ﬂ?hﬂ)

Vit (@) | @ a}

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., Q\" (z,a) > Q}(z,a) ¥ (z,a,h).

. A Bell Equatio
Proof: Assume Q;;)Ll(ac, a) > Qhii(z,a). eliman Equation
QZ(xa CL) N _S) (ZE, CL)

< err(t)(af;, CL) _ bon(t)(xa CL) + E[V;—I-l(xh—l-l) ngt—)l—l(xh—l-l) ‘ Ly CL],

Q]/T(.X,Cl) — [E[rh+vlf+l(xh+l) | xh=x,ah=a]

AN

w/ errtt) (CB,&) = |f*(w,a) _f(t)(x7a’)| + ||P(.CC,G,) _P(t)(xaa)nl 5 bon(t)(xaa)

< E[Vgﬂ(ﬂ?hﬂ)

Vit (@) | @ a}

Regret bound for optimistic algorithms (“performance difference lemma” [Kakade ’03]):

()

J(m*)—J(x?) ZIE [Qh z, mh(2n)) — Qf(z, 7 (h))} <E Zbon (h, an)

Tabular RL: UCB-VI

Proof sketch: Claim: Optimism. With high prob., Q\" (z,a) > Q}(z,a) ¥ (z,a,h).

. A Bell Equatio
Proof: Assume Q;;)Ll(ac, a) > Qhii(z,a). eliman Equation
QZ(xa CL) N _S) (ZE, CL)

< err(t)(af;, CL) _ bon(t)(xa CL) + E[V;—I-l(xh—l-l) ngt—)l—l(xh—l-l) ‘ Ly CL],

Q]/T(.X,Cl) — [E[rh+vlf+l(xh+l) | xh=x,ah=a]

AN

w/ errtt) (CB,&) = |f*(w,a) _f(t)(x7a’)| + ||P(.CC,G,) _P(t)(xaa)nl 5 bon(t)(xaa)

< E[Vgﬂ(ﬂ?hﬂ)

Vit (@) | @ a}

Regret bound for optimistic algorithms (“performance difference lemma” [Kakade ’03]):

()

J(m*)—J(x?) ZIE [Qh z, mh(2n)) — Qf(z, 7 (h))} <E Zbon (h, an)

so that by pigeonhole,

T H T
1
Reg(T) < “bon'(z}”,a;”) & ———— < poly(H) - /|X||A|T.
n(t)((t) ())

_d _d

av

i\

[

Roadmap

Intermediate level

e Exploration + credit assignment: Tabular BL /

e Exploration + generalization: Contextual bandits

e (Generalization + credit assignment: Policy gradient

Roadmap

Basic challenges and solutions
e Credit assignment
e [Exploration

e (Generalization

Intermediate level

¢ Exploration + credit assignment:

e Exploration + generalization: Contextual bandits

e (Generalization + credit assignment:

The frontier: Exploration + generalization + credit assignment

Exploration + Generalization: Contextual Bandits

Contextual bandits:
e Reinforcement learning with H =1
e Need to generalize across contexts (states)

Ex: Personalized medicine
context x*
action a'*

9
| reward r -

+

L

Exploration + Generalization: Contextual Bandits

009

action

reward

Exploration + Generalization: Contextual Bandits

reward

STy
EN=N -

action

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Exploration + Generalization: Contextual Bandits

Contextual bandits: Challenges

Contextual bandits: Challenges

A ...o'.".....‘:..'.
=0
V. o

e Exploration: Bandit feedback; data collection introduces bias.

Contextual bandits: Challenges

A ...o'.".....‘:..'.
=0
V. o

e Exploration: Bandit feedback; data collection introduces bias.

Contextual bandits: Challenges

A ...o'.".....‘:..'.
=0
V. o

e Exploration: Bandit feedback; data collection introduces bias.

Contextual bandits: Challenges

e Exploration: Bandit feedback; data collection introduces bias.

Contextual bandits: Challenges

e Exploration: Bandit feedback; data collection introduces bias.

e Generalization: May not see same context =" twice.

e Can't afford to solve separate bandit problem for each x*.
e Need to generalize/extrapolate across contexts.

¢ How to propagate information across contexts?

Exploration + Generalization: Contextual Bandits

Assumption: Realizability

Given hypothesis class F such that

E[r | z,a] = f"(z,a)

for unknown f* € F. (e.g., r = f(x,a) + ¢)

Class F might consist of linear models, deep neural networks, forests, kernels, ...

Contextual bandits: Upper confidence bound

Contextual bandits: Upper confidence bound

Example: LinUCB [Auer '02, Chu et al. '10, Abbasi-Yadkori et al. '11]
Linear models w/ f*(z,a) = (0", ¢), where ¢(z,a) € R: Reg(T) < dVT.

et

Contextual bandits: Upper confidence bound

Example: LinUCB [Auer '02, Chu et al. ’10, Abbasi-Yadkori et al. '11]
Linear models w/ f*(z,a) = (0", ¢), where ¢(z,a) € R*: Reg(T) < dVT.

et

In general, no hope of constructing valid/shrinking confidence intervals for all (x, a).

® (Good cases: Linear models, nonparametric models.

e Bad cases: Sparse linear, single RelLU [LKFS’21], neural networks, ...

Idea: Reduce contextual bandits to supervised learning.

—> Leverage existing algorithms and generalization bounds

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

e Assign probability p, to each action based on f“)(a:(t), a).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

e Assign probability p, to each action based on f“)(a:(t), a).

e Sample a” ~ p, update learning algorithm w/ (z®, a™, r® (a™)).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ Inverse Gap Weighting (IGW):

Sample a ~ p, update learning algorithm w/ (z, a™, r® (a®)),

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ |Inverse Gap Weighting (IGW): Let b = arg max,, f“)(:c(t), a).

e Sample a'” ~ p, update learning algorithm w/ (2, a, r® (a'?)).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ |Inverse Gap Weighting (IGW): Let b = arg max,, f“)(:c(t), a).

Pa — = ! = Va 7& b
A+ % (FOE0,) — FO 0, a))

e Sample a'” ~ p, update learning algorithm w/ (2, a, r® (a'?)).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ |Inverse Gap Weighting (IGW): Let b = arg max,, f“)(:c(t), a).

