Fano Schemes of Determinants and Permanents

Nathan Ilten

Simon Fraser University

September 18th, 2014

The Space of Singular Matrices

$$
D_n = \{M \in Mat_{\mathbb{C}}(n, n) \mid \det M = 0\} \subset \mathbb{C}^{n^2}
$$

Example $D_2 = \{x_{11}x_{22} - x_{12}x_{21} = 0\} \subset \mathbb{C}^4$

The Space of Singular Matrices

$$
D_n = \{ M \in \text{Mat}_{\mathbb{C}}(n, n) \mid \det M = 0 \} \subset \mathbb{C}^{n^2}
$$

Example

$$
D_2 = \{ x_{11}x_{22} - x_{12}x_{21} = 0 \} \subset \mathbb{C}^4
$$

Question

What linear subspaces of \mathbb{C}^{n^2} are contained in $D_n?$

Examples of Linear Spaces of Singular Matrices

Examples

$$
\left(\begin{array}{cccc}0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{array}\right) \subset D_n \qquad \left(\begin{array}{cccc}0 & 0 & * \\0 & 0 & * \\ * & * & * \end{array}\right) \subset D_3
$$

Examples of Linear Spaces of Singular Matrices

Examples

$$
\left(\begin{array}{cccc} 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{array}\right) \subset D_n \qquad \left(\begin{array}{cccc} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{array}\right) \subset D_3
$$

Compression Spaces: Let $V, W \subset \mathbb{C}^n$, dim $W = s$, dim $V = s + 1$. Then

$$
\{M\in \mathsf{Mat}_{\mathbb{C}}(n,n)\mid MV\subset W\}\subset D_n.
$$

Motivation: Geometric Complexity Theory

Geometric approach to Valiant's conjecture (Mulmuley, Sohoni 2001): need to understand closure of GL_{n^2} det_n.

Geometric approach to Valiant's conjecture (Mulmuley, Sohoni 2001): need to understand closure of GL_{n^2} det_n.

Maximal linear subspaces of D_n can be used to construct pieces of the boundary of GL_{n^2} det $_n$! (Landsberg, Manivel, Ressayre 2013)

Definition of the Fano Scheme

Definition

The *kth Fano Scheme* of D_n is

$$
\mathsf{F}_k(D_n) = \left\{ L \subset \mathbb{C}^{n^2} \middle| \begin{array}{c} \dim L = k+1 \\ L \subset D_n \end{array} \right\} \subset \mathsf{Gr}(k+1, n^2).
$$

Goal: Study the geometry of $F_k(D_n)$.

Planes of Singular 2×2 Matrices

$$
\left(\begin{array}{cc} 0 & 0 \\ a & b \end{array}\right), \left(\begin{array}{cc} 0 & c \\ 0 & d \end{array}\right) \in \mathsf{F}_1(D_2)
$$

Planes of Singular 2×2 Matrices

$$
\left(\begin{array}{cc} 0 & 0 \\ a & b \end{array}\right), \left(\begin{array}{cc} 0 & c \\ 0 & d \end{array}\right) \in \mathsf{F}_1(D_2)
$$

Row and column operations:

$$
\left(\begin{array}{cc} \lambda_0a & \lambda_0b \\ \lambda_1a & \lambda_1b \end{array}\right), \left(\begin{array}{cc} \mu_0c & \mu_1c \\ \mu_0d & \mu_1d \end{array}\right) \in \mathbf{F}_1(D_2) \qquad \left(\mathbb{C}^2\setminus\{0\}\right)/\mathbb{C}^*\cong \mathbb{CP}^1
$$

Planes of Singular 2×2 Matrices

$$
\left(\begin{array}{cc} 0 & 0 \\ a & b \end{array}\right), \left(\begin{array}{cc} 0 & c \\ 0 & d \end{array}\right) \in \mathsf{F}_1(D_2)
$$

Row and column operations:

$$
\left(\begin{array}{cc} \lambda_0a & \lambda_0b \\ \lambda_1a & \lambda_1b \end{array}\right), \left(\begin{array}{cc} \mu_0c & \mu_1c \\ \mu_0d & \mu_1d \end{array}\right) \in \mathbf{F}_1(D_2) \qquad \left(\mathbb{C}^2\setminus\{0\}\right)/\mathbb{C}^* \cong \mathbb{CP}^1
$$

 $\rightsquigarrow \mathbb{CP}^1 \coprod \mathbb{CP}^1 \cong \mathsf{F}_1(D_2).$

Kronecker normal form \rightsquigarrow any point of $F_1(D_n)$ is contained in a compression space.

Theorem (Chan, —) $\mathsf{F}_1(D_n)\subset\mathsf{Gr}(2,n^2)$ has exactly n irreducible components, each of dimension $2(n^2-2)-(n+1)$. This is the expected dimension.

Higher Dimensional Linear Spaces

Theorem (Dieudonné 1949) $\mathbf{F}_k(D_n)$ non-empty $\iff k < n(n-1)$.

Higher Dimensional Linear Spaces

Theorem (Dieudonné 1949)

 $\mathbf{F}_k(D_n)$ non-empty $\iff k < n(n-1)$.

