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The Space of Singular Matrices

Dn = {M ∈ MatC(n, n) | det M = 0} ⊂ Cn2

Example

D2 = {x11x22 − x12x21 = 0} ⊂ C4

Question
What linear subspaces of Cn2 are contained in Dn?
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Examples of Linear Spaces of Singular Matrices

Examples
0 · · · 0
∗ · · · ∗
...

...
∗ · · · ∗

 ⊂ Dn

 0 0 ∗
0 0 ∗
∗ ∗ ∗

 ⊂ D3

Compression Spaces:
Let V ,W ⊂ Cn, dim W = s, dim V = s + 1. Then

{M ∈ MatC(n, n) | MV ⊂W } ⊂ Dn.
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Motivation: Geometric Complexity Theory

Geometric approach to Valiant’s conjecture (Mulmuley, Sohoni
2001): need to understand closure of GLn2 detn.

Maximal linear subspaces of Dn can be used to construct pieces of
the boundary of GLn2 detn! (Landsberg, Manivel, Ressayre 2013)
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Definition of the Fano Scheme

Definition
The kth Fano Scheme of Dn is

Fk(Dn) =

{
L ⊂ Cn2

∣∣∣∣ dim L = k + 1
L ⊂ Dn

}
⊂ Gr(k + 1, n2).

Goal: Study the geometry of Fk(Dn).



Planes of Singular 2× 2 Matrices

(
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a b

)
,

(
0 c
0 d

)
∈ F1(D2)

Row and column operations:(
λ0a λ0b
λ1a λ1b

)
,

(
µ0c µ1c
µ0d µ1d

)
∈ F1(D2)

(
C2 \ {0}

)
/C∗ ∼= CP1

 CP1
∐

CP1 ∼= F1(D2).
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Planes of Singular n × n Matrices

Kronecker normal form  any point of F1(Dn) is contained in a
compression space.

Theorem (Chan, —)

F1(Dn) ⊂ Gr(2, n2) has exactly n irreducible components, each of
dimension 2(n2 − 2)− (n + 1). This is the expected dimension.



Higher Dimensional Linear Spaces

Theorem (Dieudonné 1949)

Fk(Dn) non-empty ⇐⇒ k < n(n − 1).

If 1 < k < n(n − 1), then:

I The dimension of Fk(Dn) is almost never pure.

I Irreducible components are in general unknown; OK for k � 0
(Beasley 1987) or n = 3, 4 (Atkinson 1983).

I Other bad things . . .
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Connectedness of Fk(Dn)

For what k , n is Fk(Dn) connected?

For 0 ≤ s ≤ n − 1, set κ(s) = n2 − (n − s)(s + 1)− 1.

Theorem (Chan, —)

Let 1 ≤ k < (n − 1)n. Then Fk(Dn) is disconnected iff

n2 − 2n < k ≤ κ(0)

or if there exists an integer s with 0 < s < n − 1 such that

κ(s)−min{n−s−1, s} < k ≤ κ(s).

n 2 3 4 5 6 7 8

Connected iff k ≤ – 3 8 13 21 29 40
or k = 24 35 46–48
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Compression Space Components

Definition
An s-compression space is the space of matrices compressing a
fixed s + 1-dimensional V ⊂ Cn into a fixed s-dimensional
W ⊂ Cn.

I κ(s) = n2 − (n − s)(s + 1)− 1 is the projective dimension of
any s-compression space.

I k + 1-dimensional subspaces of s-compression spaces form
irreducible components of Fk(Dn).



Torus Fixed Points

(C∗)n × (C∗)n acts on Dn by scaling rows and columns.
 torus action on Fk(Dn).

I Fk(Dn) only has finitely many fixed points under this action.

I Each fixed point lies on a compression space component!

Example  ∗ ∗ 0
∗ 0 0
∗ 0 0

 ∈ F3(D3)
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Argument for Connectedness

I Sufficient to connect compression space components! Do this
at torus fixed points.

Example (F3(D3) is connected)

 ∗ ∗ 0
∗ 0 0
∗ 0 0

  ∗ ∗ 0
∗ ∗ 0
0 0 0

  ∗ ∗ ∗∗ 0 0
0 0 0


 ∗ 0 0
∗ ∗ 0
0 ∗ 0

  ∗ ∗ 0
0 0 ∗
0 0 ∗

  0 0 0
∗ ∗ 0
0 ∗ ∗


s = 0 s = 1

s = 2



Argument for Disconnectedness

To prove disconnectedness:

I Exhibit a compression space component with smooth torus
fixed points.

Example (F4(D3) is disconnected)

 ∗ ∗ ∗∗ 0 0
∗ 0 0


 ∗ 0 0
∗ ∗ 0
∗ ∗ 0

  0 ∗ ∗
∗ ∗ ∗
0 0 0

s = 0

s = 1

s = 2



Fano Schemes of Permanents

Pn = {permn = 0} ⊂ Cn2  Fano scheme Fk(Pn).

I Partial characterization of connectedness of Fk(Pn).

I Understanding of some components of Fk(Pn).

I Component structure of Fk(Pn) appears “more complicated”
than that of Fk(Dn): e.g. F3(P3) has 21 components, while
F3(D3) has 3.
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Product Rank of perm3

Let f be a form of degree d . Its product rank pr(f ) is the smallest
r such that

f =
r∑

i=1

d∏
j=1

lij

for some linear forms lij .

I pr(perm3) ≤ 4 (Glynn 2013).

I pr(perm3) > 3 using structure of F5(P3):

Suppose

perm3 =
3∑

i=1

3∏
j=1

lij .

If lij are linearly dependent, then all maximal linear spaces
L ⊂ P3 contain a common line. But if lij are linearly
independent, then F5(P3) contains 27 points. 
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