1
A+ x (f0Eb) - FOE)
N— | —
reward gap between b and a

e Sample a'” ~ p, update learning algorithm w/ (2, a, r® (a'?)).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ |Inverse Gap Weighting (IGW): Let b = arg max,, f“)(:c(t), a).

1
Pa = P (o (0) 20 (o (1) va 7 b
Al + v x (fP(@,0) = [P (2, a))
——~ N— | —
learning rate reward gap between b and a

e Sample a'” ~ p, update learning algorithm w/ (2, a, r® (a'?)).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ |Inverse Gap Weighting (IGW): Let b = arg max,, f“)(:c(t), a).

1
Pa = £0t) ((1) £0t) ((1) va 7 b
Al + v x (fP2,0) = (2, a))
——~ —~ N— | —
actions learning rate reward gap between b and a

e Sample a'” ~ p, update learning algorithm w/ (2, a, r® (a'?)).

Contextual bandits: The SquareCB algorithm

SquareCB [F and Rakhlin’20]
Fort=1,...,T:

® Receive context 2.

e Get reward estimate f (x, a) from learning algorithm.

¢ |Inverse Gap Weighting (IGW): Let b = arg max,, f“)(x(”, a).

1
Pa = £0t) ((1) £0t) ((1) va 7 b
Al + v x (fP2,0) = (2, a))
——~ —~ N— | —
actions learning rate reward gap between b and a

with p, = remaining probability.

e Sample a'” ~ p, update learning algorithm w/ (2, a, r® (a'?)).

Contextual bandits: The SquareCB algorithm

SquareCB algorithm: [F & Rakhlin 20]

Optimally solve regression — Optimally solve contextual bandits

e Can form estimates f'* using online regression.

® Theorem: SquareCB attains optimal rate for any F.

Contextual bandits: The SquareCB algorithm

SquareCB algorithm: [F & Rakhlin 20]

Optimally solve regression — Optimally solve contextual bandits

e Can form estimates f'* using online regression.

® Theorem: SquareCB attains optimal rate for any F.

Regret bound: With appropriate learning rate v > 0, SquareCB has

Reg(T) < \/\A|T - Estsq (1), W/ Estsq(T) = Zle (f(”(a:(t), a)—fr(x®), a“)))Z.

Contextual bandits: The SquareCB algorithm

SquareCB algorithm: [F & Rakhlin 20]

Optimally solve regression — Optimally solve contextual bandits

e Can form estimates f'* using online regression.

® Theorem: SquareCB attains optimal rate for any F.

Regret bound: With appropriate learning rate v > 0, SquareCB has

Reg(T) < \/\A|T - Estsq (1), W/ Estsq(T) = 23:1 (f“)(x(”, a)—fr(x®), a“)))Z.

Examples:
® Estsq(T) < log|F| for finite F = Reg(T) < +/|A|T - log|F]|.
* Ests, < O(d) for linear models = Reg(T) < VIA|T - d.

Contextual bandits: The SquareCB algorithm

SquareCB algorithm: [F & Rakhlin 20]

Optimally solve regression — Optimally solve contextual bandits

e Can form estimates f'* using online regression.

® Theorem: SquareCB attains optimal rate for any F.

Regret bound: With appropriate learning rate v > 0, SquareCB has

Reg(T) < \/\A|T - Estsq (1), W/ Estsq(T) = 23:1 (f“)(x(”, a)—fr(x®), a“)))Z.

Examples:
® Estsq(T) < log|F| for finite F = Reg(T) < +/|A|T - log|F]|.
* Ests, < O(d) for linear models = Reg(T) < VIA|T - d.

In general: Reg(T) < /| A|T - comp(F).

(no explicit | X'| dependence!)

Contextual bandits: The SquareCB algorithm

SquareCB solves: For all rounds ¢, with learning rate ~:

arg min max {E 'CB-Regret'”| — ~ - E|Est-Error'”] }

action dist. p reward fn. f*

Agnostic to structure of F!

Contextual bandits: The SquareCB algorithm

SquareCB solves: For all rounds ¢, with learning rate ~:

arg min max {E 'CB-Regret'”| — ~ - E|Est-Error'”] }

action dist. p reward fn. f*

Agnostic to structure of F!

Contextual bandit history:
e (Classification reductions: [Langford & Zhang’07, Dudik et al.”11, Agarwal et al.’14]

e Specific models: [Abe & Long’99], [Rigollet & Zeevi’10], [Krause & Ong ’11],

Filippi, Cappe, Garivier, Szepesvari '11], [Chu, Li, Reyzin, Schapire’11],

Perchet & Rigollet’13], [Russo & Van Roy '13, '14, '16], [Goldenshluger & Zeevi'13],
Bastani & Bayati '15], [Osband et al. ’16], [Sen et al. '17], [GTKM ’17], [Jun et al. '17], . ..

e Regression: [F & Rakhlin *20], [Simchi-Levi & Xu’20], [FRSX’20], [FKRQ '21] + RL

Roadmap

Intermediate level

v

e Exploration + credit assignment: Tabular BL
e Exploration + generalization: Contextual bandits V

e (Generalization + credit assignment: Policy gradient

Roadmap

e (Generalization + credit assignment: Policy gradient

Credit Assignment + Generalization: Policy
Gradient

RL as stochastic optimization
e Parameterize policies via 6 — 7, 6 € R,

e Optimization goal: maxy J(mp) = maxy E"? [Zhﬂzl TR

Credit Assignment + Generalization: Policy
Gradient

RL as stochastic optimization
e Parameterize policies via 6 — 7, 6 € R,

e Optimization goal: maxy J(mp) = maxy E"? [Zhﬂzl TR

Key idea: stochastic policies mg : X — A(A).
e Typically, mo(a | x) o exp(fg (z,a)).
* Ex: fo(z,a) = (0, ¢(x,a)) (inear), fo(z,a) = DNN(z,a;0) (Deep RL).

Policy gradient methods

e Optimization goal: maxy J(7g).

e (Gradient ascent:
0 6% + - Vo (mp).

Policy gradient methods

e Optimization goal: maxy J(7g).

e (Gradient ascent:

0 6% + - Vo (mp).

¢ Policy gradient theorem [Wiliams '92, Sutton et al. "99]:

V@J(ﬂ'@) — EWG

b

H
Y Velogmg(an | zn)
h=1

Policy gradient methods

Optimization goal: maxy J(mg).

Gradient ascent:

0 6% + - Vo (mp).

