Fano Schemes of Determinants and Permanents

Nathan Ilten

Simon Fraser University

September 18th, 2014

The Space of Singular Matrices

$$D_n = \{M \in \mathsf{Mat}_{\mathbb{C}}(n, n) \mid \det M = 0\} \subset \mathbb{C}^{n^2}$$

Example
$$D_2 = \{x_{11}x_{22} - x_{12}x_{21} = 0\} \subset \mathbb{C}^4$$

The Space of Singular Matrices

$$D_n = \{M \in \mathsf{Mat}_{\mathbb{C}}(n, n) \mid \det M = 0\} \subset \mathbb{C}^{n^2}$$

Example
 $D_2 = \{x_{11}x_{22} - x_{12}x_{21} = 0\} \subset \mathbb{C}^4$

Question

What linear subspaces of \mathbb{C}^{n^2} are contained in D_n ?

Examples of Linear Spaces of Singular Matrices

Examples

$$\begin{pmatrix} 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \subset D_n \qquad \qquad \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix} \subset D_3$$

Examples of Linear Spaces of Singular Matrices

Examples

$$\begin{pmatrix} 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \subset D_n \qquad \qquad \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix} \subset D_3$$

Compression Spaces: Let $V, W \subset \mathbb{C}^n$, dim W = s, dim V = s + 1. Then

$$\{M\in \mathsf{Mat}_{\mathbb{C}}(n,n)\mid MV\subset W\}\subset D_n$$

Motivation: Geometric Complexity Theory

Geometric approach to Valiant's conjecture (Mulmuley, Sohoni 2001): need to understand closure of $GL_{n^2} \det_n$.

Geometric approach to Valiant's conjecture (Mulmuley, Sohoni 2001): need to understand closure of $GL_{n^2} \det_n$.

Maximal linear subspaces of D_n can be used to construct pieces of the boundary of $\overline{GL_{n^2} \det_n}!$ (Landsberg, Manivel, Ressayre 2013)

Definition of the Fano Scheme

Definition The *kth Fano Scheme* of D_n is

$$\mathbf{F}_k(D_n) = \left\{ L \subset \mathbb{C}^{n^2} \mid \dim L = k+1 \\ L \subset D_n \right\} \subset \operatorname{Gr}(k+1, n^2).$$

Goal: Study the geometry of $\mathbf{F}_k(D_n)$.

Planes of Singular 2×2 Matrices

$$\left(\begin{array}{cc} 0 & 0 \\ a & b \end{array}\right), \left(\begin{array}{cc} 0 & c \\ 0 & d \end{array}\right) \in \mathbf{F}_1(D_2)$$

Planes of Singular 2×2 Matrices

$$\left(\begin{array}{cc} 0 & 0 \\ a & b \end{array}\right), \left(\begin{array}{cc} 0 & c \\ 0 & d \end{array}\right) \in \mathbf{F}_1(D_2)$$

Row and column operations:

$$\left(\begin{array}{cc}\lambda_0 a & \lambda_0 b\\\lambda_1 a & \lambda_1 b\end{array}\right), \left(\begin{array}{cc}\mu_0 c & \mu_1 c\\\mu_0 d & \mu_1 d\end{array}\right) \in \mathsf{F}_1(D_2) \qquad \left(\mathbb{C}^2 \setminus \{0\}\right) / \mathbb{C}^* \cong \mathbb{CP}^1$$

Planes of Singular 2×2 Matrices

$$\left(\begin{array}{cc} 0 & 0 \\ a & b \end{array}\right), \left(\begin{array}{cc} 0 & c \\ 0 & d \end{array}\right) \in \mathbf{F}_1(D_2)$$

Row and column operations:

$$\left(\begin{array}{cc}\lambda_0 a & \lambda_0 b\\\lambda_1 a & \lambda_1 b\end{array}\right), \left(\begin{array}{cc}\mu_0 c & \mu_1 c\\\mu_0 d & \mu_1 d\end{array}\right) \in \mathsf{F}_1(D_2) \qquad \left(\mathbb{C}^2 \setminus \{0\}\right) / \mathbb{C}^* \cong \mathbb{CP}^1$$

 $\rightsquigarrow \mathbb{CP}^1 \coprod \mathbb{CP}^1 \cong \mathbf{F}_1(D_2).$

Kronecker normal form \rightsquigarrow any point of $\mathbf{F}_1(D_n)$ is contained in a compression space.

Theorem (Chan, —) $\mathbf{F}_1(D_n) \subset \operatorname{Gr}(2, n^2)$ has exactly *n* irreducible components, each of dimension $2(n^2 - 2) - (n + 1)$. This is the expected dimension.

Higher Dimensional Linear Spaces

Theorem (Dieudonné 1949) $\mathbf{F}_k(D_n)$ non-empty $\iff k < n(n-1).$

Higher Dimensional Linear Spaces

Theorem (Dieudonné 1949)

 $\mathbf{F}_k(D_n)$ non-empty $\iff k < n(n-1).$

If 1 < k < n(n-1), then:

- The dimension of $\mathbf{F}_k(D_n)$ is almost never pure.
- Irreducible components are in general unknown; OK for k ≫ 0 (Beasley 1987) or n = 3,4 (Atkinson 1983).
- Other bad things . . .