If $1 < k < n(n-1)$, then:

- \blacktriangleright The dimension of $\mathbf{F}_k(D_n)$ is almost never pure.
- Irreducible components are in general unknown; OK for $k \gg 0$ (Beasley 1987) or $n = 3, 4$ (Atkinson 1983).
- \triangleright Other bad things ...

Connectedness of $F_k(D_n)$

For what k, n is $F_k(D_n)$ connected?

Connectedness of $F_k(D_n)$

For what k, n is $\mathbf{F}_k(D_n)$ connected? For $0\leq s\leq n-1$, set $\kappa(s)=n^2-(n-s)(s+1)-1.$ Theorem (Chan, —) Let $1 \leq k \leq (n-1)n$. Then $\mathbf{F}_k(D_n)$ is disconnected iff $n^2-2n < k \leq \kappa(0)$

or if there exists an integer s with $0 < s < n - 1$ such that

$$
\kappa(s)-\min\{n-s-1,s\} < k \leq \kappa(s).
$$

Connectedness of $F_k(D_n)$

For what k, n is $\mathbf{F}_k(D_n)$ connected? For $0\leq s\leq n-1$, set $\kappa(s)=n^2-(n-s)(s+1)-1.$ Theorem (Chan, —) Let $1 \leq k \leq (n-1)n$. Then $\mathbf{F}_k(D_n)$ is disconnected iff $n^2-2n < k \leq \kappa(0)$

or if there exists an integer s with $0 < s < n - 1$ such that

$$
\kappa(s)-\min\{n-s-1,s\} < k \leq \kappa(s).
$$

Compression Space Components

Definition

An s-compression space is the space of matrices compressing a fixed $s + 1$ -dimensional $V \subset \mathbb{C}^n$ into a fixed s-dimensional $W \subset \mathbb{C}^n$.

- \blacktriangleright $\kappa(s) = n^2 (n-s)(s+1) 1$ is the projective dimension of any s-compression space.
- \blacktriangleright $k + 1$ -dimensional subspaces of s-compression spaces form irreducible components of $F_k(D_n)$.

Torus Fixed Points

 $(\mathbb{C}^*)^n \times (\mathbb{C}^*)^n$ acts on D_n by scaling rows and columns. \rightsquigarrow torus action on $\mathbf{F}_k(D_n)$.

Torus Fixed Points

 $(\mathbb{C}^*)^n \times (\mathbb{C}^*)^n$ acts on D_n by scaling rows and columns. \rightsquigarrow torus action on $\mathbf{F}_k(D_n)$.

- \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleleft \blacktriangleright \blacktriangleright \blacktriangleleft \blacktriangleright \blacktriangleleft \blacktriangleright \blacktriangleleft \blacktriangleright \blacktriangleleft \blacktriangleleft \blacktriangleright \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangleleft \blacktriangle
- ► Each fixed point lies on a compression space component!

Example

$$
\left(\begin{array}{ccc} * & * & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{array}\right) \in \mathsf{F}_3(D_3)
$$

Argument for Connectedness

 \triangleright Sufficient to connect compression space components! Do this at torus fixed points.

Argument for Disconnectedness

To prove disconnectedness:

 \triangleright Exhibit a compression space component with smooth torus fixed points.

Example $(F_4(D_3))$ is disconnected)

Fano Schemes of Permanents

$$
P_n = \{ \text{perm}_n = 0 \} \subset \mathbb{C}^{n^2} \rightsquigarrow \text{Fano scheme } \mathbf{F}_k(P_n).
$$

Fano Schemes of Permanents

$$
P_n = \{ \text{perm}_n = 0 \} \subset \mathbb{C}^{n^2} \rightsquigarrow \text{Fano scheme } \mathbf{F}_k(P_n).
$$

- **Partial characterization of connectedness of** $F_k(P_n)$ **.**
- Inderstanding of some components of $F_k(P_n)$.
- **Component structure of** $F_k(P_n)$ **appears "more complicated"** than that of $F_k(D_n)$: e.g. $F_3(P_3)$ has 21 components, while $F_3(D_3)$ has 3.

Product Rank of perm₃

Let f be a form of degree d. Its product rank $pr(f)$ is the smallest r such that

$$
f = \sum_{i=1}^r \prod_{j=1}^d l_{ij}
$$

for some linear forms l_{ii} .

- **Pr**(perm₃) \leq 4 (Glynn 2013).
- \blacktriangleright pr(perm₃) > 3 using structure of $\mathbf{F}_5(P_3)$:

Product Rank of perm₃

Let f be a form of degree d. Its product rank $pr(f)$ is the smallest r such that

$$
f = \sum_{i=1}^r \prod_{j=1}^d l_{ij}
$$

for some linear forms l_{ii} .

- **Pr**(perm₃) \leq 4 (Glynn 2013).
- \blacktriangleright $\mathsf{pr}(\mathsf{perm}_3) > 3$ using structure of $\mathsf{F}_5(P_3)$: Suppose

$$
\text{perm}_3=\sum_{i=1}^3\prod_{j=1}^3\textit{l}_{ij}.
$$

If l_{ii} are linearly dependent, then all maximal linear spaces $L \subset P_3$ contain a common line. $\frac{1}{2}$ But if I_{ij} are linearly independent, then $F_5(P_3)$ contains 27 points.