Policy gradient theorem [Williams '92, Sutton et al. "99]:

VQJ(T('Q) — EWG

(

H

2"

h=1

H
Y Velogmg(an | zn)

h=1

REINFORCE [Williams ’92]: Approximate (1) w/ trajectories sampled from .

Policy gradient methods

e Optimization goal: maxy J(7g).

e (Gradient ascent:
0 6% + - Vo (mp).

¢ Policy gradient theorem [Wiliams '92, Sutton et al. "99]:

H H
VQJ(T('Q) — [E™° (Z Th) ‘ Zve 1Og7fe(ah ‘ xh) (1)

h=1 h=1

e REINFORCE [Wiliams '92]: Approximate (1) w/ trajectoNes sampled from my.

Log Derivative Trick

Vg(0) = g(0) - Vylog g(0)

Policy gradient theory

Representative result [Agarwal et al. "19]:

Tabular setting, mg(a | z) = 0, 4.

Policy gradient theory

Representative result [Agarwal et al. "19]:

Tabular setting, mg(a | z) = 0, 4.

J(ﬂ-*) — J(T‘-Q(t)) < Cmismatch(e(t)) . HVQJ(T‘-Q(U)

)

where
P70 (zp, = x,an = a)

: 0) = :
lesmatch() g}r’lc?:};i Pr* (xh =z, ap = a)

Policy gradient theory

Representative result [Agarwal et al. "19]:
Tabular setting, mg(a | z) = 0, 4.

J(W*) — J(T‘-Q(t)) < lesmatch e(t) HVQJ 7-‘-6(’5))

where

[pﬂre(a;h =T, a, = a)
Crnismaten (6) = ’ '
mismatch (6) ing}é P™ (xp = z,an = a)

General function approximation: For appropriate policy gradient variant,

*
‘](ﬂ-) _ J(T‘-G(t)) SJ Cmismatch * Eopt =+ Ebias
N~ N~
opt/stat error quality of function approx.

(generalization)

Ideally, eopt < comp(F) (no explicit |X'| dependence).

Policy gradient: History

¢ Basic principles: REINFORCE [Williams ’92], function approximation
[Sutton et al. '99], actor-critic [Konda & Tsitsiklis ’00], natural policy gradient
[Kakade '01]

¢ Empirical improvements (deep RL):
Trust regions (TRPO, PPO) [Schulman et al. ’15, Schulman et al. ’17],
Regularization (e.g., SAC) [Haarnoja et al. '18], ...

¢ Asymptotic convergence: [Bellman & Dreyfus '51, Sutton et al. "99]

¢ Non-asymptotic guarantees: [Kakade & Langford '02], [Scherrer & Geist '14],
[Fazel et al. ’18], [Agarwal et al. "19], ...

Roadmap

Basic challenges and solutions V
e (Credit assignment
e [Exploration

e (Generalization

Intermediate level V

e Exploration + credit assignment: Tabular BRL

e Exploration + generalization: Contextual bandits

e (Generalization + credit assignment: Policy gradient

The frontier: Exploration + generalization + credit assignment

Foundations of Reinforcement Learning
Learning and Games Bootcamp @ Simons Institute

Dylan Foster
Microsoft Research, New England

Our goal

Exploration

bt

00060

Credit
Assignment

Generalization

[Credit: John Langford]

Our goal
Exploration

L

00060

Generalization + Exploration:
Contextual Bandits

Exploration + Credit:
Tabular PAC-RL

Generalization + Credit:
Policy Gradient

Credit
Assignment

Generalization

[Credit: John Langford]

Our goal

Exploration

Generalization + Exploration:
Contextual Bandits

Exploration + Credit:
Tabular PAC-RL

Generalization + Credit:
Policy Gradient

Credit
Assignment

Generalization

Goal: Exploration + credit assignment + generalization:

e [Explore unknown systems with long horizon (credit assignment)

...while generalizing: No dependence on |X| (ideally not | A| either).

[Credit: John Langford]

RL: The need for modeling and generalization

Challenge: States/observations are typically rich/complex/high-dimensional.

e [EX: robotics: x;, = camera image, X = all possible images
— |X| = intractably large

Approach: Use hypothesis class F to model:
e Rewards/responses/treatment effects
® Dynamics

¢ | ong-term rewards

In general, model class F might consist of:
® Deep neural networks
e (Generalized linear models
e Kernels

RL: Modeling approaches

State space X is intractably large. Use hypothesis class F to restrict soln. space.

RL: Modeling approaches

State space X is intractably large. Use hypothesis class F to restrict soln. space.

Policy-based methods: F = policies
e Use restricted policy class IT C {X — A}.

e EX: Policy gradient with 8 — g parameterized by neural net.

RL: Modeling approaches

State space X is intractably large. Use hypothesis class F to restrict soln. space.

Policy-based methods: F = policies
e Use restricted policy class IT C {X — A}.
e EX: Policy gradient with 8 — g parameterized by neural net.

Value-based methods: F/ = value functions

® Model state-action value functions with value fn. class © C {X x A — R}.
Qr(x,a) = E" [ZhH/ZhTh’ | xp = x,ap = a]

e Can use Q to model Q™ for all 7, or just for optimal policy 7*.

RL: Modeling approaches

State space X is intractably large. Use hypothesis class F to restrict soln. space.

Policy-based methods: F = policies
e Use restricted policy class IT C {X — A}.
e EX: Policy gradient with 8 — g parameterized by neural net.

Value-based methods: F/ = value functions

® Model state-action value functions with value fn. class © C {X x A — R}.
Qr(x,a) = E" [ZhH’ZhTh/ | xp = x,ap = a]

e Can use Q to model Q™ for all 7, or just for optimal policy 7*.

Model-based methods: F = transition dynamics

® Model class M; MDPs M = (P, R) € M parameterize transition
dynamics+rewards.

RL: Modeling approaches

State space X is intractably large. Use hypothesis class F to restrict soln. space.

Policy-based methods: F = policies
e Use restricted policy class IT C {X — A}.
e EX: Policy gradient with 8 — g parameterized by neural net.

Value-based methods: F/ = value functions

® Model state-action value functions with value fn. class © C {X x A — R}.
Qr(x,a) = E" [ZhH/ZhTh’ | xp = x,ap = a]

e Can use Q to model Q™ for all 7, or just for optimal policy 7*.

Model-based methods: F = transition dynamics

® Model class M; MDPs M = (P, R) € M parameterize transition
dynamics+rewards.