Connectedness of $\mathbf{F}_k(D_n)$

For what k, n is $\mathbf{F}_k(D_n)$ connected?

Connectedness of $\mathbf{F}_k(D_n)$

For what k, n is $\mathbf{F}_k(D_n)$ connected? For $0 \le s \le n-1$, set $\kappa(s) = n^2 - (n-s)(s+1) - 1$. Theorem (Chan, —) Let $1 \le k < (n-1)n$. Then $\mathbf{F}_k(D_n)$ is disconnected iff $n^2 - 2n < k \le \kappa(0)$

or if there exists an integer s with 0 < s < n - 1 such that

$$\kappa(s) - \min\{n-s-1,s\} < k \leq \kappa(s).$$

Connectedness of $\mathbf{F}_k(D_n)$

For what k, n is $\mathbf{F}_k(D_n)$ connected? For $0 \le s \le n-1$, set $\kappa(s) = n^2 - (n-s)(s+1) - 1$. Theorem (Chan, —) Let $1 \le k < (n-1)n$. Then $\mathbf{F}_k(D_n)$ is disconnected iff $n^2 - 2n < k \le \kappa(0)$

or if there exists an integer s with 0 < s < n - 1 such that

$$\kappa(s) - \min\{n-s-1,s\} < k \leq \kappa(s).$$

n	2	3	4	5	6	7	8
Connected iff $k \leq$	-	3	8	13	21	29	40
or $k =$					24	35	46–48

Compression Space Components

Definition

An s-compression space is the space of matrices compressing a fixed s + 1-dimensional $V \subset \mathbb{C}^n$ into a fixed s-dimensional $W \subset \mathbb{C}^n$.

- κ(s) = n² − (n − s)(s + 1) − 1 is the projective dimension of any s-compression space.
- ▶ k + 1-dimensional subspaces of s-compression spaces form irreducible components of F_k(D_n).

Torus Fixed Points

 $(\mathbb{C}^*)^n \times (\mathbb{C}^*)^n$ acts on D_n by scaling rows and columns. \rightsquigarrow torus action on $\mathbf{F}_k(D_n)$.

Torus Fixed Points

 $(\mathbb{C}^*)^n \times (\mathbb{C}^*)^n$ acts on D_n by scaling rows and columns. \rightsquigarrow torus action on $\mathbf{F}_k(D_n)$.

- ▶ $\mathbf{F}_k(D_n)$ only has finitely many fixed points under this action.
- Each fixed point lies on a compression space component!

Example

$$\left(\begin{array}{rrr} * & * & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{array}\right) \in \mathbf{F}_3(D_3)$$

Argument for Connectedness

 Sufficient to connect compression space components! Do this at torus fixed points.

Argument for Disconnectedness

To prove disconnectedness:

 Exhibit a compression space component with smooth torus fixed points.

Example ($F_4(D_3)$ is disconnected)

Fano Schemes of Permanents

$$P_n = \{\operatorname{perm}_n = 0\} \subset \mathbb{C}^{n^2} \rightsquigarrow \operatorname{Fano} \operatorname{scheme} \mathbf{F}_k(P_n)$$

Fano Schemes of Permanents

$$P_n = \{\operatorname{perm}_n = 0\} \subset \mathbb{C}^{n^2} \rightsquigarrow \operatorname{Fano} \operatorname{scheme} \mathbf{F}_k(P_n).$$

- Partial characterization of connectedness of $\mathbf{F}_k(P_n)$.
- Understanding of some components of $\mathbf{F}_k(P_n)$.
- Component structure of F_k(P_n) appears "more complicated" than that of F_k(D_n): e.g. F₃(P₃) has 21 components, while F₃(D₃) has 3.

Product Rank of perm₃

Let f be a form of degree d. Its product rank pr(f) is the smallest r such that

$$f = \sum_{i=1}^{r} \prod_{j=1}^{d} l_{ij}$$

for some linear forms I_{ij} .

- ▶ pr(perm₃) ≤ 4 (Glynn 2013).
- $pr(perm_3) > 3$ using structure of $F_5(P_3)$:

Product Rank of perm₃

Let f be a form of degree d. Its product rank pr(f) is the smallest r such that

$$f = \sum_{i=1}^{r} \prod_{j=1}^{d} l_{ij}$$

for some linear forms I_{ij} .

- ▶ pr(perm₃) ≤ 4 (Glynn 2013).
- $pr(perm_3) > 3$ using structure of $F_5(P_3)$: Suppose

$$\mathsf{perm}_3 = \sum_{i=1}^3 \prod_{j=1}^3 \mathit{I_{ij}}.$$

If I_{ij} are linearly dependent, then all maximal linear spaces $L \subset P_3$ contain a common line. $\frac{1}{2}$ But if I_{ij} are linearly independent, then $\mathbf{F}_5(P_3)$ contains 27 points. $\frac{1}{2}$