=

RL: Formal setup

Fort=1,...,T:

® x(lt) ~ d.

® Forh=1,..., H: (Markov Decision Process (MDP))
e QObserve :E%t) c X. (Sensor measurement)
e Jake action a;:) c A. (Actuator signal)
e Observe reward r{"” ~ R(z{"”,al"”) w/ " € [0,1]. (Reached goal?)
e [ransition: :E;:—)H ~ P(- | (E;Lt),a%t)). (System evolves)

Goal: Given hypothesis class F € {policies, value fns., dynamics} + realizability:

Find 7 with J(7*) — J(7) < ¢ using poly(comp(F), H,e~ ") episodes,

or achieve, e.g., Reg(T) < y/poly(comp(F), H) - T.

Statistical learning: Complexity measures

- Neural Network
~ Learning:

% Theoretical

% Foundations

| Martin Anthony and Peter L. Bartiett |

Complexity measures:

The Nature

e \/C Dimension (classification) of Statistical

Learning Theory

® Fat-shattering dimension (regression)

e Rademacher complexity (both)

e (Covering numbers (both)

le.q., Vapnik '95, Anthony & Bartlett 99, Bousquet-Boucheron-Lugosi '03]

Examples:
® Finite class: comp(F) < log|.F|

¢ Linear classification: comp(F) < dimension (VC dim) Tii
® [inear regression: comp(F) < (weight norm)2 (fat-shattering) |

® Similar bounds for neural nets, kernels, ...

No explicit dependence on | X|!

RL: Distribution shift

What we would like:
1. Gather data from distribution D using policy 7.

2. Fit hypothesis fe F (e.qg., value ., transition dynamics) using dataset (via
supervised learning).

3. Update policy 7V using f.

4. Performance improves”?

RL: Distribution shift

What we would like:
1. Gather data from distribution D using policy 7.

2. Fit hypothesis fe F (e.qg., value ., transition dynamics) using dataset (via
supervised learning).

3. Update policy 7V using f.

4. Performance improves”?

Why doesn’t this work?

1. Statistical learning gives us

Errorp(]?) < \/(x)mp(;).

n

2. No guarantee on performance on dataset D’ induced by 7+,

— fail to improve performance or explore.

RL: Distribution shift

Solution 1: Control # effective distributions

RL: Distribution shift

Solution 1: Control # effective distributions

® [or general contextual bandits, SquareCB has

Reg(T) < V |A| - T - comp(F)
——

possible action distributions

e |dea: Can only be “suprised”

A| times if we explore deliberately.

¢ No assumption on F, but requires strong assumption on A.

RL: Distribution shift

Solution 1: Control # effective distributions

® For general contextual bandits, SquareCB has

Reg(T) < V |A| - T - comp(F)
—~—

possible action distributions

® |dea: Can only be “suprised” | A| times if we explore deliberately.

e No assumption on F, but requires strong assumption on A.

Naively extending reasoning gives |.A|".

RL: Distribution shift

Solution 1: Control # effective distributions

® [or general contextual bandits, SquareCB has

Reg(T) < V |A| - T - comp(F)
——

possible action distributions

e |dea: Can only be “surprised”

A| times if we explore deliberately.

¢ No assumption on F, but requires strong assumption on A.

Naively extending reasoning gives |.A|".

Solution 2: Extrapolation
® For linear contextual bandits (E[r(a) | ,a] = (¢(x, a),#)), LNUCB has

Reg(T) < d-VT

e |dea: Can extrapolate once we have info from d dimensions.

¢ No assumption on A, but strong assumption on F. {t/ ti t }
; M EEE

Landscape of RL

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension S —

Tabular

[Credit: Akshay Krishnamurthy]

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension S —

Tabular

[Credit: Akshay Krishnamurthy]

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension e

Tabular

[Credit: Akshay Krishnamurthy]

RL: Linear hypothesis classes

Valued-based setting. Hypothesis class:
Q = {Qu(x,0) = (#(x,0),0n) | 0n € R}

for fixed feature map ¢(z, a) € R%.

RL: Linear hypothesis classes

Valued-based setting. Hypothesis class:
Q = {Qu(x,0) = (#(x,0),0n) | 0n € R}

for fixed feature map ¢(z, a) € R%.

Assumption: Realizability.
Assume Q* € Q.

RL: Linear hypothesis classes

Valued-based setting. Hypothesis class:
Q = {Qu(x,0) = (#(x,0),0n) | 0n € R}

for fixed feature map ¢(z, a) € R%.

Assumption: Realizability.
Assume Q* € Q.

e Contextual bandits (H = 1): Reg(T) < dV/T.

RL: Linear hypothesis classes
Valued-based setting. Hypothesis class:
Q = {Qu(z,0) = (¢(x,),0n) | 6n € R'}

for fixed feature map ¢(z, a) € R%.

Assumption: Realizability.
Assume Q* € Q.

e Contextual bandits (H = 1): Reg(T) < dV/T.

* RL: Reg(T) > min{exp(d),exp(H)}. [Weisz et al. ’20, '21]

RL: Linear hypothesis classes
Valued-based setting. Hypothesis class:
Q = {Qu(z,0) = (¢(x,),0n) | 6n € R'}

for fixed feature map ¢(z, a) € R%.

Assumption: Realizability.
Assume Q* € Q.

e Contextual bandits (H = 1): Reg(T) < dV/T.

* RL: Reg(T) > min{exp(d),exp(H)}. [Weisz et al. ’20, '21]

Low-Rank MDP. Have () P(z' | z,a) = (¢(z,a), u(z")), (i) R(z,a) = (¢(x,a),0).
(o(+, -) known, u(-) & 6 unknown)

(x, a)

Rank-d

Linear/Low Rank MDPs: Upper confidence bounds

LSVI-UCB [Jin et al. '20]
o With QY. (z,a) =0, solve

2
9}(1> _argmmz<<¢ ", al’),9> — (>—|—maXQh+1(x§h)L1,a)>> .

1<t

o C_ng)(m, a) = <¢(az,a), 5,(;5)> — bong)(x, a).

® Play 7\"(z) = argmax, Q\" (z, a).

Linear/Low Rank MDPs: Upper confidence bounds

LSVI-UCB [Jin et al. '20]
o With QY. (z,a) =0, solve

2
9}(3 _argmmz<<¢ i al”), 0) — (>—|—maXQh+1(x§h)L1,a)>> .

® Play 7\"(z) = argmax, Q\" (z, a).

Linear/Low Rank MDPs: Upper confidence bounds

LSVI-UCB [Jin et al. '20]
o With QY. (z,a) =0, solve

2
9}(3 _argmmz<<¢ i al”), 0) — (>—|—maXQh+1(x§h)L1,a)>> .

® Play 7\"(z) = argmax, Q\" (z, a).

Theorem: LSVI-UCB has

Reg(T) < Vd3HAT.

Analysis for LSVI-UCB

Optimism. With high probability (least squares + low rank MDP structure),

_?(x,a) > Qr(x,a) Vaz,a.

Analysis for LSVI-UCB

Optimism. With high probability (least squares + low rank MDP structure),
Q) (z,a) > Qh(x,a) Va,a.

Bonus: Let =}V =" _, (), a;)p(z}”,a;”) " + e - Iaxq and set

bon(!(z,) o \/é(,0) T (5§7) 1 6(w, @) = 6,)| 500, s

Analysis for LSVI-UCB

Optimism. With high probability (least squares + low rank MDP structure),
2\ (z,a) > Qh(z,a) Vz,a.

Bonus: Let =}V =" _, (), a;)p(z}”,a;”) " + e - Iaxq and set

bon()(CE,CL) X \/gb(xaa)—r(zg))_lgb(xaa) — Hqs(xaaf)”(zgf))—l'

Regret decomposition. As in tabular setting, Q' > Q7 pointwise implies

Reg(T) < poly(H S‘ Y bon{” (x{", ai").

t=1 h=1

Analysis for LSVI-UCB

Optimism. With high probability (least squares + low rank MDP structure),
2\ (z,a) > Qh(z,a) Vz,a.

Bonus: Let =}V =" _, (), a;)p(z}”,a;”) " + e - Iaxq and set

bon()(CE,CL) X \/gb(x,a)T(ZS))_lqb(m,a) — Hqs(xaaf)”(zgf))—l'

Regret decomposition. As in tabular setting, Q' > Q7 pointwise implies

Reg(T) < poly(H S‘ Y bon{” (x{", ai").

t=1 h=1

Potential argument.

T
Z Onh x;zt)aah ZH¢ xs)aag) (E%t))_l SJ vVdT'.

Analysis for LSVI-UCB

Optimism. With high probability (least squares + low rank MDP structure),
2\ (z,a) > Qh(z,a) Vz,a.

Bonus: Let =}V =" _, (), a;)p(z}”,a;”) " + e - Iaxq and set

bon()(CE,CL) X \/gb(xaa)—r(zg))_lgb(xaa) — Hqs(xaaf)”(zgf))—l'

Regret decomposition. As in tabular setting, Q' > Q7 pointwise implies

Reg(T) < poly(H S‘ Y bon{” (x{", ai").

t=1 h=1

Potential argument.

(E%))—l ~

T
Z bon{” (21", al") ZHgb (257, as)|| e < dT.
t=1

Intuition: LU < B 4+ ¢ (2, al) (28, ai?) T

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension e

Tabular

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension f——

Tabular

Eluder dimension

Eluder dimension: Combinatorial parameter controlling extrapolation.

Eluder dimension

Eluder dimension: Combinatorial parameter controlling extrapolation.

Foraclass F C (Z — R), eluder dimension de(F, €) is the length of the longest
sequence 2V, ..., 2™ such that for all t < N,

3L eF s |fED) = FEY)] >e and D |f(z0) = f1(z0)] <e.

1<t

Eluder dimension

Eluder dimension: Combinatorial parameter controlling extrapolation.

Foraclass F C (Z — R), eluder dimension de(F, €) is the length of the longest

sequence 2V, ..., 2™ such that for all t < N,
3L eF s |fED) = FEY)] >e and D |f(z0) = f1(z0)] <e.
1<t
Results:

® Russo & Van Roy '13: /de(Q) - T regret for bandits.
® Wang et al '20: /poly(de(Q), H) - T regret for RL (w/ additional assumptions).

Eluder dimension

Eluder dimension: Combinatorial parameter controlling extrapolation.

Foraclass F C (Z — R), eluder dimension de(F, €) is the length of the longest

sequence 2V, ..., 2™ such that for all t < N,
3L eF s |fED) = FEY)] >e and D |f(z0) = f1(z0)] <e.
1<t
Results:

® Russo & Van Roy '13: /de(Q) - T regret for bandits.
® Wang et al '20: /poly(de(Q), H) - T regret for RL (w/ additional assumptions).

Examples:
 Linear: de(Q,) = O(d).

® (Generalized linear:
e Q(xr,a) =0c({o(x,a),0))foroc: R — R o

~

e de(Q,e) =0(d)when0<c<o' <C

e RelU: de(Q,¢) = exp(d) [LKFS'21]. (0(2) = max{z,0})

Tighter variants: [FRSX'20], [FKQR’21]. Connection to RKHS: [Huang et al '21]

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension f——

Tabular

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension e

Tabular

Bellman rank — .

Observation: In alow rank MDP, for any function f(x), can write E™[f(z)] as
E" [E[f(fb‘h) | ib‘h—laah—lﬂ =E" [/(cb(fﬂh1»ah1),u(93)f(33)>d33}
— (B [olan-1,0n-0)]. [ua@)f(a)dn) = (X(m), W(1)).

Bellman rank — .

Observation: In alow rank MDP, for any function f(x), can write E™[f(z)] as
E" [E[f(fb‘h) | ib‘h—laah—lﬂ =E" [/(cb(fﬂh1»ah1),u(93)f(33)>d33}
— (B [olan-1,0n-0)]. [ua@)f(a)dn) = (X(m), W(1)).

Bellman residual: For Q € O and =, define (mo = opt policy for Q)

gh(ﬂ-a Q) — EthTF,CLhNﬂ'Q (xp) Qh(xhy ah) — <Th + mC?X Qh—kl(xh—kl) CL)) y

Bellman rank — .

Observation: In alow rank MDP, for any function f(x), can write E™[f(z)] as
5" [BLfen) | n-1,0n1]] = B | [0lanor,an1) (o) (o))
— (B [oan-1,0n-0)]. [u@)f(a)dn) = (X(m), W(1)).

Bellman residual: For Q € O and =, define (mo = opt policy for Q)

En(m, Q) = Egporap~omo(an) | @n(Th, an) — (?“h + max Qh+1(33h+1aa)> :

Bellman rank — .

Observation: In alow rank MDP, for any function f(x), can write E™[f(z)] as
5" [BLfen) | n-1,0n1]] = B | [0lanor,an1) (o) (o))
— (B [oan-1,0n-0)]. [u@)f(a)dn) = (X(m), W(1)).

Bellman residual: For Q € O and =, define (mo = opt policy for Q)

gh(ﬂ-a Q) — EthTF,CLhNﬂ'Q (xp) Qh(xhy CLh) — <Th + mC?X Qh—kl(xh—kl) CL)) y

Low Rank MDP has &, (7, Q) = (X (), Wr(Q)). o

Bellman rank — .

Observation: In alow rank MDP, for any function f(x), can write E™[f(z)] as
5" [BLfen) | n-1,0n1]] = B | [0lanor,an1) (o) (o))
— (B [oan-1,0n-0)]. [u@)f(a)dn) = (X(m), W(1)).

Bellman residual: For Q € O and =, define (mo = opt policy for Q)

gh(ﬂ-a Q) — EthTF,CLhNﬂ'Q (xp) Qh(xhy CLh) — <Th + mC?X Qh—kl(xh—kl) CL)) y

Low Rank MDP has &, (7, Q) = (X (), Wr(Q)). o

Bellman rank: [Jiang et al. ’17]

dge = max rank(&Ep (-, +)). I1 %h(ﬂ, Q)

Low Bellman rank implies sample efficiency

Theorem [Jiang, Krishnamurthy, Agarwal, Langford, Schapire ’17]

When @QQ* € 9, can learn an e-optimal policy with
pOIY(dBev ‘Aya H? COHlp(Q), 5_1)

samples.

Low Bellman rank implies sample efficiency

Theorem [Jiang, Krishnamurthy, Agarwal, Langford, Schapire ’17]

When @QQ* € 9, can learn an e-optimal policy with

poly (dge, | A|, H,comp(Q), ")

samples.

Remarks

® comp(Q) = supervised learning complexity. (e.g., log| Q] for finite)

Low Bellman rank implies sample efficiency

Theorem [Jiang, Krishnamurthy, Agarwal, Langford, Schapire ’17]

When @QQ* € 9, can learn an e-optimal policy with

poly (dge, | A|, H,comp(Q), ")

samples.

Remarks

® comp(Q) = supervised learning complexity. (e.g., log| Q] for finite)
® | A| can be removed with slightly different variant of dge. [Jin et al ’21, Du et al "21]
¢ Not computationally efficient in general. [cf. Dann et al. ’18]

The BilinUCB algorithm

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire "17]

BilinUCB. [Du et al. "21]
Maintain “plausible” set Q¥ C Q.

The BilinUCB algorithm

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire "17]

BilinUCB. [Du et al. "21]
Maintain “plausible” set Q¥ C Q.
Repeat:
* ot Q" = arg maxgc o) JQ(me), where Jg () = E|Q1(z1,7(z1))].

o Set W(t)(x) = To) (a’;) (opt policy for @(“)

The BilinUCB algorithm

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire "17]

BilinUCB. [Du et al. "21]
Maintain “plausible” set Q¥ C Q.
Repeat:
* |etQ" = arg max, . o) JQ(mg), where Jo () = E|Q1(z1,7(x1))].
e Setn'(z) = mgm (z). (opt policy for Q)

e Estimate &, (7", Q) by running =" and gathering O(e~?) trajectories.

The BilinUCB algorithm

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire "17]

BilinUCB. [Du et al. "21]
Maintain “plausible” set Q¥ C Q.
Repeat:
* |etQ" = arg max, . o) JQ(mg), where Jo () = E|Q1(z1,7(x1))].
e Setn'(z) = mgm (z). (opt policy for Q)

e Estimate &, (7", Q) by running =" and gathering O(e~?) trajectories.

¢ Set QU ={Q € Q| ¥, (&n(r?,Q)) S % Wh}

The BilinUCB algorithm

Variant of OLIVE [Jiang, Krishnamurthy, Agarwal, Langford, Schapire "17]

BilinUCB. [Du et al. "21]
Maintain “plausible” set Q¥ C Q.
Repeat:
* |etQ" = arg max, . o) JQ(mg), where Jo () = E|Q1(z1,7(x1))].
e Setn'(z) = mgm (z). (opt policy for Q)

e Estimate &, (7", Q) by running =" and gathering O(e~?) trajectories.

¢ Set QU ={Q € Q| ¥, (&n(r?,Q)) S % Wh}

Each iteration requires only poly(|.A|, H, comp(Q), e~ ") episodes.

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = Ewhwﬂ',ahNWQ(mh) Qh(xha CLh) — Th — mc?“x Qh-l-l(ajh—l-l? CL) — <Xh(7r)7 Wh(Q)>

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = Ewhwﬂ',ahrwr@(mh) Qh(mha CLh) — Th — mc?“x Qh-l-l(ajh—l-l? a’) — <Xh(7r)7 Wh(Q)>

Q”* is never eliminated. Q* € QY Vvt (Bellman optimality: &, (7, @*) = 0 for all «)

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = ECUhNW,ahNﬂ'Q(mh) Qh(mha CLh) — Th — mc?“x Qh-l-l(ajh—l-l? a’) — <Xh(7r)7 Wh(Q)>

Q”* is never eliminated. Q* € QY Vvt (Bellman optimality: &, (7, @*) = 0 for all «)

Average optimism. As a result, (recall Jo () = E[Q1 (1, 7(x1))])

J(m*) = Jo+(mq+) < max Jo(mg) = Jaw (7).

Qeo(t)

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = ECUhNW,ahNﬂ'Q(mh) Qh(mha ah) — Th — mc?“x Qh-l-l(ajh—l-l? a’) — <Xh(7r)7 Wh(Q)>

Q”* is never eliminated. Q* € QY Vvt (Bellman optimality: &, (7, @*) = 0 for all «)

Average optimism. As a result, (recall Jo () = E[Q1 (1, 7(x1))])

J(m*) = Jo+(mq+) < max Jo(mg) = Jaw (7).

Qeo(t)

Regret decomposition. For all Q-functions,

Jo(mq) — J(mq) = Zgh(WQaQ)

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = ECUhNW,ahNﬂ'Q(mh) Qh(mha ah) — Th — mc?“x Qh-l-l(ajh—l-l? a’) — <Xh(7r)7 Wh(Q)>

Q”* is never eliminated. Q* € QY Vvt (Bellman optimality: &, (7, @*) = 0 for all «)

Average optimism. As a result, (recall Jo () = E[Q1 (1, 7(x1))])

J(m*) = Jo+(mq+) < max Jo(mg) = Jaw (7).

Qeo(t)

Regret decomposition. For all Q-functions,

Jo(mq) — J(mq) = Zgh(WQaQ) — Z<Xh(7TQ)7Wh(Q)>

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = ECUhNW,ahNﬂ'Q(mh) Qh(mha ah) — Th — mc?“x Qh-l-l(ajh—l-l? a’) — <Xh(7r)7 Wh(Q)>

Q”* is never eliminated. Q* € QY Vvt (Bellman optimality: &, (7, @*) = 0 for all «)

Average optimism. As a result, (recall Jo () = E[Q1 (1, 7(x1))])

J(m*) = Jo+(mq+) < max Jo(mg) = Jaw (7).

Qeo(t)

Regret decomposition. For all Q-functions,
H H
Jo(mq) — J(mq) = Zgh(ﬂ-QaQ) = Z<Xh(7TQ)7Wh(Q)>
h=1 h=1

0 J(7*) — J(x) < 33 (Xn(7?), Wi (QM)).

BilinUCB: Analysis

Recall:

gh(ﬂ-a Q) = ECUhNW,ahNﬂ'Q(wh) Qh(mha ah) — Th — mc?“x Qh-l-l(ajh—l-l? a’) — <Xh(7r)7 Wh(Q)>

Q”* is never eliminated. Q* € QY Vvt (Bellman optimality: &, (7, @*) = 0 for all «)

Average optimism. As a result, (recall Jo () = E[Q1 (1, 7(x1))])

J(m*) = Jo+(mq+) < max Jo(mg) = Jaw (7).

Qeo(t)

Regret decomposition. For all Q-functions,
H H
Jo(mq) — J(mq) = Zgh(ﬂ-QaQ) = Z<Xh(7TQ)7Wh(Q)>
h=1 h=1

50 J(m*) — J (1) < 3L (Xn(m), Wi(Q)).
Confidence bound. Bound residuals using potential argument.

(t) __ i N T
Eg)yl, w/ B —;Xh(w”)Xh(w()) .

(¥ W@) £ [

Bellman rank: Examples

Low-Rank MDP: Dimension
(even w/ ¢ unknown)

| EmEm s = & |
Linear-Quadratic Regulator (LQR): Block MDP:
state*action dimension # latent states

Further examples: [Jiang etal.’17, Jin et al. '21, Du et al.”21]

« Low occupancy complexity « Linear Bellman-Complete
 Linear Q* & V* Predictive state representations
- State abstraction - Reactive POMDP

Example: Block MDP

Rich Observation Markov Decision Process
[Krishnamurthy et al.’16, Jiang et al.’17, Dann et al.’18, Du et al.’19]

¢ Markov decision process (MDP) with large/high-dimensional state space X.

e Assumption: States can be uniquely mapped down into small latent MDP in state
space S, with [S| < oo states.

X = images (pixels), S = game state

Example: Block MDP

Rich Observation Markov Decision Process
[Krishnamurthy et al.’16, Jiang et al.’17, Dann et al.’18, Du et al.’19]

¢ Markov decision process (MDP) with large/high-dimensional state space X.

e Assumption: States can be uniquely mapped down into small latent MDP in state
space S, with |S| < oo states.

Bellman rank depends only on # latent states:
Bellman Rank < |S].

Achieve poly(|S|, | Al, H,comp(Q), e~ ") sample complexity. (no |X| dependencel)
* comp(Q) will generally depend on mapping from observed to latent states

Example: Block MDP

Rich Observation Markov Decision Process
[Krishnamurthy et al.’16, Jiang et al.’17, Dann et al.’18, Du et al.’19]

¢ Markov decision process (MDP) with large/high-dimensional state space X.

e Assumption: States can be uniquely mapped down into small latent MDP in state
space S, with |S| < oo states.

Bellman rank depends only on # latent states:
Bellman Rank < |S].

Achieve poly(|S|, | Al, H,comp(Q), e~ ") sample complexity. (no |X| dependencel)
* comp(Q) will generally depend on mapping from observed to latent states

Idea:

5h(7T, Q) — Z]P)W(Sh — S) Eah,\m@(xh) Qh(xh, ah) — Th — mc?x Qh+1(xh,a) | Sh — S
seS

Example: Low-Rank MDP

u) //l(x,) |

Already saw:

En(m, Q) = <E7T [¢($h—1,ah—1)}a/M($)errh($;Q)d$>

Implication: Sample-efficient learning is possible even when ¢ is unknown.

Discussion

Only considered value-based methods (hypothesis class = Q)
® [or some classes, modeling transitions (hypothesis class = M) is required.

e Factored MDP. Linear Mixture MDP

¢ Model-based generalization: “Witness Rank” [Sun et al. 19, Du et al. '21]

Discussion

Only considered value-based methods (hypothesis class = Q)
® [or some classes, modeling transitions (hypothesis class = M) is required.

e Factored MDP. Linear Mixture MDP

¢ Model-based generalization: “Witness Rank” [Sun et al. 19, Du et al. '21]

Further generalizations
¢ Bilinear dimension [Du et al. "21]

e Bellman rank + eluder [Jin et al. "21]

Landscape of RL

All of reinforcement learning

Bilinear Dimension

Bellman Bellman Rank
-Eluder

Low-Rank MDP

Eluder (Known ¢)

Dimension e

Tabular

Landscape of RL

All of reinforcement learning

Decision-Estimation Coefficient

The Decision-Estimation Coefficient

Setup:
e Hypothesis class of MDPs M, M € M has M = (P, R).
o M* e M (realizability)

The Decision-Estimation Coefficient

Setup:
e Hypothesis class of MDPs M, M € M has M = (P, R).
o M* e M (realizability)
® M (m) = distribution over trajectories when we run policy
e Ju(m) = expected reward for m under M
e 1, — optimal policy for M

The Decision-Estimation Coefficient

Setup:
e Hypothesis class of MDPs M, M € M has M = (P, R).
o M* e M (realizability)
® M (m) = distribution over trajectories when we run policy
e Ju(m) = expected reward for m under M
e 1, — optimal policy for M

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]
For M € M and ~ > 0, define

_ , _
decy(M, M) = min max Exwp| Ju (7] 50) — Jur () = -Di (M (7), M ()],

where D{ (P, Q) : [(v/p(z) — /gl

The Decision-Estimation Coefficient

Setup:
e Hypothesis class of MDPs M, M € M has M = (P, R).
o M* e M (realizability)
® M (m) = distribution over trajectories when we run policy
e Ju(m) = expected reward for m under M
e 1, — optimal policy for M

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]
For M € M and ~ > 0, define

_ 5 _
deC»y(./\/l,M) pénAl(I%I)]\I}lgj}\(/l]Ewwp JM(WM) JM(WZ—’Y-DH(M(W)aM(W)))

where D{ (P, Q) : [(v/p(z) — /gl

-~

regret of decision

The Decision-Estimation Coefficient

Setup:
e Hypothesis class of MDPs M, M € M has M = (P, R).
o M* e M (realizability)
® M (m) = distribution over trajectories when we run policy
e Ju(m) = expected reward for m under M
e 1, — optimal policy for M

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]
For M € M and ~ > 0, define

dec, (M, M) = min max By | Ju (i) — Ju(m) =y -Di(M(r), M(m))),

where D{ (P, Q) : [(v/p(z) — /gl

regret of decision estimation error for obs.

The Decision-Estimation Coefficient

Setup:
e Hypothesis class of MDPs M, M € M has M = (P, R).
o M* e M (realizability)
® M (m) = distribution over trajectories when we run policy
e Ju(m) = expected reward for m under M
e 1, — optimal policy for M

The Decision-Estimation Coefficient [F, Kakade, Qian, Rakhlin '21]
For M € M and ~ > 0, define

_) _
decy (M, M) = pénAl(I%I)]\I}leaﬁc/lEWNp JM(WM) Jm(WZ—W ‘PH (M(W)aM(W))J ;

where D{ (P, Q) : [(v/p(z) — /gl

regret of decision estimation error for obs.

dec, (M) = J\r;?f/l dec., (M, M).

Decision-Estimation Coefficient

DEC: Lower bound

Any algorithm must have

> . ' :
Reg(T) > rgg(})cmm{decv(./\/l) T,v}

Decision-Estimation Coefficient

DEC: Lower bound

Any algorithm must have

> . ’ :
Reg(T) > rgg(})cmm{decv(./\/l) T,v}

Examples:
¢ Multi-armed bandit:

dec, (M) x % —> Reg(T) > mgécmin{ |AW|T,7} =/ |A|T.
v

Decision-Estimation Coefficient

DEC: Lower bound

Any algorithm must have

> . ' :
Reg(T) > rggécmm{decv(./\/l) T,v}

Examples:
¢ Multi-armed bandit:

dec, (M) x % —> Reg(T) > mgécmin{ |AW|T,7} =/ |A|T.
v

® Bellman rank d:

decy (M) > % — Reg(T)>Vvd-T.

Decision-Estimation Coefficient

DEC: Lower bound

Any algorithm must have

> . ' :
Reg(T) > gl;)%cmm{decv(./\/l) T,v}

Examples:
¢ Multi-armed bandit:

dec, (M) x % —> Reg(T) > mg(})cmin{ lAJT,W} =/ |A|T.
v

¢ Bellman rank d:
decy (M) > % —> Reg(T)>vd-T.

® |inear Q* (dimension d):
dec, (M) > T{y < exp(d)} = Reg(T) > exp(d).

(recovers [Weisz et al. "21])

Decision-Estimation Coefficient: Algorithms

Estimation-to-Decisions (E2D):

Decision-Estimation Coefficient: Algorithms

Estimation-to-Decisions (E2D):

Fort=1,...,T:
e Get estimator M € M from supervised estimation algorithm.

Decision-Estimation Coefficient: Algorithms

Estimation-to-Decisions (E2D):
Fort=1,...,T:
e Get estimator M € M from supervised estimation algorithm.

® Solve min-max optimization problem: (corresponds to dec., (M, M®))

p'"” = arg min max Er~, {JM(T(’X/[) — Ju(m) — v DA(M (),]\/4\“)(#))].
peA(II) MeM

Decision-Estimation Coefficient: Algorithms

Estimation-to-Decisions (E2D):
Fort=1,...,T:
e Get estimator M € M from supervised estimation algorithm.

® Solve min-max optimization problem: (corresponds to dec., (M, M®))

p'"” = arg min max Er~, {JM(T(’X/[) — Ju(m) — v DA(M (),]\/4\“)(#))].
peA(II) MeM

e Sample ©'¥ ~ p* and update estimation algorithm with trajectory.

Decision-Estimation Coefficient: Algorithms

Estimation-to-Decisions (E2D):
Fort=1,...,T:
e Get estimator M € M from supervised estimation algorithm.

¢ Solve min-max optimization problem: (corresponds to dec., (M, M®))

p" = arg min max E,-, [JM(W}Q) — Jy(m) — - Da (M(w),]/\4\(”(77))].

pEA(II) MeM

e Sample 7 ~ p® and update estimation algorithm with trajectory.

DEC: Upper bound

The E2D algorithm has

Reg(T) < min max{decv(./\/l) Ay EStH(T)},

v>0

where Esty(T) = .7 D3(M*(x®), M@ (x®)).

Esty(T) < comp(M):
e comp(M) = log| M| (finite), comp(M) = O(d) (parametric).

Frontier: Summary

Multiple ways to handle distribution shift:
e [Extrapolation: Linear models, eluder dimension.

o (ffective # distributions: Bellman rank and friends.

Decision-estimation coefficient provides necessary conditions.

Conclusion Exploration

Challenges for RL
e (Credit assignment

e [Exploration

e (Generalization Generalization Credit

The frontier: Exploration + generalization + credit assignment
® | ots of room for new theoretical/algorithnmic insights.
® Bridging theory + practice.

Multi-agent RL (Markov games/stochastic games)

¢ \Vhat function approximation/modeling assumptions?
(how well do | need to model my opponent’s behavior?)

¢ Min-max optimization perspective”? (policy gradient)
e Competitive vs. cooperative, centralized vs. decentralized, . ..
e Communication

